	
3GPP TSG SA4#106	S4-191322
21st-25th October 2019, Busan, Korea	Revision of S4-191230

	CR-Form-v11.4

	CHANGE REQUEST

	

	
	26.444
	CR
	0027
	rev
	3
	Current version:
	16.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	EVS Non Bit Exact Float conformance

	
	

	Source to WG:
	Fraunhofer IIS, Intel, Apple (UK) Limited, Ericsson LM, Orange

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_FCNBE
	
	Date:
	2019-10-24

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	The current conformance process in TS 26.444 relies on bit-exact testing that is not applicable to the EVS floating-point standard in TS 26.443 if not the same compiler, compiler settings and target platform than the reference binary are used. To be able to use TS 26.443, a non bit-exact conformance process should be added.

	
	

	Summary of change:
	Add non bit-exact conformance process description and associated tools and test sequences. The tools and new test sequences are part of the zip containing the test vectors.

	
	

	Consequences if not approved:
	EVS floating-point standard TS 26.443 cannot be widely used.

	
	

	Clauses affected:
	1, 2, 4.1, 7, Annex X

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

[bookmark: _Toc524217957]
	First Change

[bookmark: _Toc517374080]1	Scope
The present document specifies the digital test sequences for the Enhanced Voice Services (EVS) Codec. These sequences are used in conformance testing for implementations test for a bit-exact implementation of the EVS Codec (3GPP TS 26.445), Voice Activity Detection (VAD) (3GPP TS.26.451), Comfort Noise Generation (3GPP TS 26.449), Discontinuous Transmission (DTX) (3GPP TS 26.450), Error Concealment of Lost Packets (3GPP TS 26.447), Jitter Buffer Management (JBM) (3GPP TS 26.448), and AMR-WB Interoperable Function (3GPP TS 26.446). In addition, the present document specifies procedures for conformance testing (FFS).
[bookmark: _Toc3729887]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 26.445: "Codec for Enhanced Voice Services (EVS); Detailed Algorithmic Description".
[3]	3GPP TS 26.451: "Codec for Enhanced Voice Services (EVS); Voice Activity Detection (VAD)".
[4]	3GPP TS 26.449: "Codec for Enhanced Voice Services (EVS); Comfort Noise Generation (CNG) Aspects".
[5]	3GPP TS 26.450: "Codec for Enhanced Voice Services (EVS); Discontinuous Transmission (DTX)".
[6]	3GPP TS 26.447: "Codec for Enhanced Voice Services (EVS); Error Concealment of Lost Packets".
[7]	3GPP TS 26.442: " Codec for Enhanced Voice Services (EVS); ANSI C code (fixed-point)".
[8]	3GPP TS 26.443: "Codec for Enhanced Voice Services (EVS); ANSI C code (floating-point)".
[9]	3GPP TS 26.174: "Adaptive Multi-Rate - Wideband (AMR-WB) Speech Codec Test Sequences".
[10]	3GPP TS 26.446: "Codec for Enhanced Voice Services (EVS); AMR-WB Backward Compatible Functions".
[11]	3GPP TS 26. 448: "Codec for Enhanced Voice Services (EVS); Jitter Buffer Management".
[12]	3GPP TS 26.452: "Codec for Enhanced Voice Services (EVS); ANSI C code; Alternative fixed-point using updated basic operators".
[13]	3GPP TS 26.406: "General audio codec audio processing functions; Enhanced aacPlus general audio codec; Conformance testing".
[14]	3GPP TS 26.274: "Audio codec processing functions; Extended Adaptive Multi-Rate - Wideband (AMR-WB+) speech codec; Conformance testing".
[15]	3GPP TS 26.952: "Codec for Enhanced Voice Services (EVS); Performance Characterization".
[16]	ITU-T Recommendation P.863 (03/2018): "Perceptual objective listening quality assessment".
[17]	ITU-T Recommendation P.501 (03/2017): "Test signals for use in telephonometry".

