

Input to WAP Forum, WSG group

Page 1 (5)

Input paper

Source:

RSA SECURITY, ERICSSON

paper identifier:
ip-hk-RSA-signed-content
Date:

7 SEPTEMBER 2000

Subject:

Support of signed content in WAP

1 Background

Use cases for signed content includes downloading signed WTA, application-level content, software upgrades, etc. This input paper discusses methods for adding a signed content type to relevant WAP protocols, issues which arises in this context, and also proposes a format for such content.

2 Introduction

The capability to distribute integrity-protected content is a fundamental building block for information security. Examples of uses includes signed emails, distribution of (trustworthy!) software upgrades, authenticated web pages, reliable 3rd party software downloads, etc. We observe that all these examples concerns content at the application layer. This input paper discusses issues arising and methods to be used when adding a signed content type to WAP. It also suggests a format for such content, reflecting the observation on application layer needs. This input paper does NOT make any suggestions with respect to specific client behavior upon receiving signed content, since we believe that such determinations are better left to developers of applications making use of signed content. It does suggest some general administrative procedures when dealing with signed content, however.

3 A signed content type

3.1 Protocol support

Since we want signed content to be unaffected by proxies and intermediary gateways, it must be possible for the author of the content to sign it and distribute it in application-level protocols. Comparing with Internet solutions, e.g. S/MIME ([2],[3],[4]), we therefore propose that a signed content content-type be added to WSP [5]. Adding it to WSP rather than at the WML layer has the added advantage of simplifying automated client behavior, while at the same time allow for the signing of many different content types.

Note – There are, to our best knowledge, no changes required to http to support signed content.

In order to add WSP support for signed content, a content type needs to be defined and, preferably, a content type number assigned for it together with an encoding rule. This will require a Change Request to WSP, and, presumably, a new document describing the content type (could maybe be the MIME type registration).

In addition to this, procedures to generate such signed content, procedures for a receiver to verify it, as well as its general application in WAP needs to be specified.

3.2 Signed content format

In trying to be aligned both with the Internet world, already made investments in WAP soft- and hardware, while observing existing limitations in many wireless devices and networks, the set of possible formats becomes somewhat constrained. Possible solutions include:

· Signed XML ([7],[8]);

· S/MIME (CMS); and

· WAP SignedContent ([6]).

Signed XML is not proposed in this input paper, since the definition of the format has not been finalized by the IETF yet, and CMS implementations currently are more readily available. Among other factors influencing our decision to propose S/MIME and CMS as a basis for signed content in WAP are:

· Re-use of the existing S/MIME CMS-based WAP SignedContent provides for a compact format which protect investments made and simplifies client implementations;

· MExE usage of signed JAR files [10]; these files are signed using CMS; and the ability of the content format to be useful in other contexts seems important; and

· ETSI specification of qualified electronic signatures [9], expected to become important in EU-related E-commerce.

But even the use of S/MIME raises some issues. One stems from the fact that an S/MIME signed message, even if it is of type “multipart/signed,” shall include MIME headers; which is likely to cause interoperability problems and unnecessary bandwidth consumption. A WAP client will, however, handle equivalent headers encoded for WSP. In line with our objectives, we also make the assumption that it is desirable to specify a format, which at least is convertible to CMS [2], and, preferably, to S/MIME.

As a consequence of this, we believe that the format defined in [6] represents a reasonable trade-off, especially since the WMLScript CryptoLibrary’s signed content format is defined not only for transmission from WAP devices but also to them. We also note that this SignedContent format is “convertible” to ordinary PKCS #7 SignedData, which means that a WAP-SignedContent-unaware server wishing to distribute signed content in alignment with CMS may do so. A WAP performance-enhancing proxy may later on – without loss of security – transform this to a format understandable by WAP devices.

Our suggestion is therefore that, for signed content to be useful in WAP specific protocols, it should be based on encoding-rules and content-types defined in [5]. For WAP 2.x, it is reasonable to assume that a completely S/MIME compliant format will be possible to support as well, but that limited clients may be forced to continue to use a WAP specific format.

In both cases, this input paper suggests the use of the “multipart/signed” content type (or a somewhat modified version thereof) defined in [1] in combination with the “application/pkcs7-signature” protocol defined in [3] rather than the “application/pkcs7-mime” defined in the same document. The reason for this is that the former allows a well-implemented client to display or make use of a signed message even if it does not understand the “multipart/signed” content type.

We do not preclude the possibility to later on support signed XML within the same framework. The drawback is that formatted messages will be longer.

3.2.1 WAP-specific signed content

· Content types: “application/vnd.wap.multipart.signed” and “application/vnd.wap.pkcs7-signature” (see Section 5)

· Formats: SignedContent as specified in WMLScript CryptoLibrary, which is to be produced in the manner described below.

Note – The steps shown below are descriptive, not prescriptive, and do not in any way impose restrictions or requirements on implementations.

1. The content to be signed is prepared according to [5], taking special care for clear-signing, and preparing content headers etc. exactly as if it was to be sent unprotected in WSP.

2. The prepared content is then presented to signature processing in order to obtain an object of type SignedContent in which the content itself is not present (i.e. content_present has the value false and content is absent). The ContentType field shall be set to data, and content_encoding shall be set to the value for the content being signed (e.g. when signing a WML page, content_encoding shall be set to 8
.
3. The prepared content itself is inserted into the first part of a WSP-formatted “multipart/vnd.wap.multipart.signed” message with no processing other than that described in WSP.

4. Transfer encoding is applied to the detached signature SignedContent object and it is inserted into a content of type “application/vnd.wap.pkcs7-signature.”

