

Proposal for Candidate Radio Interface Technologies for IMT-Advanced Based on LTE Release 10 and Beyond (LTE-Advanced)

Takehiro Nakamura
3GPP TSG-RAN Chairman

35P

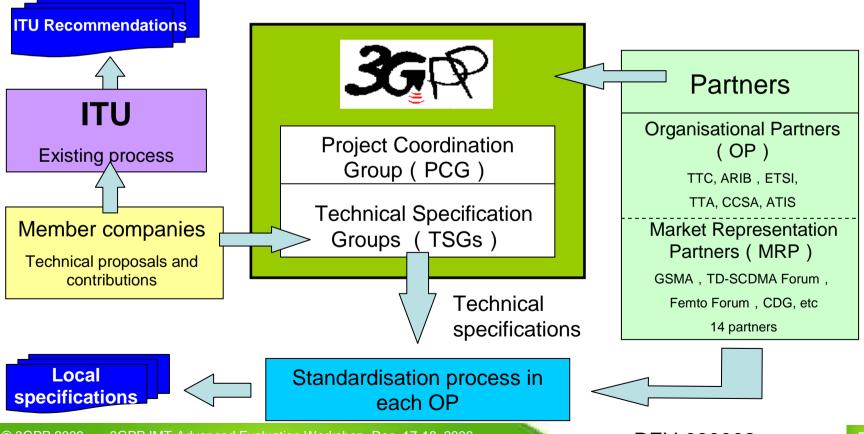
Introduction

- In response to the ITU-R Circular Letter 5/LCCE/2 which invites proposals for candidate radio interface technologies for the terrestrial component of IMT-Advanced, the Third Generation Partnership Project (3GPP) is providing a complete submission of LTE Release 10 & beyond (LTE-Advanced) under Step 3 of the IMT-Advanced process in Document IMT-ADV/2(Rev.1)
- This submission of the 3GPP candidate SRIT (which includes an FDD RIT component and a TDD RIT component) is based on the currently approved work within 3GPP and follows the ITU-R IMT-Advanced submission format and guidelines.
- The 3GPP Proponent [1] has provided all required information within each of required major components either directly or by endorsement of this contribution made by 3GPP individual members on behalf of 3GPP:
- The submission of LTE-Advanced as a candidate for IMT-Advanced was acknowledged by ITU-R WP5D as a "complete" submission
- ♠ Following slides show overview of this submission together with relevant information

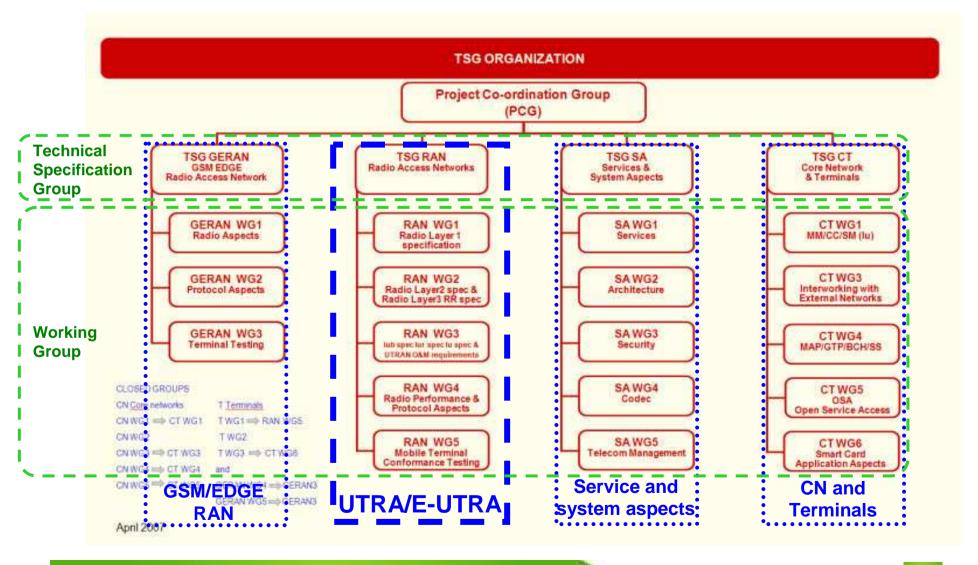
[1] The 3GPP Proponent of the 3GPP submission is collectively the 3GPP Organizational Partners (OPs). The Organizational Partners of 3GPP are ARIB, ATIS, CCSA, ETSI, TTA and TTC (http://www.3gpp.org/partners)