	End of First Change

	Second Change

[bookmark: _Toc3729891]4	General
[bookmark: _Toc3729892]4.1	Introduction
This specification provides digital test sequences which are necessary to test conformance for a bit exactan implementation of the EVS codec (TS 26.445 [2]), Voice Activity Detection (TS 26.451 [3]), Comfort Noise Generation (TS 26.449 [4]), Discontinuous Transmission (TS 26.450 [5]), Concealment of Lost Packets (3GPP TS 26.447 [6]), Jitter Buffer Management (JBM) (3GPP TS 26.448 [11]) and AMR-WB Interoperable Function (3GPP TS 26.446 [10]), and for the testing of the bit exactness of conformance for implementations of the ANSI C code in TS 26.442 [7], TS 26.443 [8] and TS 26.452 [12].

For a standard compliant implementation of the above specifications the encoder and decoder output sequences shall pass conformance tests according to clause 7. match the provided output The necessary test sequences can be found in the corresponding ZIP files according to the attached Readme.txt file.

Clause 5 describes the format of the files, which contain the digital test sequences. Clause 6 describes the test sequences for the EVS codec, including error concealment of lost packets, the AMR-WB interoperable function. the VAD, comfort noise generation, discontinuous transmission, the AMR-WB interoperable function, the EVS jitter buffer management, Clause 7 describes the conformance testing for non-bit exact implementations of the EVS codec.

	End of Second Change

	Third Change

[bookmark: _Toc517374098]7	Conformance Testing
Conformance Testing is for further study.
7.1 Bit-exact Conformance
If the output sequences of an implementation under test are bit-exact for all the corresponding EVS codec test sequences according to clause 6, the implementation is considered conformant. This applies for all implementations based on TS 26.442 [7], TS 26.443 [8] or TS 26.452 [12]. For fixed-point implementations based on TS 26.442 [7] and TS 26.452 [12] this is the only conformance method.
7.2 Non-Bit-exact Conformance
7.2.1 Overview
If an implementation under test is based on the reference floating–point code (TS 26.443 [8]) and the output sequences are not bit-exact to the test sequences according to clause 6 , the non bit-exact conformance testing process defined here shall be used to test the conformance.
A conformant floating-point implementation of the EVS codec shall be compliant to the reference specification in TS 26.443 [8] by implementing all the algorithmic steps of the EVS codec, further specified in 3GPP TS 26.445 (Detailed Algorithmic Description) [2], 3GPP TS 26.451 (Voice Activity Detection (VAD)) [3], 3GPP TS 26.449 (Comfort Noise Generation (CNG)) [4], 3GPP TS 26.450 (Discontinuous Transmission (DTX)) [5], 3GPP TS 26.447 (Packet Loss Concealment (PLC) of Lost Packets) [6], and 3GPP TS 26.446 (AMR-WB Interoperable Function) [10].
Conformant floating-point implementations of the Jitter Buffer Management (JBM) according to TS 26.448 [11] shall be compliant to the reference specification in TS 26.443 [8] by implementing all the algorithmic steps of 3GPP TS 26.448 (Jitter Buffer Management (JBM)).
An implementation shall be tested for non-bit-exact conformance using three specific tests:
 -	Decoder test comparing the implementation decoder with TS 26.443 [8] decoder.
-	Encoder test comparing the implementation encoder with TS 26.443 [8] encoder.
-	MOS-LQO verification comparing the implementation with TS 26.442 [7] implementation.
All three tests shall pass for the implementation to be declared conformant. The tests are described in more details in Annex B.
Figure 7.1 shows the flow chart of the non bit-exact conformance process.
[image:]
Figure 7.1: Non bit-exact conformance process
7.2.2 Running the Tests
The executables and scripts illustrating how to run the tests are included in the ZIP of the floating-point test sequences. Annex B provides more details on the tests. In the case of discrepancy between the procedure described in Annex B and the scripts provided in the ZIP file, the procedure of the scripts provided prevail.
For the encoder and decoder tests, instructions on how to operate the implementation under test to run the tests are contained in the text file testvec\Readme.md. The scripts require an additional tool, ResampAudio.exe (instructions on how to download it are contained in the Readme file). The decoder and encoder test scripts are run by executing two Bourne-Shell scripts:
· Readme_dec_snr.sh.txt: batch file describes how to run the decoder test
· Readme_enc_sh.txt: batch file describes how to run the encoder test
The reference files for SNR and MLD encoder and decoder tests are also included in the zip file.
For the MOS-LQO verification, instructions on how to operate the implementation under test to run the test are contained in the text file mos-lqo\README.md. The test script is run by executing the mos-lqo.py Python® script, which in turn executes several Bourne-Shell scripts. The test script requires additional tools:
· P.863 [16] implementation, compatible with version 2 of [16]
· CopyAudio.exe (instructions on how to download it are contained in the Readme file)
For the MOS-LQO test an additional database, based on [17], [13], [14] is used, as explained in Annex B.3.2.
The implementation will be declared conformant if all three tests (encoder, decoder, MOS-LQO) are passed.
	End of Third Change

