Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #79
S4-140655
12th – 16th May 2014

Sophia Antipolis, France
Agenda item:
7.7.1
Source:
Ericsson
Title:
MI-EMO: Discussion on Object Expire and FLUTE FDT Instance expire
Document for
Discussion and Agreement
1 Introduction

This document discusses the usage of the FLUTE FDT expire mechanism and proposes a set of corrections & clarifications. Specific proposals are made in sections 3 and 5.
2 About the FLUTE FDT Instance expire
FLUTE, as defined by RFC3926 and updated into RFC6726, defines file delivery over UDP using LCT and ALC building blocks from IETF. ALC and LCT define the transmission of “objects”, without any additional metadata characterizing the objects, using UDP. FLUTE adds the needed mechanism of associating HTTP like metadata such as a Content-Location and Content-Type to an LCT Transmission Object.
Each Transmission Object is identified by a Transmission Object Identifier (TOI). Figure 1 depicts the object partitioning process, which sub-divides the object into a sequence of UDP packet payloads (marked orange in Figure 1). Typically, a set of redundant symbols using a FEC algorithm is created (yellow in Figure 1). The LCT header in the UDP packet for that transmission object is marked with the associated TOI in the packet header. Packet headers (all) are marked grey in Figure 1.
[image: image1.emf]Object Size

Object Partitioning

Packetization

(UDP Packets)

FEC

Object

BM

-

SC side

Figure 1: Object partitioning
FLUTE defines the so-called File Delivery Table (FDT), which is basically a list containing the association of file metadata to the transport object identifier (TOI). The client maintains the FDT. The sender can add entries by using FDT Instances. Each FDT Instance can provide one or more file association entries. Each FDT Instance is sent as a Transmission Object. Each FDT instance is identified by the same TOI of value zero. Each FDT Instance is marked with a unique FDT Instance Id. The client can use the FDT Instance Id to identify repetitions of already received FDT Instance objects (which are all use the same TOI value of zero).
The mechanisms to add new file associations into the client FDT are clearly defined. The clean-up mechanism to remove file associations (when not needed anymore) is only vaguely defined.

FLUTE RFC (RFC 3926 and 6726) contains a mandatory expire mechanism, which allows the sender to define a lifetime for an FDT Instance.

FLUTE “hints”, that the FDT Instance expire mechanism can also be used for clean-up. RFC 3926 says “The receiver SHOULD NOT use a received FDT Instance to interpret packets received beyond the expiration time of the FDT Instance.” In RFC 6726, the “SHOULD NOT” is replaced by “MUST NOT”.

This statement implicitly instructs client to remove all file association from the FDT, when the related FDT instance is expired. When no sufficient data at time of expiry is received to recover the object, the statement implicitly instructs the client to discard all data. The client is not supposed to use the file metadata anymore.

Since the client is supposed to forget the file association at expiry time, the TOI can be re-used for other file association, when sufficient time has passed.

The MBMS Specification TS 26.346 says in Clause 9.3.2 (Starting Time of the Associated Delivery Procedure for MBMS Download Delivery) “The starting time of Associated Delivery Procedure for the MBMS download is the expiration time of the FDT instance at the latest.” And later “When a particular file (URI) is present in more than one FDT Instance with the same TOI value, then the end of transmission time is defined by the expiration time of the latest FDT Instance to expire.”

The MBMS specification uses the FDT expiry mechanisms to indicate the “end of transmission time” for a certain object. Instead of “just” discarding the received symbols upon FDT Instance expiration, MBMS clients may start file repair (when the system has provided an ADPD fragment) or decide to make a partial file available.
An example transmission is depicted below: The BM-SC partitions a file into a sequence of IP/UDP packets. The BM-SC also adds Repair packets, containing the FEC redundancy.

[image: image2.emf]Transmission

Reception of Client A

Packet Loss

Object successfully

Recovered

Reception of Client B

Packet Loss

Not sufficient data



Discard data or start file repair

Packet Loss

UE side

Start of Object Transmission End of Object Transmission

Source + FEC Packets t

t

t

BM

-

SC

FDT Instances are interleaved

Start of

new object reception

Start of

new object reception

Ignore packets

The FLUTE FDT Instances, which provides the file metadata for the TOI, are interleaved with the rest of the transmission. The BM-SC starts at some time (marked as “Start of Object Transmission”). The “End of Object Transmission” is the time at which the BM-SC has sent all source and repair packets.

The reception of a new object starts when the client receives a first IP packet of the new transport object. The client can make the object available as file to the higher layers, when sufficient number of packets for object recovery is received. In the figure above, the reception of Client A is finished before all packets have been transmitted. So, the client is actively ignoring / discarding all subsequently received packets of that TOI.

Further, the client should have received the associated file metadata. The client may ignore all subsequent packets of that transmission object (as identified by the TOI), since it has already received the object.
In the example above, the packet losses of Client B are too high for the provided FEC redundancy. So, at some point in time, the client needs to discard all data of that TOI or start file repair (if provisioned) or make a partial file available (UE implementation option).
The following issues should be clarified

1. For how long should the client ignore / discard packets with a certain TOI? (See reception of Client A)

2. When can a client decide, that all data for that transmission object can be safely discarded?
3 Proposal for existing MBMS Clients
The following uncertainties with respect to the FDT Instance expiration mechanism should be clarified in the MBMS specification

· It should be clear, that the system does NOT expect that the client keeps the received object fragments longer than the expiration time.

