3GPP TSG SA WG3 (Security) Meeting #73
S3-1301082
11-15 November 2013; San Francisco (US)
revision of S3-13abcd
Source:
Gemalto, Ericsson, Morpho Cards
Title:
SSO TR 33.895: GBA_U-based solution with user consent
Document for:
Approval

Agenda Item:
8.1
Work Item / Release:
SSO / Rel-12
Abstract of the contribution:

This contribution aims to complete the description of GBA_U-based solution in the scope of GBA and SSO with user consent.
1. Introduction
3GPP SA3 TR 33.895 contains a section 8.4 on “Using user consent for GBA and SSO” where the GBA_U-based solution has to be completed. This contribution proposes a solution to address the sub-section 8.4.2.3.
2. Analysis

Two scenarios are considered for GBA_U-based solution.

2.1 Scenario-1 with local user authentication performed by the GAA server

[image: image1.emf]7. -Derive Ks_Ext/Int_NAF-UI

= KDF(Ks, Nonce-UI, ...)

-Stores Ks_int_NAF-UI

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth

challenge, Nonce-UI)

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication

resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI,

...)

13. Derive Ks_ext/int_NAF-UI

= KDF(Ks, Nonce-UI, ...)

14. NAF key response (Ks_ext/

int_NAF-UI)

15. Verify auth resp with

Ks_ext_NAF-UI

16. Ok

3. Get NAF keys (Nonce-UI)

6. GBA_U NAF derivation

procedure

(..., Nonce-UI)

8. Sends(Ks_ext_NAF-UI)

Figure-1: scenario_1

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the GAA server requests for user’s authorization (e.g. a PIN) to derive the NAF keys for this GAA client.

5. The user provides authorization (e.g. PIN).
6. If the user authorization was given, e.g. the provided PIN is correct, the GAA server in the terminal sends GBA_U NAF Derivation procedure to the UICC application including the NonceUI .
7. The UICC application derives NAF keys using NonceUI as an input in the following way Ks_ext/int_NAF-UI = KDF(Ks, NonceUI , …), where Ks_ext/int_NAF-UI derivation takes the same input as Ks_ext/int_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6. The UICC stores Ks_int_NAF-UI.

8. The UICC sends back to the GAA server Ks_ext_NAF-UI

9. The GAA server provides Ks_ext_NAF-UI to the GAA client.

10. The GAA client uses the Ks_ext_NAF-UI as the key to calculate the authentication response for the Ua application request.

11. The GAA client sends the Ua application request to the NAF.

12. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

13. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_ext/int_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

14. The BSF sends Zn response with Ks_ext/int_NAF-UI to the NAF.

15. The NAF uses the received Ks_ext_NAF-UI to verify authentication response received from the GAA client in step 11.

16. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

 The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_U to illustrate how the mechanism works, and it should be noted that the derived NAF keys could be used to protect in principle any Ua application protocol.

2.2 Scenario-2 with local user authentication performed by the UICC

[image: image2.emf]7. –Verifies that user

authorization is given,

and derive Ks_Ext/Int_NAF-

UI = KDF(Ks, Nonce-UI, ...)

-Stores Ks_int_NAF-UI

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth

challenge, Nonce-UI)

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication

resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI,

...)

13. Derive Ks_ext/int_NAF-UI

= KDF(Ks, Nonce-UI, ...)

14. NAF key response (Ks_ext/

int_NAF-UI)

15. Verify auth resp with

Ks_ext/int_NAF-UI

16. Ok

3. Get NAF keys (Nonce-UI)

6. GBA_U NAF derivation procedure

(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends(Ks_ext_NAF-UI)

Figure-2: scenario_2

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the GAA server requests for user’s authorization (e.g. a PIN) to derive the NAF keys for this GAA client.

5. The user provides authorization (e.g. PIN).

6. The GAA server in the terminal sends GBA_U NAF Derivation procedure to the UICC application including as additional parameters the NonceUI and hash value of the user’s authorization (e.g. a PIN) concatenated to the NonceUI.
7. The UICC verifies that the user is authorized, e.g. the provided PIN is correct by retrieving the user authorization value already stored on the UICC to compute the corresponding Hash value (Nonce-UI || user authz) and compare it with hash value sent by the GAA server as input data of the GBA_U NAF derivation procedure. If the user authorization was given, the UICC application derives NAF keys using NonceUI as an input in the following way Ks_ext/int_NAF-UI = KDF(Ks, NonceUI , …), where Ks_ext/int_NAF-UI derivation takes the same input as Ks_ext/int_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6. The UICC stores Ks_int_NAF-UI.

