3GPP TSG SA WG3 Security — SA3#73
S3-131022
11 – 15 November 2013, San Francisco, USA

Source:
BlackBerry UK Ltd.
Title:
pCR: Clarifications on PWS Implicit Certificate approach
Document for:
Discussion and decision

Agenda Item:
7.10
Work Item / Release:
PWS_Sec
1.

Introduction

The current PWS study details on the implicit certificate approach as a means of providing security for PWS. This pCR proposes several editorial corrections to the current text on the implicit certificate approach in addition to adding details on using the PWS CA update message to revoke an existing CA.
2.
Updating CAs
The implicit certificate proposal is a PKI based approach where trust is derived from CAs contained in the UE. Although CAs are assumed to be long lived entities (~20 years), some allowance must be made for changing the set of CAs and their public keys.
This can be achieved through the transmission of a PWS update message. As shown in Figure 1 the contents of the PWS CA update message message contain the identifier of the CA (CA-ID) and its new public key.

[image: image77.emf]
Figure 1 - Certificate Authority update message format

In addition to including new CAs the PWS CA update message can also serve to revoke existing CAs by overwriting its public key. That is if the CA-ID identifies an existing CA then the public key of the existing CA is overwritten with the New CA Public Key contained in the update which serves as an invalidating sequence.
If the CA-ID does not identify an existing CA then the new CA-ID and New CA Public Key are recorded by the UE.

In this way a single update message type can serve the dual purpose of adding and revoking CAs.
3.
Conclusion
This proposal provides additional details on the implicit certificate approach.

It is kindly proposed SA3 include the following changes relective of these details in TR33.869.

%%%

Start of first change
7.6.1
General

This solution is access independent.

An overview of the implicit certificate based approach is shown in figure 7.6.1.1. UE firmware is provisioned with public keys of several CAs. The message signer periodically obtains an implicit certificate from a CA which can be included as part of the security portion of a PWS transmission. The implicit certificate combined with the CA's public key results in the message signer's public key allowing the UE to verify the signature.

[image: image2]
Figure 7.6.1.1: Overview of implicit certificate approach

An advantage of this system is its scalability. That is, multiple CBEs can share the same set of CAs. Simply put, if a national authority requires the addition of a new CBE, the CBE need only obtain an implicit certificatefrom one of the available CAs without the need of signalling new keying material to UEs or an operator's network except for testing purposes.

Although CAs are assumed to be long lived entities (~20 years), allowance must be made for changing the set of CAs and their public keys. While this would most likely be a planned event, in the rare occurrence a CA or CBE is compromised or potentially a UE is reset, such an update might be necessary.

Two potential approaches to updating the list of CA public keys can be considered, 1) Using periodic test messages to carry update information and 2) a push mechanism such as (U)SIM Application Toolkit.

7.6.1.1
CA updating via PWS test messaging
Updates to the list of CAs and associated public keys stored by a UE could be achieved through a new PWS message type. This message can be signalled as a PWS CA update message by using the existing Message Identifier parameter [1] but could otherwise be transmitted to UEs in the same manner as warning related PWS messages.

Shown in Figure 7.6.1.2 the contents of the PWS CA update message message could contain the identifier of the CA (CA-ID) and its new public key.

[image: image4.png]
Figure 7.6.1.2: PWS CA update message format

In addition to including new CAs the PWS CA update message can also serve to revoke existing CAs by overwriting its public key. That is if the CA-ID identifies an existing CA then the public key of the existing CA is overwritten with the New CA Public Key contained in the update which serves as an invalidating sequence.

If the CA-ID does not identify an existing CA then the new CA-ID and New CA Public Key are recorded by the UE.

In this way a single update message type can serve the dual purpose of adding and revoking CAs.

Since the contents of the PWS CA update message are critical to the functioning of the system, to ensure the UE can trust the message contents UEs should be required to receive at least two update messages containing where the implicit certificate used in each message is from a different existing CA.

In the case more than one PWS message signer is supported in a region each message should also be from a different existing PWS message signer.

