Page 1(9)

LIAiSON STATEMENT

to:
 3GPP TSG-T2 SWG1 (MExE)
from:
 WAP Forum WSG

date:
 6th February 2000

subject: Signed Content

The WAP Security Group would like to bring to MExE’s attention that we are presently working on a specification for signed content. This specification uses S/MIME signature formatting and specifies methods for determining whether a piece of signed content is trusted for the desired purpose. It is expected that this specification will be included in the December 2001 conformance release.

Attached to this liaison statement is an excerpt from the current draft containing the sections we believe to be most relevant to MExE. Since it is important to align the work of 3GPP and the WAP Forum, WSG would appreciate any comments or feedback that MExE may have regarding this specification.

Yours sincerely,

WAP Security Group

Introduction
The capability to distribute integrity-protected content is a fundamental building block for information security. Examples of uses include signed emails, distribution of (trustworthy!) software upgrades, authenticated web pages, reliable 3rd party software downloads, etc.

This specification describes methods to provide integrity, message authentication, and signer authentication services for content of any type sent in WAP protocols, through the use of digital signatures. In addition, it describes a framework for trust management related to signed content, and generic rules for WAP client behavior upon receiving such content.

Due to the WAP gateway’s performance-enhancing functionality, special care has to be taken to ensure that signed content does not get modified on its way from the origin server to the WAP client. Section 7 deals with content encoding and methods of delivery.

Annex A contains examples of signed content messages.

Trust Management and Policies

5.1 ME behaviour considerations

When a client, conformant with this specification, processes signed content, it MUST verify the signature and MUST be able to provide information on the signer and the result of the verification. Optionally, the WIM MAY be used to perform this verification. (See [25].)

5.1.1 Display Considerations

The client MUST be able to provide the following information regarding successful signature verifications:

· signer’s name (from the associated certificate),

· signer’s CAs’ names (recursively, including the name of the trusted root CA), and

· the type of signed content (e.g. WMLScript [18], WTA [19], Provisioning [23],).

The client MUST also be able to provide the following information regarding unsuccessful signature verifications:

· whether the content contained a signature,

· whether the signature was corrupt (i.e. whether the signature verified using the key contained in the referenced certificate),

· whether the associated certificate was valid,

· whether the certificate was trusted, and

· whether the certificate was authorized to download signed content.

If applicable, the client SHOULD be able to display the information to a user. It is not required that this information necessarily be displayed, but MUST be made available upon request.

5.1.2 Acceptance of Signed Content

To operate effectively and securely, the device must be configured to require content signing for designated content types. This section will discuss various content types and recommended device behavior regarding the acceptance of the signed content.

When the signed content type is text (e.g. text/vnd.wap.wml), the original text and the result of the verification MUST be presented in a manner that is distinctive from texts received unprotected.

When the signed content is WTA content (e.g. received on port 2805 or 2923) or Provisioning content (e.g. application/vnd.wap.connectivity-wbxml or text/vnd.wap.connectivity-xml) the content SHOULD be considered trusted only if the signature verification was successful and the signer is recognized as an authorized WTA or Provisioning content provider.

When the signed content is any other form of executable content (e.g. WMLScript) then the content SHOULD only be executed on the device if the signature verification was successful and the signer has been authorized to download executable content. If the content was not signed, the signature verification fails, or the signer has not been authorized to download executable content, the user SHOULD be informed of the signer’s identity (if the content was signed) and given the opportunity to approve execution of the content.

After validation, the content is passed to the designated processing application.

5.2 Identification of Trusted Content Providers

For certain designated content types the signer of the content must be recognized as an authorized content producer. There are three recommended approaches to recognizing authorized content producers:

· certification by a recognized trusted root;

· direct trust; or

· explicit user acceptance.

5.2.1 Certification by a Trusted CA

Clients that support the download of signed content MUST be able to recognize authorized content producers using the method described in this section.

Certain CAs may be recognized by the device as being trusted to authorize content signers for the download of designated content types. For example, one CA may be trusted to authorize content signers for WTA content, while another may be trusted to authorize content signers for Provisioning content. In order for a CA to be trusted to authorize content signers it MUST:

· be provisioned in the device or WIM at manufacture time or downloaded using one of the secure root download techniques specified in WPKI Sections 7.1.3 and 7.1.4, and

· be securely marked as being trusted for the authorization of content signers for certain designated content types.