8. The UICC sends back to the GAA server Ks_ext_NAF-UI

9. The GAA server provides Ks_ext_NAF-UI to the GAA client.

10. The GAA client uses the Ks_ext_NAF-UI as the key to calculate the authentication response for the Ua application request.

11. The GAA client sends the Ua application request to the NAF.

12. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

13. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_ext/int_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

14. The BSF sends Zn response with Ks_ext/int_NAF-UI to the NAF.

15. The NAF uses the received Ks_ext_NAF-UI to verify authentication response received from the GAA client in step 11.

16. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

 The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_U to illustrate how the mechanism works, and it should be noted that the derived NAF keys could be used to protect in principle any Ua application protocol.

Additional information
Step_6:

In this scenario, the GAA Server shall provide the user’s authorization to the UICC. The user authorization is transmitted in the GBA_U NAF Derivation procedure in addition to the NonceUI.
Step_7

To verify that the user authorization is given, the UICC application retrieves the user authorization reference value stored on the UICC, computes corresponding Hash value (Nonce-UI || user authz) and compares it with hash value sent by the GAA server as input data of the GBA_U NAF derivation procedure.
The user authorization reference value is stored as TLV (Tag Length Value) object in a file of the UICC protected by Access Conditions.The usage of TLV object lets open the type and format of the user authorization value (e.g. PIN) that could be chosen. The user authorization reference value could be set by the user and stored in the UICC by the GAA server.
2.3 Conclusion

For all solutions, GBA_ME-based or GBA_U-based (scenarios 1 and 2), the derivation of Ks_(ext/int)_NAF-UI requires to add new input parameter(s) compared to the derivation of Ks_(ext/int)_NAF as described in 3GPP TS 33.220.
The scenario_2 is preferred for the GBA_U-based solution since the local user authentication is performed by the UICC. The derivation of the keys Ks_ext/int_NAF-UI shall take place only after a successful authentication of the user. Consequently, for security reasons, the local user authentication should be performed within the UICC and should not be delegated to the GAA server. Moreover, with scenario_2, the GBA_ME-based solution and GBA-U-based solution have a similar behavior to obtain Ks_(ext/int)_NAF-UI since the user authorization check is part of the NAF-UI keys derivation procedure.

3. pseudo-CR to 3GPP TR 33.895

************************ START of CHANGE *************************

8.4
Using user consent for GBA and SSO

8.4.1
Rationale for solution

This solution is based on user giving her consent, or authorization, for the GAA server in terminal to derive NAF keys for a specific GAA client. The consent is achieved by a local user authentication (e.g. a PIN) between the user and the User Equipment. The intention of the local user authentication is to confirm the presence of the authorized user according to SA1 requirements in TS 22. 101 [11] and thereby avoid that GBA-based authentication would be used to access services in the background without the user noticing it, and ensure that only authorized persons are able to use GBA-based authentication.

The solution enables confirming that the authorized user is present and gives consent for using GBA keys for an application. Using a nonce approach ensures that the NAF keys are always fresh and not cached in the GAA client.

8.4.2
Solution description

8.4.2.1
General

The solution uses the concepts defined in TR 33.905 [12] "Recommendations for trusted open platforms", where the realization of GBA functionality in a trusted open terminal platform is divided into so called GAA server and GAA client. The GAA server in the terminal is the counterpart of the BSF, and the GAA client in the terminal is the counterpart of the NAF. This is assumed to be a typical division in a terminal implementing GBA. Typically the terminal internal interfaces or APIs are not standardized, and it is not the intention here either. The internals of a terminal are shown in order to explain the solution.

The flow is very similar to the regular GBA flow where the GAA client in the terminal contacts the NAF in order to access a service. The NAF then indicates to the GAA client to use GBA-based keys to secure the Ua application protocol, but in addition the NAF also requires that the presence of the authorized user needs to be confirmed (by sending NonceUI). "UI" stands for "User Involvement". When the GAA client requests NAF keys from the GAA server, the GAA client also consequently requests local user authentication.