	Fourth Change

Annex B: Tools Description (normative)
B.1 Decoder Test
[bookmark: _Toc524274769]B.1.1	General Considerations
The reference PCM signals are taken from the decoded floating-point test sequences of this specification. The PCM signal under test are obtained by running the floating-point bit-stream included in this specification through the Decoder under Test (Figure B.1). The reference decoder is the floating-point code of TS 26.443 [8].

Figure B.1: Flow diagram for the decoder test using signal-based metrics
All metrics are calculated on the reference PCM signal and the PCM signal under test based on 20ms frames. The frames of the two signals will be time aligned, this means the delay compensation in EVS encoder and decoder remains ON (the default configuration). Furthermore, the frame processing is aligned with the encoded frame by adding the decoder delay. Table B.1 shows the delay values used for the different sampling frequencies.
Table B.1: Delay used for alignment of processing frames with encoded frames
	Sampling frequency
	8000 Hz
	16000 Hz
	32000 Hz
	48000 Hz

	Delay (samples)
	10
	37
	74
	111

The number of samples for a 20ms frame size is defined by , where represents the sampling rate.
The PCM signals and should be scaled between -1 and 1.
[bookmark: _Toc524274770]B.1.2 Metrics
[bookmark: _Toc524274773]B.1.2.1 RMS Error Threshold
The RMS method is derived from the decoder conformance used in ISO/IEC 14496-26 [10]. The RMS error is calculated for each 20ms frame and compared to a threshold according to:
	
The value chosen for the RMS error threshold is to assume change on the last bit of the audio signal:
 with
B.1.2.2 Signal to Noise Ratio (SNR)
The segmental SNR method is derived from the decoder conformance used in ISO/IEC 14496-26 [10]. For each 20 ms segment, the following values need to be calculated:
Energy of reference signal:
Noise energy:
Signal to noise ratio with
As EVS is a switched codec containing a LPC based speech coder and a MDCT based transform coder, the SNR values vary significantly depending on the used coding mode. Therefore, a constant threshold for the SNR is not suitable but instead, a reference value per frame and test vector should be specified. The SNR should be compared against the thresholds by
 where is a 20 ms frame index and is the test vector index
The set of SNR reference values is included in the zip file. This set was obtained using the reference implementations listed in Clause X.4
[bookmark: _Toc524274776]B.1.2.3 Spectral Distortion
The spectral distortion method can be conducted on a 20 ms frame base by the following steps:
Calculate the absolute FFT spectrum of and using a Hanning window

with

The 32768 is due to MATLAB scaling and to align to 16 bit PCM C-code. This scaling is dependent on the input value range.
For all spectral bins the distortion d is calculated according to the following pseudo code:
cnt=0
d=0
for k=1..N/2-1
 if (==0 && ==0)
 X_Y = 1;
 Y_X = 1;
 else
 if (==0)
 X_Y = 0;
 Y_X = 2;
 else if (==0)
 X_Y = 2;
 Y_X = 0;
 else
 X_Y = (*) / (*);
 Y_X = (*) / (*);
 end
 end
 COSH = (X_Y + Y_X - 2)/2;
 d = d + COSH;
 cnt = cnt+1;
end
d = d/cnt;

