3GPP TSG SA WG3 (Security) Meeting #75
S3-140895
12-16 May 2014 Sapporo (Japan)

Source:
Vodafone
Title:
Addition of Solution #2.7 into ProSe TS
Document for:
Approval
Agenda Item:
7.11
Work Item / Release:
PROSE/REL12
Abstract of the contribution: The following contribution proposes to agree the addition of the solution #2.7 into the ProSe Technical Specification.
The following contribution proposes to agree the addition of the solution #2.7 into the ProSe Technical Specification. This version also includes the latest additions brought in S3-140894.
*************************************** Start of Addition to TS ************************************
X
Security for proximity request authentication and authorization

X.1
General

The following solution addresses the key issue #2.4.

The ProSe Function of two UEs may belong to different PLMNs and, according to the current version of [20], the application server is the entity which discloses the EPUID of a particular target UE to a ProSe Function so that it can request to the Prose Function managing that target UE the sending of its location information for a particular period of time.

However, no mechanism currently exist to ensure that the ProSe Function requesting the location information of that particular target UE has genuinely been requested by the UE itself, not the ProSe UE.

The risk is that it would take just one Proximity Request from the UE for the ProSe Function to actually keep a record of [ALUID_B, EPUID_B, PFID_B] mapping and have the capability to later send a proximity request (step 4 of Proximity Request procedure in clause 5.5.5 of [20]) although the UE didn’t actually send a proximity request at all (step 4 of Proximity Request procedure in section 5.5.5 of [20]). This could lead to massive surveillance of users by other PLMNs that may be very difficult to detect by the PLMN which serves particular ProSe UEs.

[image: image1.emf]UE AUE BSLP ASLP BProSe Function AApp ServerProSe Function BHSS

1. Proximity Request

(EPUID_A, Application ID, ALUID_A,ALUID_B,

window,Range, A’s loc, [WLAN ind.])

2. Map Request

(ALUID_A, ALUID_B)

3. Map Response

(EPUID_B, PFID_B)

4. Proximity Request(EPUID_B,EPUID_A,

window, A’s loc, [WLAN ind.])

7a. LCS Location Reporting Request (B)

7b. Proxmity Request Ack ([WL

LID_B],

B’s loc)

8a. LCS Location Reporting

Request (A)

8b. Proximity Request Ack

6. Proximity Request Validation ()

5a. Location

Request (B)

5b. Proximity Request Reject (Cause)

5c. Proximity Request Reject (Cause)

Figure X.1-1: extract from 3GPP TS 23.303 [20], Proximity Request Procedure (clause 5.5.5)

X.2

UE-signed proximity request

UE A signs all the proximity requests sent to its ProSe Function A over the PC3 interface.

The UE’s signature key can be provided by the application server over the PC1 interface. Or the UE could generate a signature and verification key pair, securely stores the signature key in its memory and export the verification key to the Application Server.

The UE’s verification key is provided to ProSe Function B by the Application Server over the PC2 interface. ProSe Function B is assured of the authenticity of the proximity request received from ProSe Function A over the PC6 interface by verifying a cryptographic signature with a verification key from the U.E.

The procedure below further defines the Proximity Request procedure in clause 5.5.5 of [20] to support authenticity of the request.

[image: image2.emf]UE AProSe Function AApp ServerProSe Function B

1. Proximity Request

(EPUID_A, Application ID, ALUID_A,ALUID_B,

window,Range, A’s loc, [WLAN ind.], timestamp,

UEA_signature(timestamp, EPUID_A, ALUID_A,ALUID_B))

2. Map Request

(ALUID_A, ALUID_B, timestamp,

UEA_signature(timestamp,

EPUID_A, ALUID_A,ALUID_B))

3. Map Response

(EPUID_B, PFID_B,

[CertKey_ALUID_A])

4. Proximity Request(EPUID_B,EPUID_A,

window, A’s loc, [WLAN ind.], ALUID_A, ALUID_B, timestamp,

Application ID, UEA_signature(timestamp, EPUID_A, ALUID_A,

ALUID_B),[CertKey_ALUID_A])

6. VerifKey Response

(VerifKey_ALUID_A)

5. VerifKey Request

(ALUID_A)

0. Signature Key and Verification Key establishment

Figure X.2-1: UE-signed Proximity Request

0. UE A and the Application Server perform a key establishment ceremony, which results in having a signature key in UE_A and a verification key in the Application Server. The communication between UE A and the application shall be end-to-end secured over the PC1 interface.

1. UE A sends as part of the Proximity Request the following additional data: a signature UEA_signature of the cryptographic hash of the concatenation of the EPUID_A, the ALUID_A, the ALUID_B and a timestamp value to ProSe Function A. Theses shall therefore be transmitted to the Application Server and the ProSe function B so that both may verify the cryptographic signature with the UE’s verification key.

