TSG-SA4#79 meeting
Tdoc S4-140505
May 2014, Sophia Antipolis, France

Source:
Apple Inc.
Title:
Integrating Multicast using URL forms and HTTP-like responses
Document for:
Discussion
Agenda Item:
7 (EMO)
1. Introduction
Various multicast file-delivery protocols are defined by the IETF and 3GPP (notably FLUTE, FCAST and their layering on MBMS). However, they are hard to adopt into other services, partly because they do not follow conventions on how these transports are addressed and what information they deliver. Notably:
1) Much of the web (internet) assumes that if a file can be used, it can be referred to by a URL that contains enough information to start to try retrieving it. This is not true for files available over multicast.

2) When a URL form is used, it can be annotated with the information on what it refers to (e.g. a MIME type, a codecs parameter for that MIME type, and so on). If we have no URL, we can’t annotate it.
3) HTTP header responses are widely used to signal the unavailability of an expected resource (404) or that a resource has moved (re-direct), or that there are other choices to retrieve the indicated resource, or to deliver portions of a resource (byte-ranges). Though FCAST uses the meta-information format of HTTP, it misses the status line, so neither unavailability nor re-direct can be signaled. You cannot re-direct from multicast to HTTP, for example.
4) ‘Soft’ information such as multicast group addresses, transport session identifiers, and so on, are hard-coded into the descriptions (e.g. SDP files). In general, the web/internet avoids hard-coding such values, preferring to use lookup (e.g. DNS for addresses); lookups can be re-factored as boundaries are crossed.

Traditionally multicasts have been addressed by requiring the client to acquire some pre-knowledge (an SDP and/or USD file) by some means ‘out of band’ (read: magic). Thus, we require that every protocol that might use multicast be adapted. This is error-prone, limiting, and time-consuming. Instead, if an operating system can have a URL handler for multicast URLs that deliver file objects, with an interface that ‘emulates’ the interface to HTTP, many (not all) things would ‘just work’. Perhaps the most notable is that we might re-direct from HTTP to multicast when the server detects that there is a better way to get the resource (perhaps, at this time and for this client).
The places where URLs occur, and where it would be advantageous to be able to state “this file is available on multicast”, are legion. Obvious examples include anything linked into HTML (a web page or email), especially media (video, audio, images); in HTTP itself where re-direction supplies a URL; in DASH, where sources are identified by URL and we have spent many meetings adding custom elements etc.. For many of these, operating system support with the same API as HTTP would suffice. Even in the DASH case, where it’s true that the DASH engine needs to know it’s using multicast (as it makes substantial changes to bandwidth estimation etc.), simplifying the markup and the protocol identification to a URL is a plus.

FCAST is closer to HTTP operation than FLUTE; files ‘just arrive’ and there is no concept of the ‘set’ as represented by the file delivery table in FLUTE. I therefore focus on FCAST.

The mapping to MBMS directly is not obvious (see below). It may be that this discussion should be started in MPEG, or even the IETF, of course.
2. Use cases

Here are two example use-cases.

1) The classic ‘stadium’. A sports franchise wants everyone in the stadium to be able to watch a few selected camera streams. They multicast the streams over a tuned WiFi system.

2) A network operators (either internet service, or 3GPP) wants to enable people to see a video mosaic of the top channels, and click through to get to a channel fast.

The simple solutions are:

1) Provide a QR code that embeds a multicast URL to the MPD, at the entrance, in printed material, on posters etc. When they tune that multicast URL, they get the MPD, and it refers to streams that are also multicast. The act of tuning in to the session starts the client caching everything that arrives.

2) The mosaic is a multicast URL, and the segments of each program are also multicast but with short cache-times, and using the same URL label as the unicast address (i.e. an HTTP URL). When the user clicks on a program, they fetch the MPD (or perhaps the MPDs are also multicast and pre-filled into the cache) and they already have the current segment cached, so startup is effectively instant. As they proceed, there is a good chance the multicast has delivered every segment they need, just in time.