5. The prepared “application/vnd.wap.pkcs7-signature” content is inserted into the second part of the “application/vnd.wap.multipart.signed” entity. The “application/vnd.wap.multipart.signed” content type has three required parameters: the boundary parameter, the protocol parameter and the micalg parameter. The boundary parameter is as in “multipart/signed”. The protocol parameter MUST be (the integer representation of) “application/vnd.wap.pkcs7-signature”. The micalg parameter allows for one-pass processing when the signature is being verified. The value of the micalg parameter identifies the message digest algorithm used, as follows:

	Digest algorithm
	Micalg parameter value

	SHA-1
	0

	MD5
	1

Clients MUST be able to digest using SHA-1.
3.2.2 A note about End-to-end authentication of WAP content

For efficiency reasons, WAP content is binary encoded in the WAP gateway prior to the transmission over the wireless link. This encoding modifies the original content and introduces a question how a WAP client can verify the signature provided by a content provider.
The most obvious solution is that authenticated content should be provided by the origin server in the precompiled form and should be forwarded by the WAP gateway without any further processing. To our knowledge this approach is currently only possible with compiled WMLScript bytecode. However it seems impossible with other forms of content.
3.2.2.1 Authenticated WMLScript bytecode

Authenticated WMLScript is one of the main requirements for the electronic commerce applications in WAP.

The reason of using signed WMLScript is twofold:

· to authenticate where the function call is coming from (e.g. is it the user’s bank who ask him to sign the payment authorization); and

· to ensure integrity of the bytecode (i.e. to ensure that the bytecode has not been modified on the way from the generating server to the client).
WMLScript functions can be provided in compiled form by the content provider. It is therefore possible for the provider to generate a signature which can be incorporated in the WSP message and verified by the client.

3.2.2.2 Authenticated EFI function calls
Currently the authentication of EFI function calls can be provided by incorporating them into the WMLScript function and signing the resulting WMLScript bytecode.
3.2.2.3 Authentication of other WML content

This problem can be solved by:
· compiling the signed content at the origin server and ensuring, e.g. through some special tags, that this content in not further processed by a WAP gateway; or
· providing end-to-end WSP connection between origin server and client.

Neither of these seems possible currently.
3.2.3 Internet compliant signed content for WAP

While somewhat more complex to handle, the content types in this subsection are common on the Internet, which fulfills the goal of Internet convergence. Whether, e.g. WAP 2.x clients should be mandated to support them or not is an open issue.

· Content types: multipart/signed and application/pkcs7-signature (as defined in [1] and [3])

· Formats: As defined in [1], [2] and [3], with restrictions as noted below.

1. Clients MUST be able to verify signatures made using rsaWithSHA1Encryption or ecdsa-with-sha1 (only one algorithm needs to be supported)

2. Clients do NOT have to recognize the “smimeCapabilities” attribute nor the “smimeEncryptionKeyPreference” attribute or the “smimeSigningCertificate“ attribute.

3. Clients do NOT have to handle CRLs sent in the SignedData.crls field.

4. The IssuerAndSerialNumber field of the “SignerIdentifier” type SHALL be present

4 ME behaviour considerations

When a mobile device receives signed content in WSP (containing text or any type of data), it should verify the signature and be able to present information on the signer and the result of the verification: if it was successful, or if it failed with different reasons, like invalid signature or inability to verify the signer's certificate. When the signed content type is text (e.g. text/vnd.wap.wml), the original text and the result of the verification must be presented in a manner which is distinctive from texts received unprotected.

5 MIME media type definitions

5.1 Application/vnd.wap.multipart.signed

1. MIME Media Type Name

: application

2. MIME subtype name

: vnd.wap.multipart.signed

3. Required parameters

: boundary, protocol and micalg

 The boundary parameter is as for multipart/signed

 The protocol parameter is as for multipart/signed

 The micalg parameter takes short (0..127) integer values as follows:

 0 = SHA –1

 1 = MD5

 ... (list may later be augmented)

4. Optional parameters

: none

5. Encoding considerations
: none (?)

6. Security considerations
: Must be treated as opaque while in transit

... to be completed

5.2 Application/vnd.wap.pkcs7-signature

1. MIME media type name

: application

2. MIME subtype name

: vnd.wap.pkcs7-signature

3. Required parameters

: none

4. Optional parameters

: name, filename

5. Encoding considerations
: Will be binary data, should therefore be

 base64 encoded.

6. Security considerations
: Described in RFC 2630

... to be completed

6 References

[1] Galvin J., Murphy S., Crocker S. and N. Freed, “Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted,” RFC 1847, October 1995

[2] R. Housley, “Cryptographic Message Syntax,” RFC 2630, June 1999

[3] B. Ramsdell, “S/MIME Version 3 Message Specification,” RFC 2633, June 1999

[4] P. Hoffman, “Enhanced Security Services for S/MIME,” RFC 2634, June 1999

[5] WAP, “Wireless Session Protocol Specification,” WAP-203-WSP, May 2000

[6] WAP, “WMLScript Crypto Library Specification,” WAP-161-WMLSCRIPTCRYPTO, November 1999

[7] W3C, “Extensible Markup Language (XML), W3C Recommendation 10-February-1998, REC-xml-19980210”, T. Bray, et al, February 10, 1998. URL: http://www.w3.org/TR/REC-xml
[8] Estlake, D., Reagle, J. and D. Solo, “XML-Signature Syntax and Processing”, draft-ietf-xmldsig-core-xx.txt, IETF work in progress

[9] ETSI, “Electronic Signature Formats,” ETSI ES 201 733 v1.1.3, ETSI, May 2000

[10] “JAR file specification,” SUN Microsystems, URL: http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html
� The usefulness of this could be argued

© Ericsson and RSASecurity. 2000.