The distortion value is to be compared against a threshold . The frame will be considered as passed if
with

[bookmark: _Toc524274779]B.1.3 Analysis Flow and Reporting
The three metrics are computed in a specific order, as shown in Figure B.2. Once a frame passes a metric, the process is stopped and the next frame is analysed. The SNR metric is computed on the frames failing the RMS error criteria. Similarly, the Spectral Distortion metric is computed on the frames failing the SNR criteria.

Figure B.2: Flow chart for decoder tool
In a file one or two frames could slightly be above the threshold. To avoid relaxing the threshold, a constraint on the number of frames failing per file has been added as an additional criterion.
if number_of_frames_failing =< THRESH_GOOD_FRAMES_TO_PASS * number_of_frame_in file, the test signal will be considered equivalent to the reference signal.
All the test sequences need to pass for the implementation to be conformant.
In addition to the number of fail/pass test sequences, the statistics from the three methods should be displayed. Table B.2 shows an example of reporting.
Table B.2: Template for result presentation
	
	RMS
	WSNR
	Spectral Distortion

	Number of frames tested
	
	
	

	Number of frames passing
	
	
	

	Number of frames failing
	
	
	

	Ratio of frames passing
	
	
	

	Ratio of frames failing
	
	
	

As part of conformance criteria, thresholds are set for the ratio of frames passing with RMS and WNR tests (Ratio_RMSframespassing_and RatioWSNRframespassing respectively).
The list of the thresholds used in decoder test are summarized in table B.3.
Table B.3: List of thresholds
	Thresholds
	Description
	value

	SNRHEADROOM
	Headroom compare to the Tsnr threshold
	3 dB

	CDSNRMAX
	Limit of SNR for the spectral distortion test
	0 dB

	CDSNRHEADROOM
	Headroom compare to Tsnr threshold for the spectral distortion test
	10 dB

	Tsd
	Threshold for the spectral distance
	6.6

	THRESH_GOOD_FRAMES_TO_PASS
	Factor for number of failing frame per file
	0.005

	Ratio_RMSframespassing
	Minimal percentage for frames passing RMS error test
	47%

	RatioWSNRframespassing
	Minimal percentage for frames passing WSNR test
	95%

B.2 Encoder Test
B.2.1 General Consideration
The MLD metrics is used to test the floating-point encoder implementation. Figure B.3 shows the flow diagram of the proposed encoder conformance test:
[image:]
Figure B.3: Flow diagram for the encoder test using MLD Loudness Difference metric
All encoder test sequences from this specification will be encoded using the float encoder implementation under test. The bit-stream obtained will be then decoded using the 3GPP reference float decoder from TS 26.443 [8] to obtain the test signals. The test signals will then be compared with the reference signal from this specification. Since the loudness tool (presented in Clause B.2.2) operates on 48 kHz sample rate only, additional resampling is applied before processing.
B.2.2 Metrics
The Loudness Difference (LD) is used as to assess the encoder implementation. The procedure is adopted from the loudness calculation of PEAQ [11] using the Filter bank-based ear model and follows the following steps:
-	Filterbank (Annex 2 section 2.2.5 of [11]):
-	subsample factor F changed to 16 for higher time resolution.
-	Outer and Middle Ear Filtering (Annex 2 section 2.2.6 of [11])
-	Frequency Domain Smearing (Annex 2 section 2.2.7 of [11])
-	Rectification (Annex 2 section 2.2.8 of [11])
-	Time Domain Smearing 1 - Backward Masking (Annex 2 section 2.2.9 of [11])
-	Adding of Internal Noise (Annex 2 section 2.2.10 of [11])
-	Time Domain Smearing 2 - Forward Masking (Annex 2 section 2.2.11 of [11])
-	Loudness (Annex 2 section 3.3 of [11]):
-	This section defines the specific loudness patterns for subbands and time samples
-	The specific loudness patterns are calculated for:
-	reference signal
-	signal under test
-	Loudness Difference (LD):
-	The loudness difference is calculated as follows:
	
The LD is computed with a granularity of 2ms. To get a MLD value every 20ms, 10 segments are combined using the maximum value of those 10 segments.
NOTE:	In the context of this test, the "loudness difference" is calculated as difference in sone values (subtraction, not division).
The LD should be below a threshold based on a reference value LDref plus some headroom.
The headroom is defined as fixed value, currently set to 1.