The exact mechanism for local user authentication does not need to be specified. It can be for example a PIN code which the user has defined for the GAA server. It should be noted that it is not the same as the PIN to activate the USIM application.

8.4.2.2
GBA_ME-based solution

By local user authentication, the GAA server can locally confirm that the authorized user is present. For instance, the GAA server may present a dialog box to the user asking to authorize that application "Bank.com" can use GBA authentication.

If and only if the GAA server has locally authenticated the user, the GAA server derives new type of NAF keys which are bound to the ongoing transaction by taking the NonceUI in the NAF key derivation. It should be noted that the result of the local user authentication (e.g. a PIN) is not taken into the NAF key derivation. Instead, the GAA server is a trusted element in the terminal which, in addition to performing bootstrapping and deriving NAF keys for applications, is trusted to perform local user authentication when the GAA client indicates that local user authentication is needed. If the GAA client does not indicate that local user authentication is needed, the GAA server derives the regular NAF keys. This approach avoids the burden and complexity of syncing the user authentication credentials, e.g. a PIN, with the network.

The GAA client uses the received NAF keys for authentication in the Ua application protocol. The NAF requests the NAF keys from the BSF and includes the NonceUI in the Zn request and gets the same NAF keys as the GAA client did.

[image: image3.emf]6. Derive Ks_NAF-UI =

KDF(Ks, Nonce-UI, ...)

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

3. Get NAF keys (Nonce-UI)

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth

challenge, Nonce-UI)

7. Response (Ks_NAF-UI)

8. Calculate authentication

resp with Ks_NAF-UI

9. Ua application request (auth resp)

10. NAF key request (B, TID, Nonce-UI,

...)

11. Derive Ks_NAF-UI =

KDF(Ks, Nonce-UI, ...)

12. NAF key response (Ks_NAF-UI)

13. Verify auth resp with

Ks_NAF-UI

14. Ok

Figure 8.4.2.2.-1: Using User consent for GBA_ME

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the GAA server requests for user’s authorization (e.g. a PIN) to derive the NAF keys for this GAA client.

5. The user provides authorization (e.g. PIN).

6. If the user authorization was given, e.g. the provided PIN is correct, the GAA server in the terminal derives NAF keys using NonceUI as an input in the following way Ks_NAF-UI = KDF(Ks, NonceUI , …), where Ks_NAF-UI derivation takes the same input as Ks_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6.

7. The GAA server provides Ks_NAF-UI to the GAA client.

8. The GAA client uses the Ks_NAF-UI as the key to calculate the authentication response for the Ua application request.

9. The GAA client sends the Ua application request to the NAF.

10. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

11. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

12. The BSF sends Zn response with Ks_NAF-UI to the NAF.

13. The NAF uses the received Ks_NAF-UI to verify authentication response received from the GAA client in step 9.

14. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_ME to illustrate how the mechanism works, and it should be noted that the derived NAF keys could be used to protect in principle any Ua application protocol.

8.4.2.3
GBA_U-based solution

By local user authentication, the UICC can locally confirm that the authorized user is present. For instance, the GAA server may present a dialog box to the user asking to authorize that application "Bank.com" can use GBA authentication. The GAA server computes and sends to the UICC the hash of the NonceUI concatenated with the user answer.
If and only if the UICC application has locally authenticated the user, the UICC derives new type of NAF keys which are bound to the ongoing transaction by taking the NonceUI in the NAF key derivation. It should be noted that the result of the local user authentication (e.g. a PIN) is not taken into the NAF key derivation. Instead, the UICC is a tamper resistant device in the User Equipment which, in addition to performing bootstrapping and deriving NAF keys for applications, is trusted to perform local user authentication when the GAA client indicates that local user authentication is needed. If the GAA client does not indicate that local user authentication is needed, the UICC derives the regular NAF keys. This approach avoids the burden and complexity of the user authentication credentials synchronization, e.g. a PIN, with the network.
The GAA client uses the received NAF keys for authentication in the Ua application protocol. The NAF requests the NAF keys from the BSF and includes the NonceUI in the Zn request and gets the same NAF keys as the GAA client did.

[image: image4.emf]7. –Verifies that user

authorization is given,

and derive Ks_Ext/Int_NAF-

UI = KDF(Ks, Nonce-UI, ...)

