

LTE-Advanced Radio Layer 2 and RRC aspects

Magnus Lindström, Ericsson 3GPP TSG-RAN WG2

A GLOBAL INITIATIVE

Outline

♠ E-UTRA overview

- LTE Advanced features
- E-UTRAN architecture
- User plane protocol stack
- Control plane protocol stack

→ User plane

- Reliable transport
- U-plane data flow
- Scheduling
- DRX
- Security

♠ Control plane

- System information
- Connection control
- RRC state model
- IDLE mode mobility
- CONNECTED mode mobility
- Radio Link Failure handling
- Random Access
- Priority access

n Performance

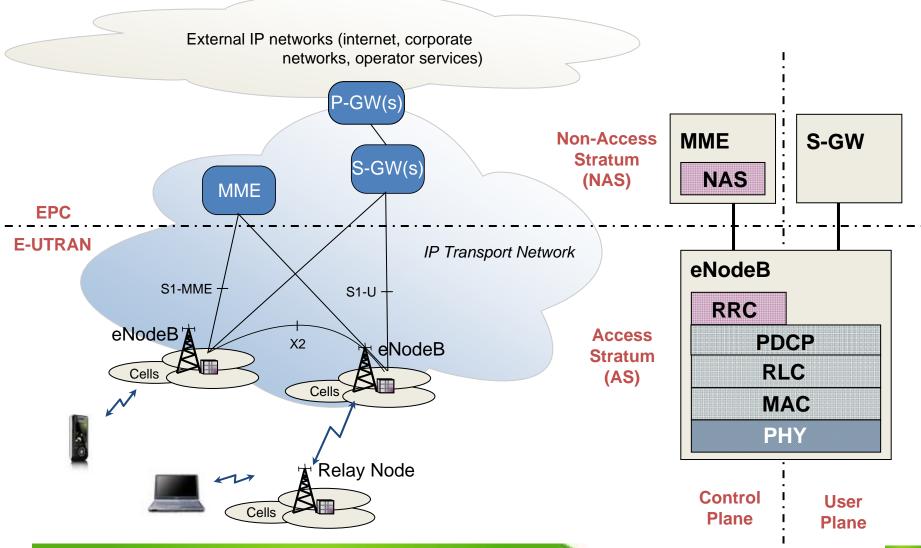
- U-plane latency
- C-plane latency
- HO interruption

LTE Advanced features

LTE Advanced supports:

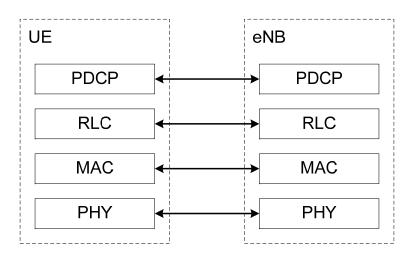
- Reliable, high rate, high capacity and low latency data transfer
 - suitable for a wide range of services
- Mobility
 - seamless and lossless (using packet forwarding)
 - optimized for low mobile speed from 0 to 15 km/h
 - higher mobile speed between 15 and 120 km/h also supported with high performance
 - mobility across the cellular network can be maintained at speeds from 120 km/h to 350 km/h (or even up to 500 km/h depending on the frequency band)
- Relays
 - to improve e.g. the coverage of high data rates, temporary network deployment, cell-edge throughput and/or to provide coverage in new areas
 - relay node wirelessly connected to donor cell of donor eNB
- Carrier and spectrum aggregation
 - to support wider transmission bandwidths up to 100MHz and spectrum aggregation
 - aggregation of both contiguous and non-contiguous component carriers is supported
- Coordinated Multi-Point transmission and reception
 - to improve the coverage of high data rates, the cell-edge throughput and/or to increase system throughput

LTE Advanced features (cont'd)



LTE Advanced further supports:

- Emergency Calls
 - Provisioning of emergency call service to user equipment in both normal service mode (authenticated) and limited service mode (unauthenticated)
- Positioning
 - UE location determination through user plane and control plane based solutions;
 e.g., A-GNSS, OTDOA, cell level granularity location reporting
- Public warning systems (PWS)
 - Provisioning of timely and accurate alerts, warnings and critical information regarding disasters and other emergencies through Earthquake and Tsunami Warning System (ETWS) and Commercial Mobile Alert System (CMAS)
- Home eNB (HeNB)
 - Provisioning of LTE service through customer-premises equipment using operator's licenced spectrum
- Multimedia Broadcast/Multicast Service (MBMS)
 - Multi-cell broadcast of multimedia services through efficient Single Frequency Network (SFN) mode of operation



E-UTRAN architecture

User plane protocol stack

PDCP (Packet Data Convergence Protocol)

TS 36.323

- Header compression using the RoHC protocol[†];
- In-sequence delivery and retransmission of PDCP SDUs for AM Radio Bearers at handover;
- Duplicate detection;
- Ciphering;
- Integrity protection[‡].