The signed content MUST only be considered trusted if the signature verifies correctly and the certificate used to verify the signature on the content has been authorized by a CA trusted for the designated content type. In order for the signature to verify correctly it must chain to a CA root certificate that is trusted by the device (although not necessarily trusted to authorize content signers for the designated content type).

One method of marking CAs on the WIM as being trusted for designated content types is specified in Section 8. This method SHOULD be used whenever the CA certificate is being stored on a WIM.

Clients MUST be able to recognize which end entities have been granted the privilege of signing content by the trusted CA. Two possibilities exist. Clients MUST be able to distinguish between CAs using the “Explicit Indication Within Certificates” option or the “Implicit Indication of All Certificates” option.
5.2.1.1 Explicit Indication Within Certificates

Given that a trusted CA for the particular content type exists, the CA SHOULD have a method of indicating within the issued certificate whether individual end entities have been granted the privilege of signing content. If WTLS [20] Certificates are being used for the download of WTA content, the “T=wta” naming attribute MAY be used to identify end users capable of signing WTA. This mechanism is described in [22], Section 8.2.

If X.509 [6] certificates are being used for the download of executable code, then the Extended Key Usage extension SHOULD be used to identity end users capable of signing code. This extension SHOULD be marked non-critical and SHOULD contain the object identifier id-kp-codeSigning defined in the PKIX Certificate and CRL Profile [12]. Section 4.2.1.13.

Other methods of indicating within the issued certificate whether individual end entities have been granted the privilege of signing content MAY be used.

5.2.1.2 Implicit Indication of All Certificates

Alternatively, all end entities certified by the trusted CA MAY be considered capable of signing content regardless of whether an explicit indication exists within the certificate. However, in this situation, the CA MUST NOT issue certificates to any end entity other than those granted the privilege of signing content. This means that a CA that issues only content signing certificates MUST NOT change its policy and begin issuing other types of certificates.

Since this method places substantial constraints on the CA it is NOT RECOMMENDED for general use. It is appropriate for closed communities in which the CA is tightly controlled.

Clients that implement the “Implicit Indication of All Certificates” option MUST have a method of securely marking those CAs for which all end entities have been granted the privilege of signing content. One such method is described in Section 8.

5.2.2 Signers Trusted Directly

The client MAY directly trust certain content signers to sign designated content types. If such a scheme is being used, then the device MUST securely store an identifier that can be used to identify the signer’s certificate. The device MUST also securely store the content type for which the signer is trusted. Examples of identifiers that MAY be used include:

· X.509 certificate Issuer and Serial Number,

· public key hash,

· certificate hash,

· the full WTLS Certificate, or

· the full X.509 certificate.

The exact method of securely storing this information is out of scope of this specification, however the WIM [25]. MAY be used to store such information.

The signed content MUST only be considered trusted if the signature verifies correctly and the certificate used to verify the signature on the content matches one included on the list of content signers trusted directly for the designated content type. In order for the signature to verify correctly it must chain to a CA root certificate that is trusted by the device (although not necessarily trusted to authorize content signers for the designated content type).

The list of identifiers and associated content types SHOULD be provisioned on the device or WIM at the time of manufacture. Devices SHOULD also provide a method for end users to add identifiers to the list directly and to modify the list.

5.2.3 Explicit User Acceptance

If certain signed content has been verified using a certificate that is not trusted directly for signed content and that does not chain to a trusted CA root that is trusted to authorize content signers (as described in the previous two sections), then the client MAY query the end user to determine whether the signer is trusted to sign the content. In this situation, the device MUST display the following information when querying the user:

· signer’s name (from the associated certificate),

· signer’s root CA’s name, and

· the type of signed content (e.g. WTA, Provisioning, or WMLScript).

The signed content MUST only be considered trusted if the signature verifies correctly and the end user agrees to trust the content signer. In order for the signature to verify correctly it must chain to a CA root certificate that is trusted by the device (although not necessarily trusted to authorize content signers for the designated content type).

After acceptance of the content signer as trusted for the designated content type by the user, the device MAY add the signer to a list of content signers trusted directly, as described in the previous section

Since many users may not feel qualified to make this trust decision and/or may find the UI confusing, this method is not recommended.