Then for each file a MLD could be defined as

The test file will be considered equivalent to the reference file if the MLD is positive or equal to 0, i.e. the Loudness Difference doesn’t exceed the threshold for all the frames.
LDref has been obtained using reference implementations listed in Clause B.4:
For each frame, the maximum LD value of the reference implementations defines a corridor, the ‘refline’. This then leads to a profile for each EVS test vector, which contains on a 20ms frame basis an allowed value relative to the reference. Allowed differences in implementations under test (IuTs) are thus limited to the tolerable differences by the different compilers used for the refline generation.
All the test sequences need to pass for the implementation to be conformant.
B.3 MOS-LQO Test
B.3.1 General consideration
For this test P.863 [16] is used. An implementation of [16] pertaining to the 2014 version 2 was used to determine the threshold values to be met.
The audio database, is based on ITU-T P.501 [17] Annex B & C items and mixed/music items as detailed in section B.3.2. For speech with background noise pre-mixed items based on the same speech samples are used.
This test was used in EVS characterization reported in TS 26.952 [15].
For this test, four combinations of encoder/decoder are used (3GPP EVS fixed-point encoder/decoder executables are taken from TS 26.442 [7]):
a)	3GPP fixed-point encoder and 3GPP fixed-point decoder (FX/FX),
b)	floating-point Encoder under Test and floating-point Decoder under Test (FL/FL),
c)	3GPP fixed-point encoder and floating-point Decoder under Test (FX/FL),
d)	floating-point Encoder under Test and 3GPP fixed-point decoder (FL/FX).
The MOS-LQO scores are computed for each of the four cases using the decoded files and the original test files.
30 files representing various talkers and languages are used for each speech test condition, and the average MOS-LQO scores are reported. In addition, 30 mixed/music files are used for the non-speech test conditions as decribed in Clause B.3.2.
The scenario a) is considered the reference score. For the three other scenarios (b, c and d), the difference in MOS-LQO of a) are then computed:
-	a) - b)
-	a) - c)
-	a) - d)
The difference a) - b) assesses the encoder + decoder floating-point implementation, the difference a) - c) assesses the decoder implementation and a) - d) assesses the encoder implementation.
Figures B.4, B.5, and B.6 represent the flow diagram to obtain the MOS-LQO in the three scenarios.

Figure B.4: Flow diagram to obtain the MOS-LQO for floating-point Encoder under Test and floating-point Decoder under Test

Figure B.5: Flow diagram to obtain the MOS-LQO for 3GPP fixed-point Encoder and floating-point Decoder under Test

Figure B.6: Flow diagram to obtain the MOS-LQO for floating-point Encoder under Test and 3GPP fixed-point decoder
[bookmark: _Toc524274785]B.3.2 Test Files
The test files are based on ITU-T P.501 [17] Annex B & C. 30 files representing various talkers and languages. The files are listed below:
 an1f1s1 => AnnexC//P501_C_chinese_f1_FB_48k.wav
 an1f1s2 => AnnexC//P501_C_chinese_f2_FB_48k.wav
 an1f1s3 => Speech and Noise Signals Clause B/Dutch_FB_clause_B.3.2//female 1.wav
 an1f1s4 => Speech and Noise Signals Clause B/Dutch_FB_clause_B.3.2//female 2.wav
 an1f1s5 => AnnexC//P501_C_english_f1_FB_48k.wav