TS 36.322

- RLC (Radio Link Control)
 - Transfer of upper layer PDUs supporting AM, UM and TM data transfer;
 - Error Correction through ARQ;
 - Segmentation according to the size of the TB;
 - Re-segmentation of PDUs that need to be retransmitted;
 - Concatenation of SDUs for the same radio bearer;
 - Protocol error detection and recovery;
 - In-sequence delivery
- MAC (Media Access Control)
 - Multiplexing/demultiplexing of RLC PDUs

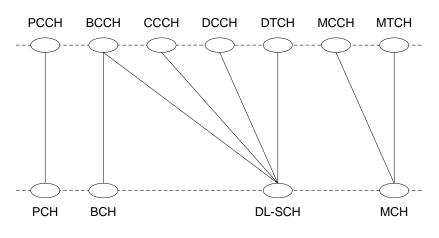
TS 36.321

- Scheduling Information reporting;
- Error correction through HARQ;
- Logical Channel Prioritisation;
- Padding;

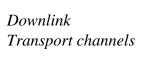
†) for U-plane

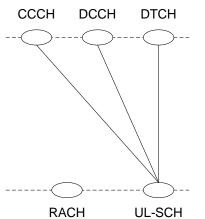
‡) for C-plane

Channel Mapping



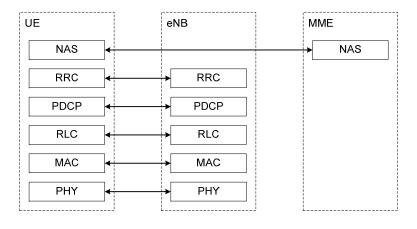
Transport Channels:


- PCH: Paging Ch.
- BCH: Broadcast Ch.
- MCH: Multicast Ch.
- DL-SCH: Downlink Shared Ch.
- UL-SCH: Uplink Shared Ch.


♠ Logical channels:

- PCCH: Paging Control Ch.
- BCCH: Broadcast Control Ch.
- CCCH: Common Control Ch.
- DCCH: Dedicated Control Ch.
- DTCH: Dedicated Traffic Ch.
- MCCH: Multicast Control Ch.
- MTCH: Multicast Traffic Ch.

Downlink Logical channels


Uplink Logical channels

Uplink Transport channels

Control plane protocol stack

- RLC and MAC sublayers perform the same functions as for the user plane.
- PDCP sublayer performs ciphering and integrity protection.

RRC (Radio Resource Control) protocol performs:

TS 36.331

- Broadcast of System Information related to NAS and AS;
- Establishment, maintenance and release of RRC connection;
- Establishment, configuration, maintenance and release of Signalling and Data Radio Bearers (SRBs and DRBs);
- Security functions including key management;
- Mobility functions including, e.g.:
 - Control of UE cell selection/reselection; Paging; UE measurement configuration and reporting; Handover;
- QoS management functions;
- UE measurement reporting and control of the reporting;
- Notification for ETWS, CMAS and MBMS;
- NAS direct message transfer between UE and NAS.

User plane

⋒ E-UTRA overview

- LTE Advanced features
- E-UTRAN architecture
- User plane protocol stack
- Control plane protocol stack

→ User plane

- Reliable transport
- U-plane data flow
- Scheduling
- DRX
- Security

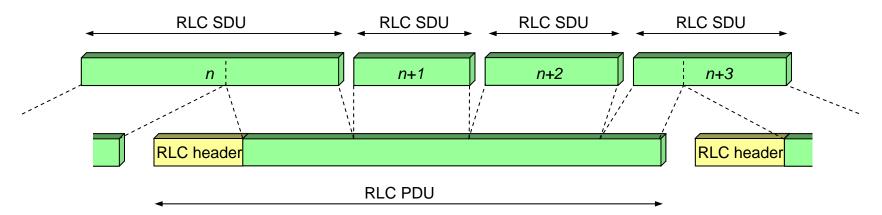
ា Control plane

- System information
- Connection control
- RRC state model
- IDLE mode mobility
- CONNECTED mode mobility
- Radio Link Failure handling
- Random Access
- Priority access

a Performance

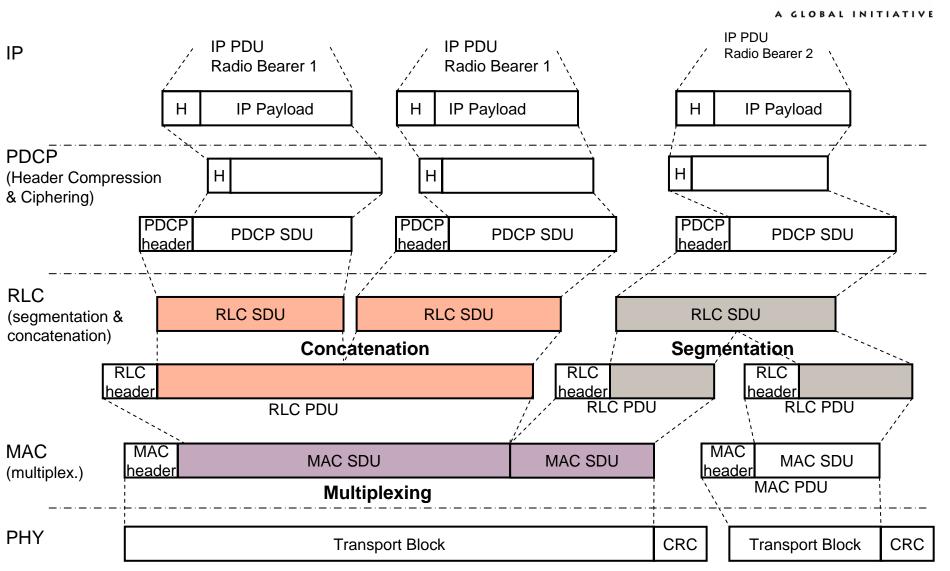
- U-plane latency
- C-plane latency
- HO interruption