· The system must rely on a well-defined behavior with respect to clean-up of the FDT file associations. Therefore, it is suggested to change from “should not” to “must not”
· MBMS clients shall remove the file association from the FDT upon expiration time so that the system can rely on a clearly specified UE behavior. Rel 11 or later clients may make the received symbols available as partial segment (UE implementation choice).

· As a consequence of the above, the BM-SC may re-use the TOI value after sufficient time (i.e. immediately after expiration, modulo time sync uncertainty) has passed.
4 Discussion of the expiration mechanism for FLUTE enhancements
The newly developed FLUTE enhancements for MI-EMO should be beneficial for DASH over MBMS as well as any file delivery service. Any file delivery service may use the file repair function.
The client needs to get an expiration time for each object to
· Understand, for how much time to ignore a certain TOI value, especially since the system might repeat an object rather than trigger repair over unicast, depending on reception reports.
· Understand, when no additional data can be received anymore to

· remove all data from memory
· start file repair procedure (when file repair is defined through ADPD)
· (in case the client implements partial segments / files): Understand, when to make the received data available as “partial segment”.
The existing FLUTE FDT expiry mechanism is based on an absolute timestamp, provided as NTP time. The NTP time represents an absolute time on the server. The client may be synchronized to the same wallclock time with a high precision. So, the BM-SC need to add transmission delays and other transmission related delays to the expiry time in order to avoid that the client is clipping the end of a file reception.

One way to determine the expiration mechanism is that the BM-SC determines the transmission duration and calculates the absolution expiry timestamp as

Expabs = Nowabs + transmission_durationrel + transmission_delayrel + safetyrel.

With Nowabs is the current time on the BM-SC, transmission_durationrel is the duration to transmit the file with a certain size over a bearer with a certain bitrate and the transmission_delayrel is the transmission delay, introduced by the intermediate transmission equipment. The BM-SC must have a good understanding of the one-way transmission delay from the BM-SC in order to define the expiration correctly for the receiver. The transmission delay depends on the access network and in several cases also on the broadcast area. For instance, the broadcast area covering a stadium or another prominent place may be connected with lower delay lines than other, more rural areas.

safetyrel is an additional safety margin, which considers for instances worst case delay. If the expiration time is set wrongly (i.e. too short), the UE is deleting all received data. So, the BM-SC should add sufficient safety duration to ensure that the UE is receiving until the end of transmission.

In particular for LTE based eMBMS transmissions, the RAN is influencing the e2e delay through the choice of the MBMS Scheduling Period (MSP), which can vary between 80ms and 10.24s.

Other ways to calculate the expiration time are certainly possible.
The disadvantage of absolute timestamps is that the client needs to be properly time synchronized and also that the network need to consider the worst case e2e transmission delay.

5 Proposal for an expiration mechanism for FLUTE enhancements

In order to simplify the network procedure for calculating the expiration time and determining a sufficiently precise transmission delay, a relative timestamp is suggested. It is proposed to use the expected residual time (ERT) to convey the information for object expiry.
Figure 2 depicts the construction as example: The BM-SC has done the file partitioning for the file in the first step and has determined the number of packet needed to carry the file. In the figure, the file plus the FEC overhead is partitioned into 400 IP packets. Due to the target bitrate, one packet needs to be sent every 40ms.

[image: image3.emf]Pkt #1

EXT_TIME

<ERT>

Payload

Hdr

Pkt #2

EXT_TIME

<ERT>

Payload

Hdr

Pkt #10

EXT_TIME

<ERT>

Payload

Hdr

Pkt #50

EXT_TIME

<ERT>

Payload

Hdr

Expiry

Start

Example:

Packet Transmission Interval: One Packet every 40ms

File Size: The File is partitioned into 400 packets

Timeout: 16sec +X after the last Packet. Example: 17sec

17000ms 16960ms 16640ms 15040ms

Value of new

Expire Header

Define the unit, 1ms vs, 40ms, …

Not every Packet an expiry.

Figure 2: Example for ERT usage
Constant inter-transmit intervals considered here for sake of simplicity. The inter-transmit interval may depend on the segment size, if a transmission duration should be the same for segment at variable segment sizes. For instance segments containing 1sec of media data may vary in size. So, some segments may be partitioned into 380 IP packets, while other segments require 420 IP Packets to be transmitted.

In the example above, the BM-SC needs 16sec to transmit the 400 packets with the 40ms interval (transmission duration excluded).The BM-SC determines the expiry of the segment as 16sec plus a margin of X sec. The BM-SC uses a safety margin of X= 1sec so, the expiry should be 17sec after the reception of the first packet. However, since the first packet might get lost, also subsequent packets should carry timeout information.

The value of the Expected Residual Time header (EXT_TIME with ERT option) is depicted for each packet. The client uses the ERT to calculate the FDT Instance expiration time. The ERT is decrementing with each packet.
To reduce transmission overhead, the EXT_TIME header may be included with a fixed period larger 1. For instance, the EXT_TIME header may be added every 10th Packet.
- 1/1 -