 an1f2s1 => AnnexC//P501_C_english_f2_FB_48k.wav
 an1f2s2 => AnnexC//P501_C_finnish_f1_FB_48k.wav
 an1f2s3 => AnnexC//P501_C_finnish_f2_FB_48k.wav
 an1f2s4 => AnnexC//P501_C_french_f1_FB_48k.wav
 an1f2s5 => AnnexC//P501_C_french_f2_FB_48k.wav

 an1f3s1 => AnnexC//P501_C_german_f1_FB_48k.wav
 an1f3s2 => AnnexC//P501_C_german_f2_FB_48k.wav
 an1f3s3 => AnnexC//P501_C_italian_f1_FB_48k.wav
 an1f3s4 => AnnexC//P501_C_italian_f2_FB_48k.wav
 an1f3s5 => AnnexC//P501_C_japanese_f1_FB_48k.wav

 an1m1s1 => AnnexC//P501_C_chinese_m1_FB_48k.wav
 an1m1s2 => AnnexC//P501_C_chinese_m2_FB_48k.wav
 an1m1s3 => Speech and Noise Signals Clause B/Dutch_FB_clause_B.3.2//male 1.wav
 an1m1s4 => Speech and Noise Signals Clause B/Dutch_FB_clause_B.3.2//male 2.wav
 an1m1s5 => AnnexC//P501_C_english_m1_FB_48k.wav

 an1m2s1 => AnnexC//P501_C_english_m2_FB_48k.wav
 an1m2s2 => AnnexC//P501_C_finnish_m1_FB_48k.wav
 an1m2s3 => AnnexC//P501_C_finnish_m2_FB_48k.wav
 an1m2s4 => AnnexC//P501_C_french_m1_FB_48k.wav
 an1m2s5 => AnnexC//P501_C_french_m2_FB_48k.wav

 an1m3s1 => AnnexC//P501_C_german_m1_FB_48k.wav
 an1m3s2 => AnnexC//P501_C_german_m2_FB_48k.wav
 an1m3s3 => AnnexC//P501_C_italian_m1_FB_48k.wav
 an1m3s4 => AnnexC//P501_C_italian_m2_FB_48k.wav
 an1m3s5 => AnnexC//P501_C_japanese_m1_FB_48k.wav

The noisy speech items are created from the clean speech items above and mixed with car, street, or office noise.
The mixed content and music items are selected from [13], and [14] as follows:
 an1a1s1 => samples 840000:1104000 from {26444}/stv48c.INP,
 an1a1s2 => samples 1260000:1404288 from{26444}/stv48c.INP,
 an1a1s3 => samples 1611888:1793270 from {26444}/stv48c.INP,
 an1a1s4 => samples 1793270:2057040 from {26444}/stv48c.INP,
 an1a1s5 => left channel from {26406}/guitar_cymbals.wav,

 an1a2s1 => left channel from {26274}/m_cl_x_1_org.wav,
 an1a2s2 => left channel from {26274}/m_cl_x_2_org.wav,
 an1a2s3 => left channel from {26274}/m_ot_x_5_org.wav,
 an1a2s4 => left channel from {26274}/m_ot_x_8_org.wav,
 an1a2s5 => left channel from {26274}/m_si_x_3_org.wav,

 an1a3s1 => left channel from {26274}/m_ch_x_1_org.wav,
 an1a3s2 => left channel from {26274}/m_po_x_2_org.wav,
 an1a3s3 => left channel from {26274}/m_ot_x_4_org.wav,
 an1a3s4 => left channel from {26274}/m_ot_x_9_org.wav,
 an1a3s5 => left channel from {26274}/m_po_x_3_org.wav,

 an1a4s1 => left channel from {26274}/m_ot_x_6_org.wav,
 an1a4s2 => left channel from {26274}/m_ot_x_3_org.wav,
 an1a4s3 => left channel from {26274}/m_ot_x_a_org.wav,
 an1a4s4 => left channel from {26274}/m_ot_x_b.org.wav,
 an1a4s5 => left channel from {26406}/hihat.wav,