Reliable transport Retransmission protocols


- ↑ L1 applies 24 bit CRC protection to transport blocks (MAC PDUs)
 - Erroneous transport blocks are discarded on L1
- Hybrid ARQ protocol in MAC complemented by ARQ protocol in RLC[†] for high reliability and radio efficiency
 - HARQ feedback sent on L1/L2 control channel
 - Single, uncoded bit (low overhead)
 - Sent for each scheduled subframe (fast)
 - Retransmissions are soft-combined with previous attempt (efficient)
 - ARQ status report sent as MAC data
 - protected by CRC and HARQ retransmissions
 - RLC Status is sent on demand (poll, timer, gap detection)
- Both HARQ and ARQ protocols terminated in the eNB
 - fast handling of residual HARQ errors
- Ensures low latency and high reliability

†) RLC AM (Acknowledged Mode) only. No retransmissions in RLC UM (Unacknowledged mode).

Reliable transport Lossless and in-sequence delivery


- Lossless and in-sequence delivery of data provided by:
 - RLC retransmission (ARQ) and re-ordering functions for normal operation (based on RLC SNs)
 - PDCP forwarding, retransmission and reordering functions for handover cases (based on PDCP SNs)
 - For RLC AM data radio bearers only
 - PDCP SNs are maintained across handovers
 - Lower layers (RLC/MAC) are reset

- Duplicate detection provided by PDCP
 - Duplicates may disturb TCP performance
 - Detects and removes duplicates based on PDCP Sequence Numbers (SNs)

User Plane data flow (downlink)

Scheduling

- Scheduler residing in eNB with objective of:
 - Fulfilling of "QoS Contracts";
 - Maximising cell throughput;
 - Providing Fairness,

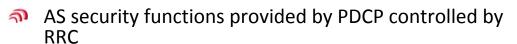
based on measurements, scheduling information and QoS parameters.

- Scheduling Information from UE, e.g.:
 - Channel Quality Indication; Buffer Status Report; Power Headroom Report; Uplink Sounding.
- QoS framework with per bearer granularity
 - Bearers associated with several QoS parameters, e.g.:
 - QoS Class Identifier (QCI); Guaranteed Bit Rate (GBR); Allocation and Retention Priority (ARP);
 Logical Channel Priority; Prioritised Bit Rate (PBR); Aggregate Maximum Bitrate (AMBR).
 - Supports wide range of services, e.g.:
 - Basic conversational service class, rich conversational service class and conversational low delay service class;
 - Also interactive high delay, interactive low delay, streaming live, streaming non-live and background.

Scheduling Dynamic & Semi-Persistent & TTI Bundling

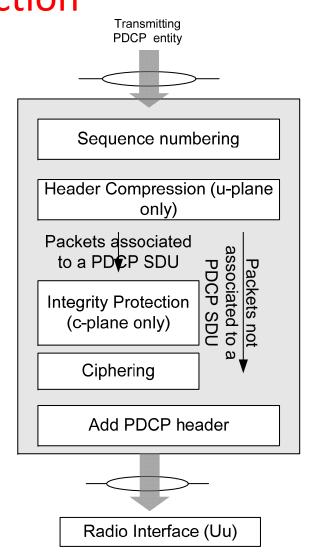
- Scheduling decisions dynamically signaled on L1L2 control channel PDCCH
 - 1ms Transmission Time Interval (TTI) for DL-SCH and UL-SCH
 - PDCCH provides physical resource allocation, Modulation and Coding scheme, New-Data indicator, Transport Block size, Redundancy version, HARQ Process ID
 - DL: adaptive HARQ
 - All (re-)transmissions are indicated on PDCCH
 - Synchronous HARQ feedback, asynchronous retransmissions
 - UL: adaptive and non-adaptive HARQ
 - First transmission indicated on PDCCH
 - Retransmissions can be indicated on PDCCH or be derived from previous transmission parameters and HARQ feedback
 - Synchronous HARQ feedback, synchronous retransmissions
- Semi-Persistent Scheduling (SPS)
 - Reduced L1/L2 control signalling for traffic with periodic transmissions
 - UL/DL resources configured to occur at specific interval
 - Only first assignment/grant need to be signalled
 - Subsequent transmissions use the same resources as the first transmission
 - Can be deactivated with a special assignment/grant
- TTI Bundling
 - Improved coverage at lower delay
 - UE performs multiple HARQ transmission attempts in consecutive TTIs before receiving HARQ feedback
 - Less HARQ signalling reduces risk of HARQ failure

UE battery efficiency Discontinuous Reception - DRX


- Configurable Sleep Mode for UE's receiver chain
- Periodic repetition of an "On Duration" followed by a possible period of inactivity