-Stores Ks_int_NAF-UI

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth

challenge, Nonce-UI)

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication

resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI,

...)

13. Derive Ks_ext/int_NAF-UI

= KDF(Ks, Nonce-UI, ...)

14. NAF key response (Ks_ext/

int_NAF-UI)

15. Verify auth resp with

Ks_ext/int_NAF-UI

16. Ok

3. Get NAF keys (Nonce-UI)

6. GBA_U NAF derivation procedure

(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends(Ks_ext_NAF-UI)

Figure 8.4.2.3.-1: Using User consent for GBA_U
1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the GAA server requests for user’s authorization (e.g. a PIN) to derive the NAF keys for this GAA client.

5. The user provides authorization (e.g. PIN).

6. The GAA server in the terminal sends GBA_U NAF Derivation procedure to the UICC application including as additional parameters the NonceUI and hash value of the user’s authorization (e.g. a PIN) concatenated NonceUI (Hash (NonceUI || user authz)) .

7. The UICC verifies that the user is authorized, e.g. the provided PIN is correct by retrieving the user authorization value already stored on the UICC to compute the corresponding Hash value (NonceUI || user authz) and compare it with hash value sent by the GAA server as input data of the GBA_U NAF derivation procedure. If the user authorization was given, the UICC application derives NAF keys using NonceUI as an input in the following way Ks_ext/int_NAF-UI = KDF(Ks, NonceUI , …), where Ks_ext/int_NAF-UI derivation takes the same input as Ks_ext/int_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6. The UICC stores Ks_int_NAF-UI.

NOTE: The user authorization reference value is stored as TLV (Tag Length Value) object in a file of the UICC protected by Access Conditions.The usage of TLV object lets open the type and format of the user authorization value (e.g. PIN) that could be chosen. The user authorization reference value could be set by the user and stored in the UICC by the GAA server.
8. The UICC sends back to the GAA server Ks_ext_NAF-UI

9. The GAA server provides Ks_ext_NAF-UI to the GAA client.

10. The GAA client uses the Ks_ext_NAF-UI as the key to calculate the authentication response for the Ua application request.

11. The GAA client sends the Ua application request to the NAF.

12. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

13. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_ext/int_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

14. The BSF sends Zn response with Ks_ext/int_NAF-UI to the NAF.

15. The NAF uses the received Ks_ext_NAF-UI to verify authentication response received from the GAA client in step 11.

16. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

 The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_U to illustrate how the mechanism works.

************************ END of CHANGE *************************

_1443882474.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

14. NAF key response (Ks_ext/int_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

15. Verify auth resp with Ks_ext_NAF-UI

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth challenge, Nonce-UI)

7. - Derive Ks_Ext/Int_NAF-UI = KDF(Ks, Nonce-UI, ...)
- Stores Ks_int_NAF-UI

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI, ...)

13. Derive Ks_ext/int_NAF-UI = KDF(Ks, Nonce-UI, ...)

16. Ok

6. GBA_U NAF derivation procedure
(..., Nonce-UI)

8. Sends (Ks_ext_NAF-UI)

_1444568842.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

14. NAF key response (Ks_ext/int_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

15. Verify auth resp with Ks_ext/int_NAF-UI

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth challenge, Nonce-UI)

7. – Verifies that user authorization is given,
and derive Ks_Ext/Int_NAF-UI = KDF(Ks, Nonce-UI, ...)
- Stores Ks_int_NAF-UI

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI, ...)

13. Derive Ks_ext/int_NAF-UI = KDF(Ks, Nonce-UI, ...)

16. Ok

6. GBA_U NAF derivation procedure
(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends (Ks_ext_NAF-UI)

_1438609746.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

12. NAF key response (Ks_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

13. Verify auth resp with Ks_NAF-UI

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth challenge, Nonce-UI)

6. Derive Ks_NAF-UI = KDF(Ks, Nonce-UI, ...)

7. Response (Ks_NAF-UI)

8. Calculate authentication resp with Ks_NAF-UI

9. Ua application request (auth resp)

10. NAF key request (B, TID, Nonce-UI, ...)

11. Derive Ks_NAF-UI = KDF(Ks, Nonce-UI, ...)

14. Ok