 an1a5s1 => left channel from {26274}/m_ot_x_7_org.wav,
 an1a5s2 => left channel from {26274}/m_po_x_1_org.wav,
 an1a5s3 => left channel from {26274}/m_ot_x_2_org.wav,
 an1a5s4 => left channel from {26274}/m_po_x_4_org.wav,
 an1a5s5 => left channel from {26274}/m_po_x_5_org.wav,

 an1a6s1 => left channel from {26274}/m_po_x_6_org.wav,
 an1a6s2 => left channel from {26274}/m_po_x_3_org.wav,
 an1a6s3 => left channel from {26274}/m_si_x_1_org.wav,
 an1a6s4 => left channel from {26274}/m_si_x_2_org.wav,
 an1a6s5 => left channel from {26274}/m_vo_x_1_org.wav
B.3.3 Test Conditions
The differences are computed for various test conditions:
-	All the codec modes of EVS
-	All the bandwidths of EVS
-	All the bit-rates of EVS, including bit-rate switching
-	DTX ON and OFF
-	Various levels: -26 dB, -36 dB, -16 dB
-	Various noise conditions
-	Various impairment conditions
The files have been processed according to EVS-7c (EVS processing plan) for the various test conditions [6]. In all, 941 test conditions are assessed.
The processing generates for all 941 test conditions from the items detailed in clause B.3.2, roughly 225000 seconds (or ~62 hours) of PCM data, which shall be assessed with P.863 [16] according to version 2 to generate the average MOS-LQO differences per test condition.
NOTE: 	Implementers are advised to ensure that sufficient free storage space is available as the processing may require up to 100 GB of storage. Processing and P.863 [16] evaluation may also require significant amounts of time.
[bookmark: _Toc524274787]B.3.4 Thresholds and Criteria
From the MOS-LQO differences of the test condition, the average, 95%, 99% and Maximum are computed for all bandwidths combined, as well as for each set of bandwidth condition. The number of test condition for each bandwidth and the total are summarized in Table B.6.
Table B.6: Number of test conditions per bandwidth
	Bandwidth
	NB
	WB
	WBIO
	SWB
	FB
	All

	Number
	136
	236
	216
	192
	161
	941

An implementation will be considered passing the MOS-LQO verification if all the average, 95 percentile, 99 percentile and maximum MOS-LQO differences are below the thresholds proposed in Table B.7 for all bandwidths.
Table B.7: Thresholds for MOS_LQO difference
	All
	Average
	95%
	99%
	Max

	A-B
	0.002
	0.05
	0.08
	0.14

	A-C
	0.002
	0.02
	0.04
	0.08

	A-D
	0.003
	0.05
	0.08
	0.14

	NB
	Average
	95%
	99%
	Max

	A-B
	0.01
	0.07
	0.1
	0.12

	A-C
	0.001
	0.02
	0.03
	0.04

	A-D
	0.011
	0.07
	0.1
	0.11

	WB
	Average
	95%
	99%
	Max

	A-B
	0.002
	0.05
	0.07
	0.13

	A-C
	0.001
	0.02
	0.04
	0.06

	A-D
	0.003
	0.05
	0.09
	0.12

	WBIO
	Average
	95%
	99%
	Max

	A-B
	0.005
	0.02
	0.05
	0.08

	A-C
	0.002
	0.01
	0.03
	0.06

	A-D
	0.004
	0.01
	0.03
	0.08

	SWB
	Average
	95%
	99%
	Max

	A-B
	0.003
	0.05
	0.09
	0.14

	A-C
	0.003
	0.03
	0.04
	0.05

	A-D
	0.002
	0.05
	0.08
	0.14

	FB
	Average
	95%
	99%
	Max

	A-B
	0.007
	0.05
	0.07
	0.12

	A-C
	0.004
	0.03
	0.05
	0.08

	A-D
	0.005
	0.05
	0.08
	0.13

B.4 Reference Implementations
To get the snr and mld corridor as well as the thresholds values for the MOS-LQO, as set of references implementations were used. Table B.8 list the implementations used for references, including compiler, target platform, compiler setting. These implementations are based on mainstream compilers and platforms and used the latest version of EVS code defined in TS 26.443 [8]. These implementations are not bit-exact between themselves or with the 3GPP reference implementation (Visual Studio 2018, Release mode).
Table B.8: List of Reference Implementations
	Name
	Platform
	Compiler
	Optimization
	OS