3. Required Information
Currently, tune-in to a multicast involves getting hold of a ‘head’ file that gives a variety of information. That information can be roughly separated into three classes:
1) Information about alternatives that could be supplied as part of the higher-level protocol (e.g. DASH representations, HTML5 source elements)

2) Information (IP addresses and the like) that is needed to ‘bootstrap’ the multicast reception

3) Information about where/how the reception is possible (e.g. protocol parameters, time-ranges, and so on)

4) Information that could be acquired later, in-band, such as feedback addresses, the availability of alternatives and unicast repair servers, and so on (or indeed, a fuller description of the multicast itself)

For the sake of simplicity, I propose that we only include (2) and (3) in the URL form.
Ideally, there is something about the multicast itself that allows the client system to assess fairly rapidly whether it's working (the multicast join succeeded, packets are arriving, etc.) and if that fails, the URL handler can give a suitable error indication (maybe an existing one, maybe new).

4. Suggested URL form

4.1. Introduction

Both FLUTE and FCAST rely on LCT, which in turn has the concept of channels, to handle congestion and rate control. We presume the existence of a base channel, and indicate how to acquire that.

In an FCAST session, files are identified by URI labels. I suggest that we identify some reserved URN forms to indicate ‘this is a complete SDP file describing all the sessions’, and possibly ‘this is a USD describing the 3GPP MBMS session’. This allows bootstrapping from the base channel to all of the channels in a session.
The FLUTE RFC is specific about the parameters needed to acquire an ALC/LCT session, and since FCAST also relies on ALC/LCT, the same analysis applies.

4.2. FLUTE RFC Information
To start receiving a file delivery session, the receiver needs to know transport parameters associated with the session. Interpreting these parameters and starting the reception therefore represents the entry point from which thereafter the receiver operation falls into the scope of this specification. According to [RFC5775], the transport parameters of an ALC/LCT session that the receiver needs to know are:

· The source IP address;

· The number of channels in the session;

· The destination IP address and port number for each channel in the session;

· The Transport Session Identifier (TSI) of the session;

· An indication that the session is a FLUTE session. The need to demultiplex objects upon reception is implicit in any use of FLUTE, and this fulfills the ALC requirement of an indication of whether or not a session carries packets for more than one object (all FLUTE sessions carry packets for more than one object).

4.3. Base URL form

This suggests a URL form roughly like

fcast://destination:port/source:TSI?label=file

with:

destination:
an explicit multicast address (x.y.z.w) or (better) a name that resolves to one (or more) IP multicast address(es), for the base channel

port
the port number for the base channel

source
an explicit IP address (x.y.z.w) or (better) a name that resolves to the source address
TSI
the transport session identifier for the session

e.g.

fcast://232.0.0.1:5620/broadcast.example.com:527353#label=http%3A%2F%2Fnews.example.com%2Fstuff.mp4

given such a URL, the terminal can (try to) tune into the FCAST session, and retrieve the indicated file.

4.4. URL Parameters

URLs can take parameters of two forms: query parameters (after a “?”) that are supplied to the URL resolver, that enable it to deliver the right resource (in HTTP, these are sent to the server) and fragment parameters (after a “#”) that enable the recipient to further select within the resource. Fragment parameter definitions ‘belong to’ the type of the resource; only query parameters reside in the protocol. I therefore propose that needed and optional parameters that go to the URL handler are query parameters.
These are the parameters:

· The start time and end time of the session
· The label (URI) of the desired resource
5. FCAST Metainformation field
In FCAST the metainformation field carries anything that an HTTP metainformation field can carry, but not the status line. This means it’s not possible to indicate “this file might be expected here, but it is not here any more” (404) or “this file has moved” (301 or 307) or even that there are multiple choices on where to get this resource (300 ‘choices’). The most useful, perhaps, is the ability to indicate “you might have expected to get this over this multicast, but it’s not here, but over there (re-direct)” perhaps even re-directing back to HTTP, or to another multicast session.
I therefore suggest we define a new form of the FCAST metainformation that also includes a status line formatted exactly as the HTTP status line, but with the HTTP-version replaced by FCAST-version:

 Status-Line = FCAST-Version SP Status-Code SP Reason-Phrase CRLF

6. HTTP status values, applicability
Here are the status codes available in HTTP 1.1, and a brief statement of whether they could be applicable to FCAST:
Useful:

"200"
OK
Usual status code when the object is supplied, or when just the metainformation is supplied
"203"
Non-Authoritative Information

"206"
Partial Content
Useful to indicate that byte-ranges of the resource are supplied separately
"300"
Multiple Choices
Useful to indicate that there are also other places to get the content
"301"
Moved Permanently
The resource might be expected here, but has moved (re-direct)
"302"
Found

"303"
See Other

"307"
Temporary Redirect
The resource might be expected here, but has moved (re-direct)
"404"
Not Found
The resource might be expected here, but it is no longer available
"410"
Gone
Unlikely but possible:
"100"
Continue
Unlikely to be of use
"101"
Switching Protocols
Maybe useful
"502"
Bad Gateway
The multicast was being fed by a gateway that failed
"503"
Service Unavailable

Probably Inapplicable:

"201"
Created

"202"
Accepted

"204"
No Content

"205"
Reset Content

"304"
Not Modified

"305"
Use Proxy

"400"
Bad Request

"401"
Unauthorized

"402"
Payment Required

"403"
Forbidden

"405"
Method Not Allowed

"406"
Not Acceptable

"407"
Proxy Authentication Required

"408"
Request Time-out

"409"
Conflict

"411"
Length Required

"412"
Precondition Failed

"413"
Request Entity Too Large

"414"
Request-URI Too Large

"415"
Unsupported Media Type

"416"
Requested range not satisfiable

"417"
Expectation Failed

"500"
Internal Server Error

"501"
Not Implemented

"504"
Gateway Time-out

"505"
HTTP Version not supported

7. Operation of the URL handler
So, how might a client-side URL handler operate?

When it gets the first URL for a given session, it would ‘tune in that session’ and (with luck) start receiving files and meta-information. On the receipt of ‘special files’ (notably an SDP or USD) it can expand its knowledge of the session. Other files not corresponding to the immediate request in hand should be cached, observing the cache control headers. When the indicated file (or at least the requested byte-range of the indicated file) is available, it is returned. If a 404, 410, or 3xx ‘response’ is received for the indicated file, than an appropriate error is returned, as indeed it is if the URL specifies that the multicast is only available over a given time range, and the request is not or cannot be satisfied in that time range.
8. MBMS URL form

MBMS has been designed from the ground up as a non-IP service up to the application layer. At the moment, there is no mapping from the IP level to MBMS parameters. At minimum, one needs to be able to derive the 3GPP parameters from the IP parameters (multicast address, source address, port number). Given that, it may not be necessary to define an ‘MBMS URL form’.

It seems that the vision has been that because operator-specific aspects are involved in the lower-levels (e.g. choice of radio channel), then the description up to and including the application data can be operator-specific as well. I think this is a non-sequitur; the experience with the internet is that we can enable robust and diverse distribution networks if we use stable labels (URLs) and then use dynamic techniques ‘behind’ them to enable CDNs and other optimizations (e.g. DNS intercepts, HTTP intercepts and re-directs, proxies, caches, and so on).
It may be that the base URL form for FCAST can be used with additional parameters, e.g. “only use this URL if you are on AT&T native”. It would be better to see uniform mapping (possibly through DNS or DNS re-direction) of the base URL in this case, but it could be done.

The questions of whether MBMS needs its own URL form (or whether it can layer under an FCAST form), and whether a URL form could be defined for it, remain open.

2 (7)