5.3 Signature Validation

Content signers MUST be identified using either an X.509 certificate or a WTLS Certificate. Content signers SHOULD use an X.509 certificate as profiled in the WAP Certificate and CRLs Profile [24] Section 6.2 (User Certificates for Authentication), but MAY use WTLS Certificates. Clients supporting signed content MUST be able to process X.509 certificates as profiled in the WAP Certificate and CRLs Profile Section 6.2 and MUST be able to validate certificate paths as specified in [6] but subject to the limitations of the WAP Certificate and CRLs Profile Section 6.2.

Clients supporting the download of signed content SHOULD provide a method of checking the revocation status of the signer’s certificate, but are not required to do so. One possible method is the OCSP protocol, described in [28]. Another possibility is the inclusion of the SignedData.crls field within the S/MIME signature to transport Certificate Revocation Lists [12] to the client. Alternatively, the use of short-lived certificates may be used to reduce the effect of certificate compromise. If short-lived certificates are used, however, then it is RECOMMENDED that time stamping also be used (see Section 6.4) to allow the signed content to be verified beyond the expiry of the certificate.

Signed content MUST be verified using a certificate trusted by the client. In order for the certificate to be trusted, it MUST chain to a trusted CA root certificate. The trusted CA root certificate MUST either be provisioned on the device or WIM at manufacture time or securely downloaded using one of the methods specified in WPKI Sections 7.1.3 and 7.1.4.

In order for the signed content to be considered trusted, the signer SHOULD be trusted for the download of signed content of the appropriate type. One of the three techniques specified in Section 6.2 SHOULD be used to determine if the signer is trusted for the content type.

5.4 Time Stamping

According to [12], Section 6, an X.509 certificate that has expired cannot be successfully validated. Thus, in order to allow validation of signed content after the signer’s certificate has expired, a Time Stamping Authority (TSA) MAY be used. A TSA is a Trusted Third Party that creates a token attesting to the existence of data (the signed content) at a particular point in time.

If a valid Time Stamp Token for a particular signed content exists, then the time contained within the token SHOULD be used as the time input to the certificate path validation algorithm.

Clients supporting signed content MAY support processing of Time Stamp Tokens according to [26], but MAY ignore it. Content signers SHOULD include a Time Stamp Token within the signed content as an unsigned attribute if that content is expected to be used beyond the normal expiry time of the signing certificate. The Time Stamp Token attribute is defined in [26] Annex A. For this attribute the time stamp must be computed over the signature field in SignerInfo.

In order for a Time Stamp Token to be valid, it MUST satisfy the requirements in [26]. In addition, the TSA MUST have a certificate that can be validated using one of the trusted roots that exist on the device (or WIM).

Content Encoding and Signature Formats

5.5 Content Encoding

Due to limitation in WAP clients, content of the following types must be binary encoded by the origin server before the signature operation. Encoding rules are specified in [16], [17], [18], and [23].

· WML.

· WMLScript.

· WTA.

· Provisioning content.

5.6 S/MIME signature format

Content encoded in accordance with Section 7.1 shall in this case be encapsulated within a MIME ([3], [4], and [13]) object, with appropriate “Content-Type” setting. The following MIME headers are allowed within the MIME object encapsulating the content:

· Content-Type
· Allowed parameters: name, charset
· Content-Language
· Content-Length
· Content-Transfer-Encoding
· Content-Description
· Content-Disposition
· Allowed parameters: filename. Note security issues discussed in [29].

Note that clients conformant with this specification MUST be able to parse MIME headers, and recognize and process the Content-Type and Content-Transfer-Encoding headers in order to handle signed content correctly.

The constructed MIME object is then signed and enveloped in another MIME object in accordance with procedures described in [5] and [14]. The following restrictions apply to values of type SignedData:

· SignedData.version shall be set to 1
· SignedData.digestAlgorithms shall contain one algorithm identifier value, the sha1Identifier from PKCS #1 [15]

· SignedData.encapContentInfo.contentType shall be set to id-data
· SignedData.encapContentInfo.eContent shall contain the MIME object containing the encoded content

· SignedData.certificates may be present but may only contain one or more X.509-compatible certificates