Contents

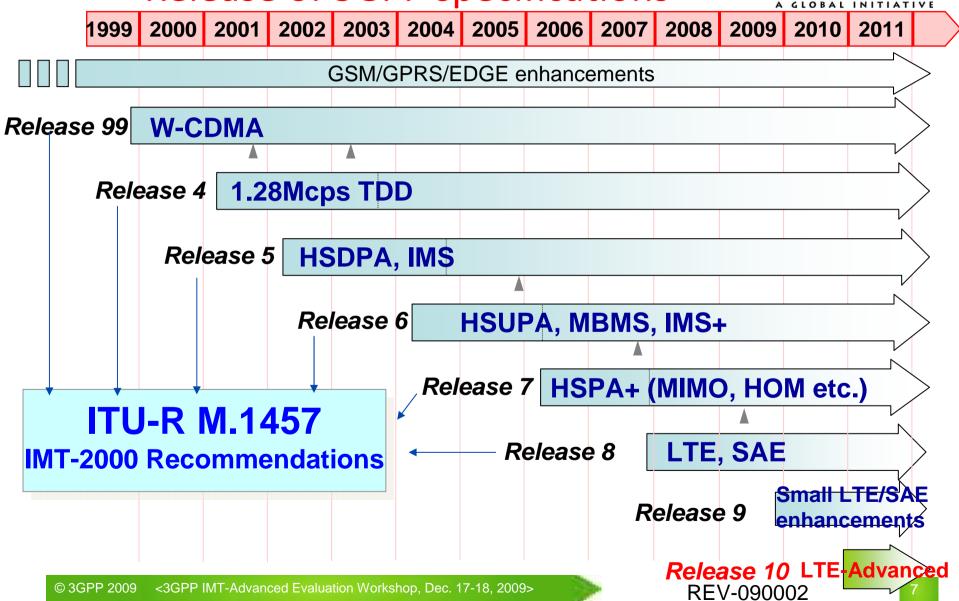
- ₹33GPP standardisation activities
- ♠ LTE Release 8
- ↑LTE-Release 10 and beyond (LTE-Advanced)
- **NITU-R** submission documents



3GPP Standardisation Activities


3GPP Standardisation Process

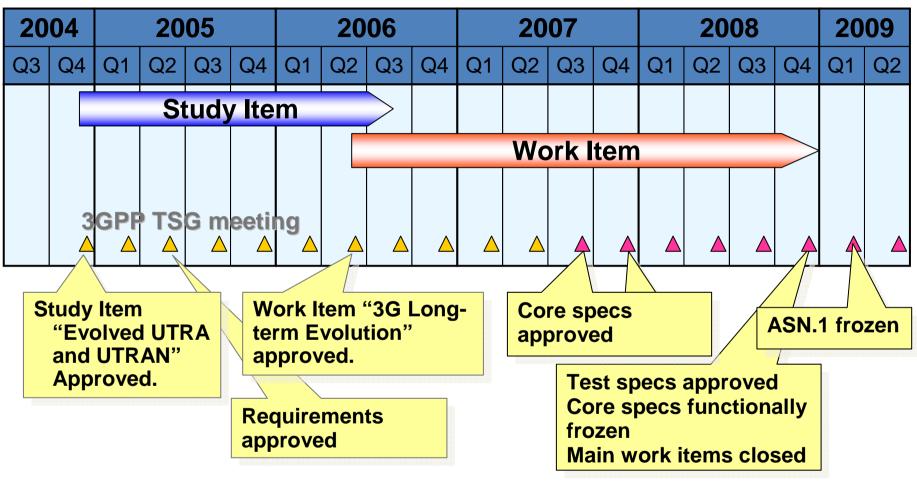
- 3GPP develops technical specifications on 3G and beyond mobile communication systems
- 3GPP Organisational Partners standardize local specifications based on the specifications developed by 3GPP
- The standardisation process in each OP is only a form of transposition and that no technical changes are introduced



3GPP Structure

Release of 3GPP specifications

LTE Release 8



Motivation of LTE Release 8

- Need to ensure the continuity of competitiveness of the 3G system for the future
- The state of the s
- ♠ PS optimised system
- Continued demand for cost reduction (CAPEX and OPEX)
- **♦•** Low complexity
- Avoid unnecessary fragmentation of technologies for paired and unpaired band operation