- "Active time" defines periods of mandatory activity:
 - In configured On Duration (e.g. 2 ms per 20 ms);
 - While receiving assignments or grants for new data;
 (an Inactivity Timer is (re-)started and the UE is prepared to be scheduled continuously);
 - When expecting a retransmission of a Downlink HARQ transmission (one HARQ RTT after receiving an unsuccessful DL transmission);
 - When expecting HARQ feedback for an Uplink HARQ transmission;
 - After transmitting a Scheduling Request.
- Two-level DRX scheme
 - Long DRX for very power efficient operation during periods of low activity
 - Short DRX for low latency during periods of more activity
 - autonomous transitions between states

Security Ciphering and Integrity Protection


- Always activated early
- Once started, always on
- Based on SNOW3G and AES algorithms
- Keys changed at handover; backward and forward security
- Counter split in two parts for high radio efficiency:
 - Hyper Frame Number (HFN): maintained locally
 - Sequence Number (SN): signalled over the air

Integrity protection

- for C-plane radio bearers (Signalling Radio Bearers)
- 32-bit Message Authentication Code (MAC-I)
- MAC-I placed at end of PDU

Ciphering (confidentiality protection)

- for C-plane radio bearers (Signalling Radio Bearers)
- for U-plane radio bearers (Data Radio Bearers)
- PDCP Control PDUs (RoHC feedback and PDCP status reports) not ciphered

Control plane

⋒ E-UTRA overview

- LTE Advanced features
- E-UTRAN architecture
- User plane protocol stack
- Control plane protocol stack

ক User plane

- Reliable transport
- U-plane data flow
- Scheduling
- DRX
- Security

♠ Control plane

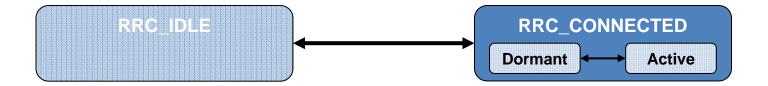
- System information
- Connection control
- RRC state model
- IDLE mode mobility
- CONNECTED mode mobility
- Radio Link Failure handling
- Random Access
- Priority access

a Performance

- U-plane latency
- C-plane latency
- HO interruption

System Information

- System Information is provided by RRC, structured in MIB and SIBs
- MIB transmitted in fixed location
 - Includes parameters essential to find SIB1 scheduled on DL-SCH (e.g., DL bandwidth and System Frame Number)
- → SIB1 scheduled in the frequency domain (fixed timing) on DL-SCH
 - Contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information
- Other SIBs are multiplexed in SystemInformationMessages
 - Scheduled in time and frequency domains as defined by SIB1
 - SIB2
 - contains resource configuration information that is common for all UEs; needed before accessing a cell
 - SIB3, SIB4, ...
 - other system information grouped according to functionality


35 P

Connection Management

- ♠ Connection/session management is performed by:
 - the RRC protocol between the UE and E-UTRAN
 - the NAS protocol between the UE and CN
- The NAS protocol performs e.g.:
 - authentication, registration, bearer context activation/ deactivation and location registration management
- RRC messages are used e.g., to:
 - establish connection, configure the radio bearers and their corresponding attributes, and to control mobility
- The RRC protocol has two states:
 - RRC_IDLE and RRC_CONNECTED

Mobility and RRC State Models

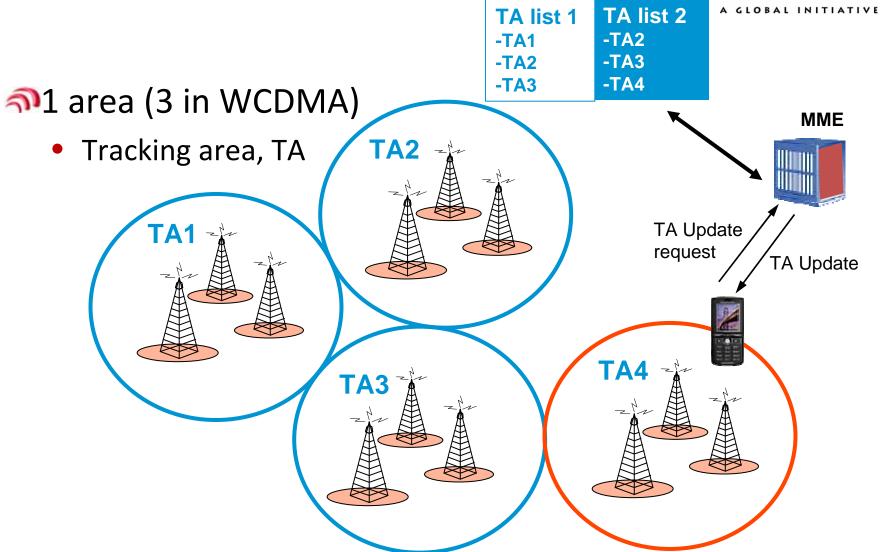
ຈາ IDLE:

- UE known in EPC and has IP address;
- UE not known in E-UTRAN/eNB;
- UE location known on Tracking Area level;
- Unicast data transfer not possible;
- UE reached by paging in tracking areas controlled by EPC;
- UE-based cell-selection and tracking area update to EPC.