2. ProSe Function A sends as part of the Map Request message the following additional data: the UEA_signature and the timestamp provided by UE A to the Application Server.

3. The Application Server verifies the UEA_signature with the verification key of ALUID_A. An error message is returned if the verification fails. If the verification is successful, the Application Server may optionally add in the Map Response the associated certificate of ALUID_A’s verification key.

4. ProSe Function A sends as part of the Proximity Request to ProSe Function B the following additional data: the UEA_signature, ALUID_A, ALUID_B and the timestamp, the Application ID and optionally the ALUID_A’s certificate.

5. If ALUID_A’s certificate or verification key wasn’t part of the Proximity request, ProSe Function B sends a Verification Key fetching requests to Application Server (identifiable from its Application ID) ALUID_A’s verification key.

6. The Application Server returns the verification key of ALUID_A.

7. If the verification of UEA_signature is successful then the procedure continues the procedure from step 5 in clause 5.5.5 of 3GPP TS 23.303 [20].

X.3

Application Server-signed proximity request

UE A doesn’t sign the proximity requests sent to its ProSe Function A, but trusts the Application Server to control the authorization of the proximity request sent on its behalf.

The authorization criteria can be based on detection mechanisms of very high volume of incoming proximity requests from a ProSe Function that doesn’t match with the frequency usage of the ProSe Application by the users, or it can be based on a presence detection mechanism over the PC1 interface.

ProSe Function A requests an authorization to the Application Server for each proximity request it shall transmit over the PC2 interface. The Application Server returns parameter which specifies which operations are authorized (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…)

ProSe Function B is assured of the authenticity of the proximity request received from ProSe Function A by verifying the signature with a verification key from the Application server.

The token verification key is fetched over the PC2 interface between the ProSe Function B and the Application Server.

The procedure below further defines the Proximity Request procedure in clause 5.5.5 of [20] to support authenticity of the request.

[image: image3.emf]UE AProSe Function AApp ServerProSe Function B

1. Proximity Request

(EPUID_A, Application ID, ALUID_A,ALUID_B,

window,Range, A’s loc, [WLAN ind.])

2. Map Request

(ALUID_A, ALUID_B)

3. Map Response

(EPUID_B, PFID_B, AS_signature(timestamp,

ALUID_A,ALUID_B, Authorized_operations),

timestamp,

Authorized_operations,[CertKey_AS])

4. Proximity Request(EPUID_B,EPUID_A,

window, A’s loc, [WLAN ind.], ALUID_A, ALUID_B, Application ID, timestamp,

AS_signature(timestamp, ALUID_A, ALUID_B,

Authorized_operations),authorized_operations, [CertKey_AS])

6. VerifKey Response

(VerifKey_Application_ID)

5. VerifKey Request

(Application ID)

Figure 6.2.7.3-1: Application Server-signed Proximity Request

1. Same as Step 1 of procedure in clause 5.5.5 of [20]

2. Same as Step 2 of procedure in clause 5.5.5 of [20]

3. The Application Server returns as part of the Map Response following additional data: the authorized operations (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…), a timestamp, the signature AS_signature of the cryptographic hash of the concatenation of the ALUID_A, the ALUID_B, the authorized operations and the timestamp value, and optionally the associated certificate CertKey_AS of Application Server’s verification key

4. ProSe Function A sends as part of the Proximity Request to ProSe Function B the following additional data: the AS_signature, ALUID_A, ALUID_B, the timestamp, the authorized operations, the Application ID and optionally the CertKey_AS’s certificate.

5. If the CertKey_AS’s certificate wasn’t part of the Proximity request, or that either the CertKey_AS’s certificate or verification key wasn’t stored in internal memory, then ProSe Function B sends a Verification Key fetching requests to Application Server’s verification key (identifiable with the Application ID).

6. The Application Server returns the verification key.

7. If the verification of signature from the Application Server is successful then the procedure continues the procedure from step 5 in clause 5.5.5 of [20].

X.4
Proximity request digital signature algorithms and key strenght

The cryptographic length of the signing asymmetric keys shall have at least a key strength equivalent to a 128-bits symmetric key. The following digital signature algorithms may be used:

· RSA as specified in FIPS 186-4 [aa]: the minimum key length shall be 3072 bits. The minimal size for the hash function shall at least be SHA-256 which shall be used as specified by NIST [ff].

· DSA as specified in FIPS 186-4 [aa]: the minimum key length shall be 256 bits.