LTE Release 8 Standardisation History

LTE Release 8 Key Features

- → High spectral efficiency
 - OFDM in Downlink
 - Robust against multipath interference
 - High affinity to advanced techniques
 - Frequency domain channel-dependent scheduling
 - MIMO
 - DFTS-OFDM("Single-Carrier FDMA") in Uplink
 - Low PAPR
 - User orthogonality in frequency domain
 - Multi-antenna application
- Very low latency
 - Short setup time & Short transfer delay
 - Short HO latency and interruption time
 - Short TTI
 - RRC procedure
 - Simple RRC states
- Support of variable bandwidth
 - 1.4, 3, 5, 10, 15 and 20 MHz

35P

LTE Release 8 Key Features (Cont'd)

- Simple protocol architecture
 - Shared channel based
 - PS mode only with VoIP capability
- Simple Architecture
 - eNodeB as the only E-UTRAN node
 - Smaller number of RAN interfaces
 - eNodeB ↔ MME/SAE-Gateway (S1)
 - eNodeB ↔ eNodeB (X2)
- Compatibility and inter-working with earlier 3GPP Releases
- 1 Inter-working with other systems, e.g. cdma2000
- FDD and TDD within a single radio access technology
- ♠ Efficient Multicast/Broadcast
 - Single frequency network by OFDM
- Support of Self-Organising Network (SON) operation

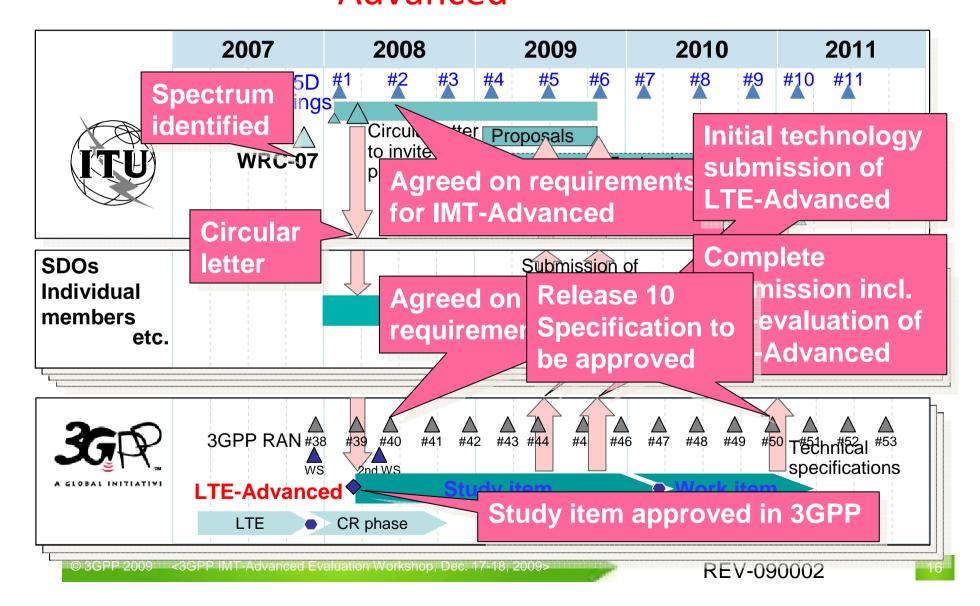
LTE Release 8 Major Parameters

Access Scheme	UL	DFTS-OFDM	
	DL	OFDMA	
Bandwidth		1.4, 3, 5, 10, 15, 20MHz	
Minimum TTI		1msec	
Sub-carrier spacing		15kHz	
Cyclic prefix length	Short	4.7 μsec	
	Long	16.7 μsec	
Modulation		QPSK, 16QAM, 64QAM	
Spatial multiplexing		Single layer for UL per UE	
		Up to 4 layers for DL per UE	
		MU-MIMO supported for UL and DL	

LTE Release 10 and Beyond (LTE-Advanced)