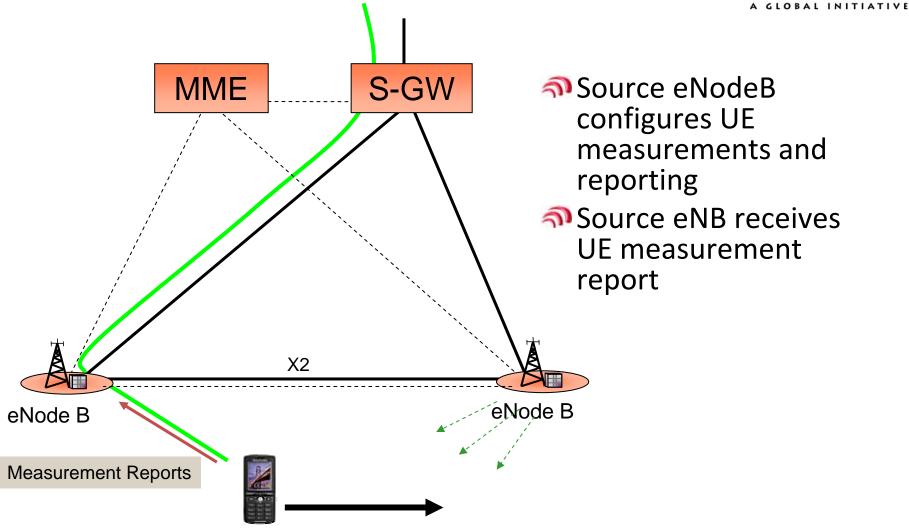
NOTICE CONNECTED:

- UE known in EPC and E-UTRAN/eNB; "context" in eNB;
- UE location known on cell level;
- Unicast data transfer possible;
- DRX supported for power saving;
- Mobility is controlled by the network.