	aarch64_gnu-gcc-8_-armv8_O2
	ARMv8
	GCC v8
	O2
	Linux

	aarch64_gnu-gcc-8_armv8_O3
	ARMv8
	GCC v8
	O3
	Linux

	clang-6_armv8 _O2
	ARMv8
	Clang v6
	O2 with FMA
	Linux

	clang-6_armv8_O3
	ARMv8
	Clang v6
	O3 with FMA
	Linux

	clang-6.0_x86_64_O2
	x86_64
	Clang v6
	O2
	Linux

	gcc-7_i686_-O0
	i686
	GCC v7
	O0
	Linux

	gcc-7_i686_-O1
	i686
	GCC v7
	O1
	Linux

	gcc-7_i686_-O2
	i686
	GCC v7
	O2
	Linux

	gcc-7_i686_-O3
	i686
	GCC v7
	O3
	Linux

	icc-19_x86_64_avx2
	x86_64
	ICC v19
	O3 with FMA
	Linux

	End of Document

image1.png
TS 26.443
(Floating-point code)

TS 26402
(Fixec-point code]

[wmosicotest

Al tests passing

conformant

image2.emf
Bitstreams (*.cod)

Ref Decoder

Decoder under Test

Tool(s)

Reference signal

Signal under Test

Microsoft_Visio-Zeichnung.vsdx
Bitstreams (*.cod)
Ref Decoder
Decoder under Test
Tool(s)
Reference signal
Signal under Test

image3.emf
For All frames

RMS < Trms

Compute RMS error

Frame pass

Yes

Compute SNR No

SNR > Tsnr

Yes

Compute SD

SD < Tsd

No

Yes

Frame Fail

No

Microsoft_Visio-Zeichnung1.vsdx
For All frames
RMS < Trms
Compute RMS error
Frame pass
Yes
Compute SNR
No
SNR > Tsnr
Yes
Compute SD
SD < Tsd
No
Yes
Frame Fail
No

image4.emf
Reference wavefile

(TS 26.444)

3GPP Float Encoder

Encoder Under Test

3GPP Float Decoder

3GPP Float Decoder

Loudness Difference

MLD

Signal under Test

Reference signal

image5.emf
Fixed-Point Decoder Fixed-Point Encoder

Encoder under Test

P.863

Reference wavefile

P.863

MOS-LQO(FX/FX)

MOS-LQO(FL/FL)

Decoder under Test

Microsoft_Visio-Zeichnung2.vsdx
Fixed-Point Decoder
Fixed-Point Encoder
Encoder under Test
P.863
Reference wavefile
P.863
MOS-LQO(FX/FX)
MOS-LQO(FL/FL)

Decoder under Test

image6.emf
Fixed-Point Encoder

Fixed-Point Decoder

Decoder under Test

P.863

Reference wavefile

P.863

MOS-LQO(FX/FX)

MOS-LQO(FX/FL)

Microsoft_Visio-Zeichnung3.vsdx
Fixed-Point Encoder
Fixed-Point Decoder
Decoder under Test
P.863
Reference wavefile
P.863
MOS-LQO(FX/FX)
MOS-LQO(FX/FL)

image7.emf
Fixed-Point Decoder Fixed-Point Encoder

Encoder under Test

P.863

Reference wavefile

P.863

MOS-LQO(FX/FX)

MOS-LQO(FL/FX)

Fixed-Point Decoder

Microsoft_Visio-Zeichnung4.vsdx
Fixed-Point Decoder
Fixed-Point Encoder
Encoder under Test
P.863
Reference wavefile
P.863
MOS-LQO(FX/FX)
MOS-LQO(FL/FX)

Fixed-Point Decoder