· SignedData.crls may be present

· SignedData.signerInfos:
· SignerInfo.version shall be set to 1
· SignerInfo.sid shall be the issuerAndSerialNumber choice if the signer’s certificate is an X.509 certificate. If the signer’s certificate is a WTLS certificate, this field shall be the subjectKeyIdentifier choice and shall contain the 160-bit SHA-1 hash of the byte string representation of the public modulus [15] if the public key is an RSA key or the 160-bit SHA-1 hash of the byte string representation of the x-coordinate of the elliptic curve point (see also Section 10.5.1 of [20])..
· SignerInfo.digestAlgorithm shall contain one algorithm identifier value, the sha1Identifier from PKCS #1 [15]

· SignerInfo.signedAttrs MAY be present. Clients MUST be able process the following attributes:

· id-messageDigest
· id-contentType
· SignerInfo.signatureAlgorithm shall be set to rsaEncryption or ecdsa (see [1] or [27]).

· SignerInfo.unsignedAttrs MAY be present.

· Clients MUST be able process the wtlsCertificates attribute defined in Section 7.2.1
· The Time Stamp Token attribute (defined in [26] Annex A) MAY be present but there MUST NOT be more than one such attribute.

· The SignedData structure shall be DER ([11]) encoded before transmission

The Content-Type field for the outer MIME object shall be application/pkcs7-mime, and the rest of the outer MIME object shall be created in accordance with Section 3.2 and 3.4.2 of [14]. A WAP gateway may transform this content type to the WSP assigned content type number TBD, and binary encode any of its associated headers.

A complete example of this procedure is to be found in Annex A.

5.6.1 The wtlsCertificates attribute

In cases where a signature server only has access to WTLS certificates, it MAY supply these certificates to recipients in the wtlsCertificates attribute. Other means of transferring certificates needed for verification of signed content are also possible, e.g. by use of an underlying WTLS connection.

The wtlsCertificates attribute may be sent as an unsigned or as a signed attribute.

wtlsCertificates ATTRIBUTE ::= {

WITH SYNTAX
WTLSCertificates

ID

wap-at-wtlsCertificates

}

wap-at-wtlsCertificates OBJECT IDENTIFIER ::= {<TBD>}

WTLSCertificates ::= OCTET STRING

Values of type WTLSCertificates shall be a sequence of ordinary WTLS Certificates encoded in accordance with [20], i.e., of the following WTLS type:

struct {

WTLSCert Certificate certificate_list<0..2^16-1>;

} Certificates;

The value is enclosed in an ASN.1 OCTET STRING.

5.7 XML signed content

This version of this specification does not specify a content-encoding procedure for XML signed data.

Identification of Trusted CAs on the WIM

5.8 Framework

This section describes a method for marking CAs stored on the WIM which have been trusted for the download of certain designated types of content (Section 6.2.1). This method SHOULD be used if the trusted CAs will be stored on the WIM. A client conformant with this specification MUST support this method of trusted CA identification.

The PKCS15CommonCertificatesAttributes.trustedUsage field shall be used to store a sequence of object identifiers that represent the privileges associated with the CA. This field is of type Usage, which is a sequence of an optional keyUsage and an optional extKeyUsage field. For the purposes of marking trusted CAs for the download of signed content, only the extKeyUsage field shall be present. This field is a sequence of object identifiers (OIDs).

5.9 Identification of explicit or implicit trust

The first OID shall be either wap-explicitIndication or wap-implicitIndication depending upon whether the “Explicit Indication Within Certificates” or the “Implicit Indication of All Certificates” option has been chosen.

wap-explicitIndication OBJECT IDENTIFIER ::= {<TBD>}

wap-implicitIndication OBJECT IDENTIFIER ::= {<TBD>}

If the wap-explicitIndication OID is present then explicit indications of end-entity signing privileges MUST be present in an entity’s certificate which chains back to this CA before a client may accept signed content signed by that entity. If the wap-implicitIndication OID is present then all end-entities with certificates signed by this CA shall be assumed to have been granted the privilege of signing designated types of content.

The remaining OIDs in the sequence shall indicate the types of signed content for which the CA is trusted to authorize signers.

Possibilities for these OIDs include wap-WMLScript for WMLScript, wap-WTA for WTA and wap-provisioning for Provisioning content.

wap-WMLScript OBJECT IDENTIFIER ::= {<TBD>}

wap-WTA OBJECT IDENTIFIER ::= {<TBD>}

wap-Provisioning OBJECT IDENTIFIER ::= {<TBD>}

(c) Copyright Wireless Application Forum, Ltd, 2001
All rights reserved.