Overview of LTE-Advanced

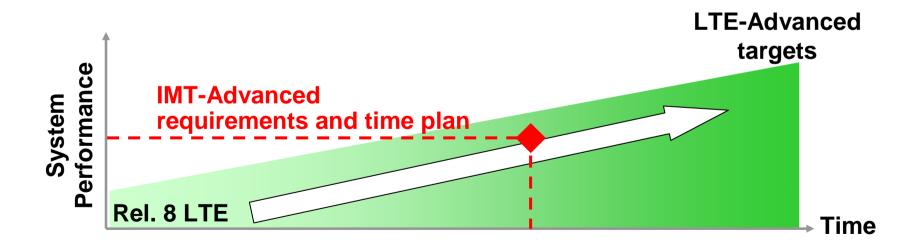
Motivation of LTF-Advanced


- IMT-Advanced standardisation process in ITU-R
- Additional IMT spectrum band identified in WRC07
- Further evolution of LTE Release 8 and 9 to meet:
 - Requirements for IMT-Advanced of ITU-R
 - Future operator and end-user requirements

3GPP status

- Feasibility study is ongoing under study item, "Further advancements for E-UTRA(LTE-Advanced)"
- Requirements and targets for LTE-Advanced were agreed and possible technologies to meet the requirements and the targets were identified
- Self-evaluations were conducted and confirmed that LTE-Advanced meet the all requirements of IMT-Advanced
- All necessary documents to be submitted to ITU-R WP 5D#6 as the complete submission were approved in 3GPP
- In 3GPP TSG-RAN#46 meeting in December 2009, some work items, based on the study results of the study item, were agreed to develop specifications for LTE-Advanced
- Proposal of LTE-Advanced is an SRIT including FDD RIT and TDD RIT

Standardisation Schedule For IMT/LTE- Advanced



General Requirements for LTE-Advanced

- **NATE-Advanced** is an evolution of LTE
- TE-Advanced shall meet or exceed IMT-Advanced requirements within the ITU-R time plan
- ♠Extended LTE-Advanced targets are adopted

35P

System Performance Requirements

n Peak data rate

 1 Gbps data rate will be achieved by 4-by-4 MIMO and transmission bandwidth wider than approximately 70 MHz

n Peak spectrum efficiency

- DL: Rel. 8 LTE satisfies IMT-Advanced requirement
- UL: Need to double from Release 8 to satisfy IMT-Advanced requirement

		Rel. 8 LTE	LTE-Advanced	IMT-Advanced
Peak data rate	DL	300 Mbps	1 Gbps	1 Gbps ^(*)
reak data rate	UL	75 Mbps	500 Mbps	T Gbps(/
Peak spectrum efficiency	DL	15	30	15
[bps/Hz]	UL	3.75	15	6.75

^{*&}quot;100 Mbps for high mobility and 1 Gbps for low mobility" is one of the key features as written in Circular Letter (CL)

System Performance Requirements (Cont'd)

- Capacity and cell-edge user throughput
 - Target for LTE-Advanced was set considering gain of 1.4 to 1.6 from Release 8 LTE performance

		Ant. Config.	Rel. 8 LTE*1	LTE-Advanced*2	IMT-Advanced*3
Capacity	DL	2-by-2	1.69	2.4	_
[bps/Hz/cell]		4-by-2	1.87 x1.4	2.6	2.2
		4-by-4	2.67	3.7	_
	UL	1-by-2	0.74	1.2	_
		2-by-4	_	2.0	1.4
Cell-edge user throughput [bps/Hz/cell/use r]	DL	2-by-2	0.05	0.07	_
		4-by-2	0.06	0.09	0.06
		4-by-4	0.08	0.12	_
	UL	1-by-2	0.024	0.04	_
		2-by-4	_	0.07	0.03

^{*1} See TR25.912(Case 1 scenario)

© 3GPP 2009

^{*2} See TR36.913(Case 1 scenario)

^{*3} See ITU-R M.2135(Base Coverage Urban scenario)

Other Important Requirements

Spectrum flexibility

© 3GPP 2009

- Actual available spectra are different according to each region or country
- In 3GPP, various deployment scenarios for spectrum allocation are being taken into consideration in feasibility study

