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[bookmark: _Toc504713888]1 Introduction
At the SA4-122 meeting, it was decided to select one or several frameworks and/or libraries and a list of models as a baseline for conducting traffic characteristics measurement on AIML model data and AIML intermediate data. 

This contribution proposes a testbed architecture for the evaluation of intermediate data as a baseline for the implementation of one or several Intermediate data testbeds.



2 Proposed changes	

--------------------------------------------- Begin change -------------------------------------------------------------------------
7 AI/ML evaluation framework
7.X	Testbed Architecture
7.X.1	model data testbed architecture
7.X.2	Intermediate data testbed architecture
7.X	Intermediate data testbed architecture




An architecture for evaluation of intermediate data is represented in the figure above. The model inference is split between a local and the remote compute node according to scenarios to define. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. Depending on the scenario, the sender of the intermediate data may be the local inference node or the remote inference node.
The testbed architecture includes the following main functional blocks:   


· Reference Anchor untrained model architecture(optional): A model to be trained with reference training data.
· Reference Anchor training data(optional): Input data set and training parameters used to build a new reference trained model. 
· Reference trainedAnchor model (pre-trained): A model with a documented architecture with pre-trained weights. The model optimization (e.g., quantization) or compression is part of the reference trained model.  
· Reference framework/library: For example, TensorFlow, Pytorch, etc.  
· Split points model configuration: Configuration of selected split points for the set of models to evaluate.
· Local: Anchor model fully run on the local node.
· Remote: Anchor model fully run on the remote node.
· Split configuration: Anchor model runs on the local and the remote nodes.
· Selected Split points to evaluate. 
· Reference test data input: For example, a reference picture or video sequence.
· Inference nodes: 
· Local inference node: The local inference node emulates an end-device such us a UE.
· Remote inference node: The local inference node emulates a network node such as edge/cloud/5G CN Application server.
· Data Delivery/Access. This may include selection of different means for delivery and access of intermediate data: 
· Data encoding/decoding: This includes for example serialization/deserialization, optimization, compression/decompression.
· Uplink/Downlink communications: The scenarios involve both uplink and downlink communications. The evaluation can consider different protocols to be used in the uplink and downlink, as well as real-world emulation constraints (downlink bandwidth vs. uplink bandwidth).
· Metric computations: List of metrics measured from both inferences to be defined.
· split points Information 
· Model name
· Split layer name
· Model performance metrics
· Accuracy
· Split layer data 
· Input data size 
· preprocessed input data size
· intermediate data size (Raw) 
· intermediate data size delivery size after serialization/compression
· Inference latency metrics
· local inference time
· Remote inference time
· Total local and inference time
· End to end latency metrics 
· Network metrics
· Encoding/decoding time.
· intermediate data delivery time
· Computing power consumption on node
· CPU time
· GPU time  
· Memory usage
· Energy consumption
7.Y	Metrics
7.Y.1	Model performance metrics
Given that most scenarios that we’re dealing with in the scope of this study involve computer vision tasks, the evaluation framework should reuse existing metrics that are well-established in the research community.
For object classification tasks, the metrics are:
1. Accuracy: Accuracy is the simplest metric for evaluating classification performance. It measures the percentage of correctly classified objects out of the total number of objects in the dataset. While accuracy is easy to understand and compute, it can be misleading if the dataset is imbalanced, or the cost of misclassifying different categories is not equal.
2. Precision: Precision measures the proportion of true positives among all the objects that the model classified as positive. It is useful when the cost of false positives is high, and it is essential to avoid misclassifying objects. 
3. Recall: Recall measures the proportion of true positives among all the objects that belong to the positive class in the dataset. It is useful when the cost of false negatives is high, and it is essential to detect all objects in the dataset. 
4. F1 Score: The F1 score is the harmonic mean of precision and recall and provides a balanced view of the model's performance.
For object detection tasks, the metrics are:
5. Intersection over Union (IoU): IoU is one of the most commonly used metrics for evaluating object detection algorithms. It measures the overlap between the ground truth bounding box and the predicted bounding box. IoU is computed as the ratio of the intersection of the two boxes to the union of the two boxes. A higher IoU score indicates better object detection accuracy.
6. Precision and Recall: Precision measures the fraction of true positives (correctly identified objects) out of all predicted positives (objects identified by the algorithm). Recall measures the fraction of true positives out of all ground truth positives (objects that should have been identified). A high precision score indicates that the algorithm is correctly identifying objects, while a high recall score indicates that the algorithm is not missing any objects.
7. Average Precision (AP): AP is a commonly used metric for evaluating object detection algorithms. It measures the precision at different levels of recall and then averages them. AP provides a single number that summarizes the overall performance of the algorithm. A higher AP score indicates better object detection accuracy.
8. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a single number that summarizes the overall performance of the algorithm. A higher F1 score indicates better object detection accuracy.
For object tracking tasks, the metrics are:
1. Intersection over Union (IoU): IoU is also commonly used for evaluating object tracking algorithms. In this case, it measures the overlap between the ground truth bounding box and the predicted bounding box for each frame in the sequence. A higher IoU score indicates better object tracking accuracy.
2. Precision and Recall: Precision and recall can also be used to evaluate object tracking algorithms. In this case, precision measures the fraction of frames where the algorithm correctly identified the object, while recall measures the fraction of frames where the algorithm correctly tracked the object.
3. Mean Average Precision (mAP): mAP is a commonly used metric for evaluating object tracking algorithms. It measures the average precision at different levels of overlap between the ground truth and predicted bounding boxes over the entire sequence. A higher mAP score indicates better object tracking accuracy.
4. Tracking Precision (TP) and Tracking Recall (TR): TP measures the fraction of frames where the predicted bounding box overlaps with the ground truth bounding box by a certain threshold, while TR measures the fraction of ground truth bounding boxes that were successfully tracked. A high TP score indicates that the algorithm is accurately tracking the object, while a high TR score indicates that the algorithm is not losing track of the object.

7.Y.2	Latency metrics 
· Inference latency metrics
· local inference time
· Remote inference time
· Total local and inference time
· End to end latency 
· Other latency metrics
· Encoding/decoding time.
· intermediate data delivery time

Note: FFS to be refines

7.Y.3	Other metrics 

· Video quality: depending on the scenario, the input or output video quality should also be documented. For example, a video super resolution scenario has to evaluate the quality of the resulting video. For the tasks, the impact of the quality of the input video on the accuracy should also be evaluated.
· Complexity: complexity of the entire process, including video compression and inference process.
· Bitrate: the total bitrate needs for performing the task. This may be 0 for the device anchor. For the network anchor, this includes the video bitrate for the uplink and the bitrate for sharing the task results back to the device.

· Resources metrics:
· Computing power consumption on node
· CPU time
· GPU time  
· Memory usage
· Energy consumption

--------------------------------------------- End change -------------------------------------------------------------------------

3 Proposal
We propose to include the text in the clause 7 as a baseline for refinement and improvements. 
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