· ECDSA as specified in BSI TR-03111 [bb]: the minimum key length shall be 256 bits, the elliptic curve domain parameters shall be selected among those available in RFC 5639 [cc]. The corresponding hash function shall be chosen depending on the previously selected elliptic curve domain parameters (cf. clause 5 in RFC 5639 [cc]).

X.5
Proximity request hash input format
The input to the hash function shall be encoded as specified in Annex B.1 of TS 33.220 [6] and shall consist of the concatenation of proximity request parameters and their respective lengths:

· FC = TBD

· P0 = EPUID_A

· L0 = Length of P0 value

· P1 = ALUID_A

· L1 = Length of P1 value

· P2 = ALUID_B

· L2 = Length of P2 value

· P3 = Timestamp. It shall use the date-time format as defined in clause 5.6 of RFC 3339 [dd] and shall be encoded according to Annex B.2.1.2 of TS 33.220 [6]

· L3 = Length of P3 value

X.5
Verification key format

The following shall be supported by the Application Server and the ProSe function:

For the UE-signed proximity request case, the verification key of the initiating ProSe UE is directly transmitted from the Application server to the ProSe function of the target UE.

For the Application Server-signed proximity request case, the verification key of the Application Server is directly transmitted from the Application server to the ProSe function of the target UE.

The verification key shall be formatted like the “Subject Public Key Info” element of a X.509 certificate. The “Subject Public Key Info” is specified in clause 4.1.2.7 of RFC 5280 [ee]. RFC 5639 [cc] shall also be supported in order to include ECDSA with Brainpool elliptic curve domain parameters.

X.6
Profile for Application Server and Application UE certificate

The following may be supported by the Application Server and the ProSe function:

For the UE-signed proximity request case, the certificate is transmitted from the Application Server over the requesting ProSe function of the initiating ProSe UE to the ProSe function of the target ProSe UE. It may also be transmitted

It is optional to use certificates for the verification of the proximity request signature. If however used, the following shall apply:

Certificates used for authentication of the Proximity Request shall meet the certificate profiles given in TS 33.310 [19] as follows: clause 6.1.3, for SEG certificates shall apply to ALUID-associated certificates, and clause 6.1.4 for SEG CA certificates shall apply to any CA certificates used in a chain to validate the certificates, with the following additions and exceptions:

-
Mandatory critical key usage: only digitalSignature shall be set

*************************************** End of Addition to TS ************************************

*************************************** Start of changes ************************************
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.278: "Service requirements for the Evolved Packet System (EPS) ".

[3]
3GPP TS 22.115: "Charging Requirements".

[4]
3GPP TR 23.703: "Study on architecture enhancements to support Proximity Services (ProSe)".

[5]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[6]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".

[7]
3GPP TS 33.223: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA) Push function".

[8]
ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications (Release 9)

[9]
ETSI TS 102 226: "Smart cards; Remote APDU structure for UICC based applications (Release 6)"

[10]
3GPP TS 31.115: "Remote APDU Structure for (U)SIM Toolkit applications".
[11]
3GPP TS 31.116: "Remote APDU Structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications".

[12]
IETF RFC 6509: "MIKEY-SAKKE: Sakai-Kasahara Key Encryption in Multimedia Internet KEYing (MIKEY)".

[13]
3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification".

[14]
IETF RFC 6509: "MIKEY: Multimedia Internet KEYing".

[15]
IETF RFC 6507: "Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI)".

[16]
3GPP TS 33.328: "IP Multimedia Subsystem (IMS) media plane security".

[17]
IETF RFC 6043: "MIKEY-TICKET: Ticket-Based Modes of Key Distribution in Multimedia Internet KEYing (MIKEY)".

[18]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".
[19]
3GPP TS 33.310: "Network Domain Security (NDS); Authentication Framework (AF)".
[20]
3GPP TS 23.303: "Proximity based Services; Stage 2".

[21]
3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".
[aa]
NIST FIPS 186-4: "Digital Signature Standard (DSS)"
[bb]
BSI TR-03111: "Technical Guideline TR-03111; Elliptic Curve Cryptography"

[cc]
IETF RFC 5639: "Elliptic Curve Cryptography (ECC) Brainpool Standard; Curves and Curve Generation"

[dd]
IETF RFC 3339: "Date and Time on the Internet: Timestamps"

[ee]
IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"

[ff]
NIST FIPS 180-4: "Secure Hash Standard (SHS)"
*************************************** End of changes ************************************

_1460791033.vsd
Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim pointer at speaker.

UE A

ProSe Function A

App Server

ProSe Function B

1. Proximity Request
(EPUID_A, Application ID, ALUID_A, ALUID_B,
window, Range, A’s loc, [WLAN ind.], timestamp, UEA_signature(timestamp, EPUID_A, ALUID_A, ALUID_B))