Total 12 scenarios are identified with highest priority

	Tx BWs	No. of Component Carriers (CCs)	Bands	Duplex
1 UL: 40 MHz DL: 80 MHz		UL: Contiguous 2x20 MHz CCs	3.5 GHz band	FDD
		DL: Contiguous 4x20 MHz CCs		
2	100 MHz	Contiguous 5x20 MHz CCs	Band 40 (2.3 GHz)	TDD
3	100 MHz	Contiguous 5x20 MHz CCs	3.5 GHz band	TDD
	UL: 40 MHz	UL: Non-contiguous 20 + 20 MHz CCs	2 F CUT bond	FDD
4	DL: 80 MHz	DL: Non-contiguous 2x20 + 2x20 MHz CCs	3.5 GHz band	
5	UL: 10 MHz	UL/DL: Non-contiguous 5 MHz + 5 MHz CCs	Band 8 (900 MHz)	FDD
	DL: 10 MHz	OL/DL: Non-contiguous 5 MHz + 5 MHz CCs	Barid 8 (900 WHZ)	
6	80 MHz	Non-contiguous 2x20 + 2x20 MHz CCs	Band 38 (2.6 GHz)	TDD
:	•	•	•	:
•	•	•	•	•

 Support for flexible deployment scenarios including downlink/uplink asymmetric bandwidth allocation for FDD and non-contiguous spectrum allocation

35P

Other Important Requirements (Cont'd)

- TE-Advanced will be deployed as an evolution of LTE Release 8 and on new bands.
- TE-Advanced shall be backwards compatible with LTE Release 8 in the sense that
 - a LTE Release 8 terminal can work in an LTE-Advanced NW,
 - an LTE-Advanced terminal can work in an LTE Release 8
 NW
- Increased deployment of indoor eNB and HNB in LTE-Advanced.

Technical Outline to Achieve LTE-Advanced Requirements

- Support wider bandwidth
 - Carrier aggregation to achieve wider bandwidth
 - Support of spectrum aggregation
 - → Peak data rate, spectrum flexibility
- Advanced MIMO techniques
 - Extension to up to 8-layer transmission in downlink
 - Introduction of single-user MIMO up to 4-layer transmission in uplink
 - → Peak data rate, capacity, cell-edge user throughput
- Coordinated multipoint transmission and reception (CoMP)
 - CoMP transmission in downlink
 - CoMP reception in uplink
 - → Cell-edge user throughput, coverage, deployment flexibility
- Further reduction of delay
 - AS/NAS parallel processing for reduction of C-Plane delay
- Relaying
 - Type 1 relays create a separate cell and appear as Rel. 8 LTE eNB to Rel. 8 LTE UEs
 - → Coverage, cost effective deployment

^{*} See appendix 1 in this slide set for further information on LTE-Advanced technologies

ITU-R Submission Documents

- The 3GPP submission to the ITU-R includes the following templates organized as an FDD Radio Interface Technology component (FDD RIT) and as a TDD Radio Interface Technology component (TDD RIT). Together the FDD RIT and the TDD RIT comprise a Set of Radio Interface Technologies (SRIT).
- The 3GPP developed FDD RIT and TDD RIT templates include characteristics and link budget templates and compliance templates for services, spectrum, and technical performance.
- → 3GPP provides additional supporting information in document 3GPP TR
 36.912 v9.0.0; Feasibility study for Further Advancements for EUTRA(LTE-Advanced) (Release 9).
- → Templates are found in Annex C of Technical Report TR 36.912.

Structure of ITU-R Submission Documents from 3GPP

RP-090736 **ITU-R submission Cover page**

plus

ZIP FILE RP-090939

3GPP Submission Package for IMT-Advanced

Overall ITU-R Submission ITU-R 5D/564-E

Contributed by individual members of 3GPP

RP-090743

TR36.912 v9.0.0 Main Body

Additional supporting information on LTE-Advanced Detailed self-evaluation results in section 16 Following documents are captured in Annex A and C

RP-090744

Annex A3: Self-evaluation results

Detailed simulation results provided from 18 companies

RP-090745

Annex C1: Characteristics template

Update version of ITU-R Document 5D/496-E Relevant 3GPP specifications listed at the end of this

Templates for FDD RIT and TDD RIT contained separately

RP-090746

Annex C2: Link budget template

Two Link budget template files for LOS and NLOS Each file includes link budget templates for five radio environments specified in ITU-R M.2135 Templates for FDD RIT and TDD RIT contained separately

RP-090747

Annex C3: Compliance template

This template shows LTE-Advanced fulfills all requirements of IMT-Advanced in ITU-R

Templates for FDD RIT and TDD RIT contained separately

Takehiro Nakamura

NTT DOCOMO, Inc **3GPP TSG-RAN Chairman**

Email: nakamurata@nttdocomo.co.jp