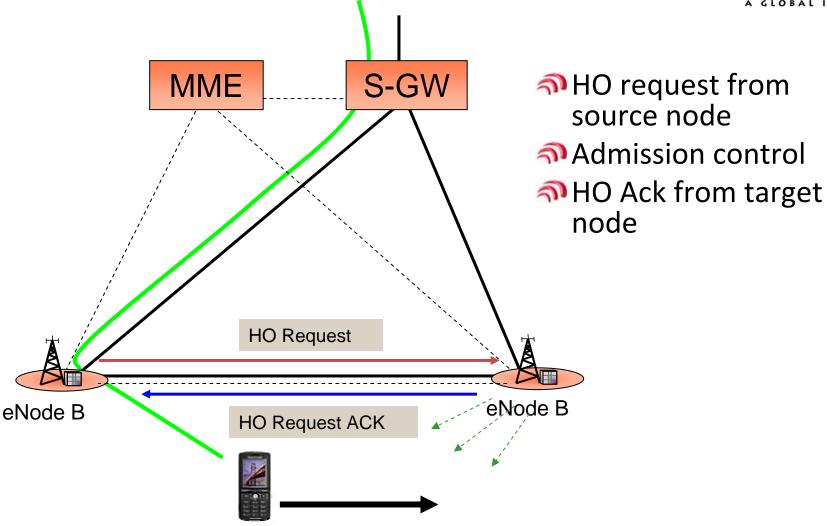
Idle Mode Mobility

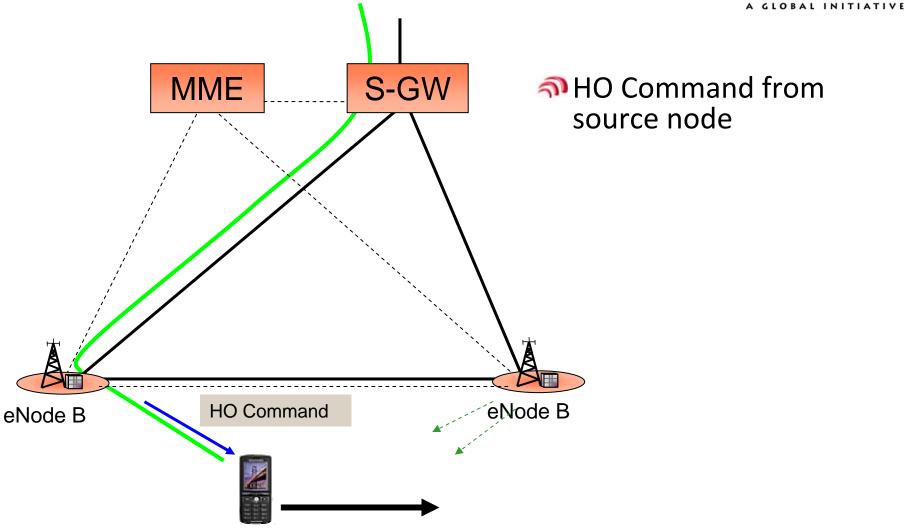


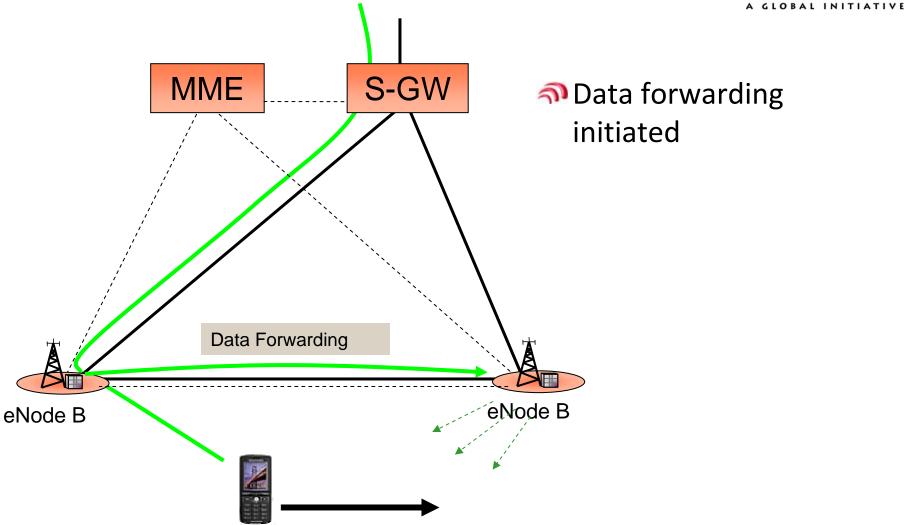
TA list 1
-TA1
-TA2
-TA3

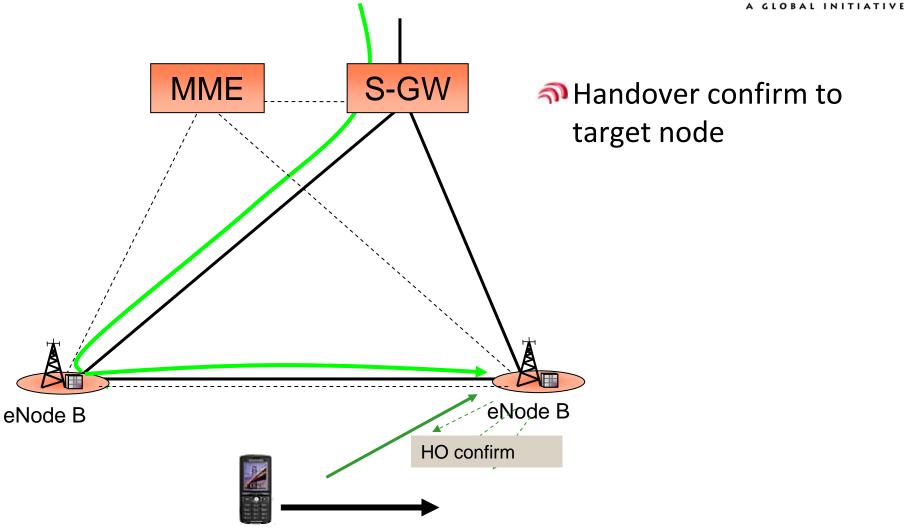

N UE known on **MME** Tracking Area (TA) level Page in TA1, TA2, TA3 TA3 **N** UE reached by paging in TAs

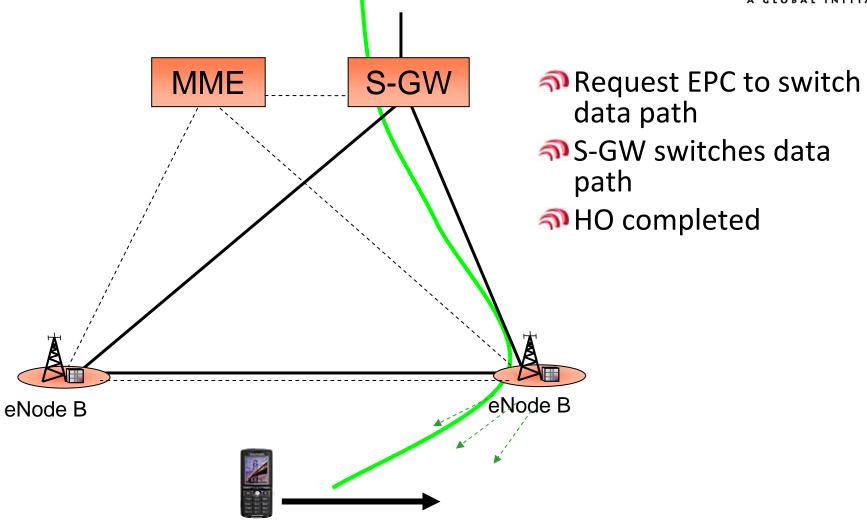
Idle Mode Mobility

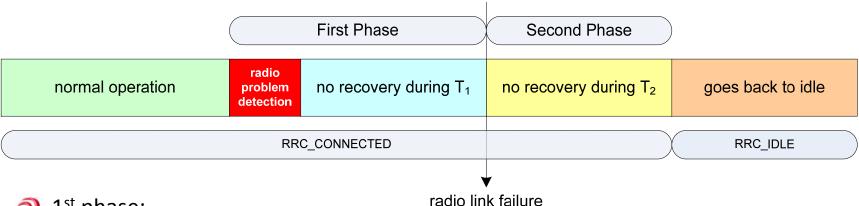




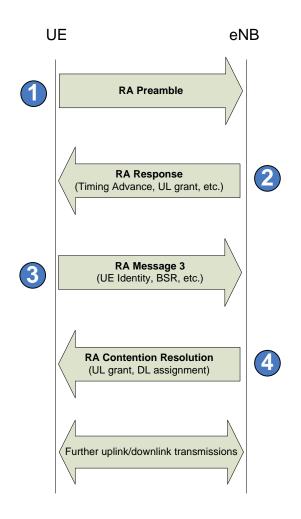








Radio Link Failure handling



- ♠ 1st phase:
 - Layer 1 monitors downlink quality and indicates problems to RRC
 - RRC filters L1 indications and starts a timer
 - if no recovery within 1st phase, triggers 2nd phase
 - Layer 2 monitors random access attempts and indicates problems to RRC
 - RRC triggers 2nd phase
- 2nd phase Radio Link Failure (RLF):
 - Possible recovery through an RRC Connection Reestablishment procedure
 - reestablishment may be performed in any cell to which the UE's context is made available
 - If no recovery within 2nd phase, UE goes autonomously to IDLE

Random Access procedure

- Four-step procedure to...
 - ...establish uplink synchronization
 - …obtain UL-SCH resources
 - ...obtain identity (C-RNTI)
- Preamble transmission on PRACH
 - Timing estimation at eNodeB
- 2. Random access response
 - Timing Advance command
 - UL-SCH resource assignment for step 3
 - Temporary C-RNTI
- Contention resolution
 - transmit terminal identity
 - also other data
- Contention resolution
 - Echo terminal identity from step 3
 - also other signaling/data
- Also support for contention-free random access procedure → only step 1 and 2 used

35P

Priority access

- Access classes used to differentiate admittance in accessing a cell
 - UE associated to an access class for normal use
 - UE may also belong to an access class in the special categories, e.g.,
 PLMN staff, social security services, government officials
- ♠ Access class barring
 - Access load can be controlled by use of access barring
 - For normal use, access barring rate and barring time could be broadcast in case of congestion
 - For the special categories, 1-bit barring status could be broadcast for each access class
 - Barring parameters could be configured independently for mobile originating data and mobile originating signaling attempts
 - For emergency calls, a separate 1-bit barring status is indicated

Performance

⋒ E-UTRA overview

- LTE Advanced features
- E-UTRAN architecture
- User plane protocol stack
- Control plane protocol stack

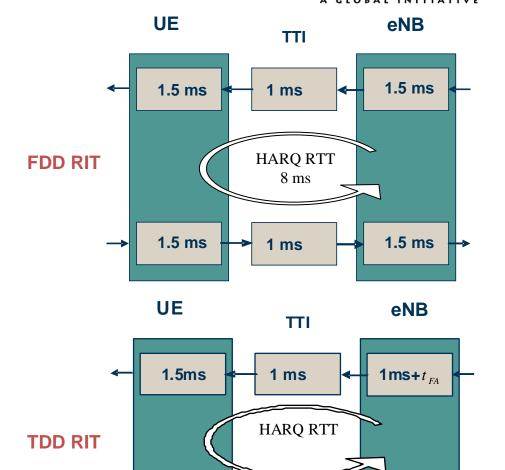
ক User plane

- Reliable transport
- U-plane data flow
- Scheduling
- DRX
- Security

ា Control plane

- System information
- Connection control
- RRC state mode
- IDLE mode mobility
- CONNECTED mode mobility
- Radio Link Failure handling
- Random Access
- Priority access

N Performance


- U-plane latency
- C-plane latency
- HO interruption

User plane latency

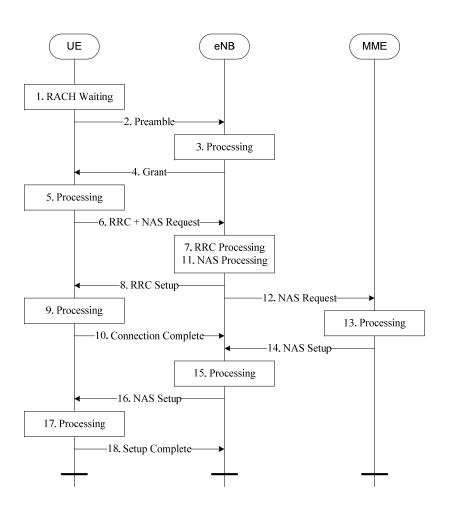
User plane latency (FDD RIT)

 4ms when HARQ retransmission is not needed

1 ms

 $1ms+t_{FA}$

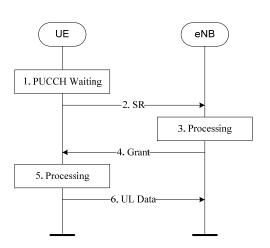
User plane latency (TDD RIT)


© 3GPP 2009

- Depends on UL/DL configuration and on whether UL or DL transmission
- 4.9ms possible for uplink and downlink jointly when HARQ retransmission is not needed

1.5ms

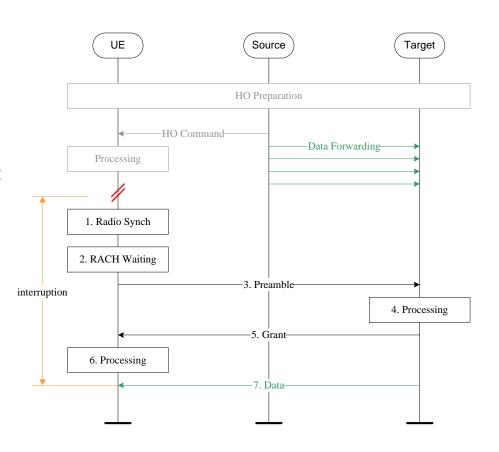
Control plane latency - IDLE → CONNECTED


NOTE: LTE Rel-8 supports IDLE → CONNECTED latency of around 80ms and, hence, already meets the ITU requirement on C-plane latency for IDLE → CONNECTED transition

	A GLOBAL INITIATIV	
	LTE Advanced	
Step	Description	Time [ms]
1	Average delay due to RACH scheduling period (1ms RACH cycle)	0.5
2	RACH Preamble	1
3-4	Preamble detection and transmission of RA response (Time between the end RACH transmission and UE's reception of scheduling grant and timing adjustment)	3
5	UE Processing Delay (decoding of scheduling grant, timing alignment and C-RNTI assignment + L1 encoding of RRC Connection Request)	5
6	Transmission of RRC and NAS Request	1
7	Processing delay in eNB (L2 and RRC)	4
8	Transmission of RRC Connection Set-up (and UL grant)	1
9	Processing delay in the UE (L2 and RRC)	12
10	Transmission of RRC Connection Set-up complete	1
11	Processing delay in eNB (Uu $ ightarrow$ S1-C)	
12	S1-C Transfer delay	
13	MME Processing Delay (including UE context retrieval of 10ms)	
14	S1-C Transfer delay	
15	Processing delay in eNB (S1-C \rightarrow Uu)	4
16	Transmission of RRC Security Mode Command and Connection Reconfiguration (+TTI alignment)	1.5
17	Processing delay in UE (L2 and RRC)	16
	Total delay	50

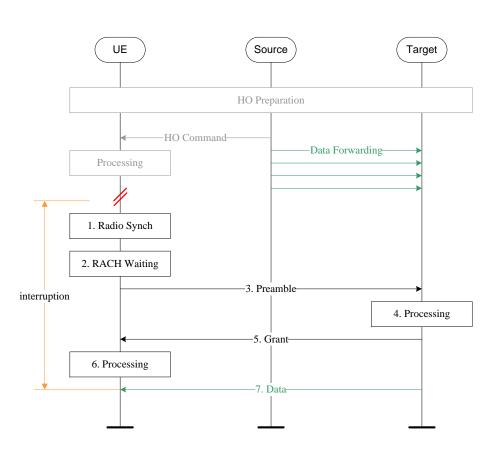
Control plane latency – Dormant → Active

Typlink initiated transition from dormant state (DRX substate) to active state (non-DRX substate) for synchronised UE; including first uplink data transmission.



	LTE Advanced	
Step	Description	Time [ms]
1	Average delay to next SR opportunity (1ms PUCCH cycle)	0.5
2	UE sends Scheduling Request	1
3	eNB decodes Scheduling Request and generates the Scheduling Grant (+ delay for nearest DL subframe)	3
4	Transmission of Scheduling Grant	1
5	UE Processing Delay (decoding of scheduling grant + L1 encoding of UL data)	3
6	Transmission of UL data	1
	Total delay	9.5

Handover interruption



- Intra-LTE inter-eNB handover
- Target cell already identified and measured by the UE
 - Fast radio synchronisation to target aided by previous measurement
- Data forwarding initiated before radio synchronisation to target cell and backhaul faster than radio
 - Forwarded data available in target when UE is ready to receive
 - Data forwarding does not affect overall delay

Handover interruption (cont'd)

	LTE Advanced	
Step	Description	Time [ms]
1	Radio Synchronisation to the target cell	1
2	Average delay due to RACH scheduling period (1ms periodicity)	0.5
3	RACH Preamble	1
4-5	Preamble detection and transmission of RA response (Time between the end RACH transmission and UE's reception of scheduling grant and timing adjustment)	5
6	Decoding of scheduling grant and timing alignment	2
7	Transmission of DL Datta	1
	Total delay	10.5

Note: This delay does not depend on the frequency of the target in the typical case where the cell has already been measured by the UE

References

TM

TR 36.912: Feasibility study for Further Advancements for E-UTRA

(LTE-Advanced)

→ TS 36.300: E-UTRA and E-UTRAN Overall description

TS 36.304: E-UTRA User Equipment (UE) procedures in idle mode

TS 36.321: E-UTRA Medium Access Control (MAC) protocol

specification

TS 36.322: E-UTRA Radio Link Control (RLC) protocol specification

→ TS 36.323: E-UTRA Packet Data Convergence Protocol (PDCP)

specification

TS 36.331: E-UTRA Radio Resource Control (RRC) Protocol

specification

♠ Latest versions of these specifications can be acquired from: http://www.3gpp.org/ftp/Specs/html-info/36-series.htm

A GLOBAL INITIATIVE