The case of only one PWS message signer could also be accommodated for example by requiring Implicit Certificates to be obtained from a CA who issues short-lived implicit certificates for the purpose of PWS CA update messages. Procedural steps following this example could be:

Step 1: Receive and validate PWS CA update message

Step 2: Check previously validated PWS CA update messages

Step 3: If a PWS CA update message is stored in the ME and has been validated using a different existing CA and either the current or existing different CA is used for the purpose of PWS CA update messages then update the current CA list in the ME with the PWS CA update message contents

Step 4: If a CA update message stored in the ME according to Step 3 is not found then stor the current CA update message in the ME with its validating CA but without updating the contents of the CA list

End of first change
Start of second change
7.6.3.3
PWS Security contents

Implicit certificates are versatile and can be used with a variety of signature approaches including DSA and ECDSA, however the approach considered here due to efficiency in size is a Keyed-MAC signature scheme.

When operating at 112-bit security level, using a 112-bit MAC and assuming an ECQV certificate structure, 14-bytes, 28-bytes and 31-bytes are required to encode the values MAC, s and ICA respectively.

The 31-byte length for ICA assumes a certificate structure containing a 225 bit public key reconstruction value, a 15 bit certificate timestamp and a 8 bit CA_ID value. The certificate timestamp can provide one approach to protection in case a key is compromised at the message signer. The validity period of the certificate and therefore the frequency at which a message signer obtains new certificates from the CA would be decided at the national level and need not be the responsibility of operators.

In total the signature and implicit certificate occupy 73-bytes leaving 2 additional bytes that can be used for a PWS message timestamp. This timestamp would be provided and signed by the PWS message signer and indicates the validity period for the PWS warning message.

[image: image5]
Figure 7.6.3.3.1 PWS Security Content

The final two bytes of the security contents consist of a timestamp provided by the message signer and indicating the validity period for the PWS warning message for the purposes of replay protection.

This can take the form of a traditional timestamp or as a message counter.

Timestamp

For the timestamp to function correctly, some degree of synchronisation is necessary between the UE and the PWS message signer.

In the case a secure automatic synchronisation method is available between the UE and network, then advantage of it could be taken by the UE in validating PWS messages.

In the case where automatic timing is not available between the UE and network, the UE could instead indicate the receipt of a PWS message with an expired certificate if one is received and present the user with the current time understood by the UE and the option of proceeding or discarding the message.

Alternatively a PWS timer could be provisioned in UEs at manufacture with a conservative time. This time could then be adjusted in the normal course of operations either by a PWS timestamp update message similar in concept to the PWS CA update message, or by an additional timestamp field in the PWS CA update message itself. Such an update timestamp would detail the current time of the PWS message signer to all receiving UEs.

Message counter

In the case a message counter is used in order to avoid the need for co-ordination between message signers, a message signer identifier should be included as part of the implicit certificate. As shown in Figure 7.6.3.3.1this can be accommodated by reducing the implicit certificate timestamp from 15 bits to 7 bits allowing a 1 byte field for a message signer identifier (PKID).

In order to protect out of date UEs (eg: those who miss PWS warning messages and the resulting increments to a message signer's counter) from replay attack, a PWS counter update message similar in concept to the PWS CA update message could be used or alternatively if there are only a few PWS message signers, an extra field could be included in the PWS CA update message itself. Such a field could contain 3 bytes, the message signer's identity (PKID) of 1 byte and current counter value (NSUC) of 2 bytes, for each message signer signalled.

Editor's note: Security considerations on automatic network timing are ffs.

Whether the PWS message timestamp takes the form of an actual timestamp or a message signer counter, the 2 bytes in the PWS Security content should be included in the computation of the keyed MAC signature.
Using ECQV, the UE must compute the Message Signers Public key using the implicit certificate in addition to verifying the PWS signature.

Considering available cryptographic signature benchmarks from eBATS and assuming the armeabi platform running at 1782MHz and 128-bit level security, the full implicit certificate based approach will takes roughly 6.5ms and not more than 7.4ms. This is compared with 3.7ms for ECDSA and 18ms for DSA signature verification indicating comparable complexity to other signature schemes.

The complexity time estimates of the implicit certificate based approach are approximate and were made by considering the steps 3 and 4 of signature verification and comparing with similar steps in algorithms benchmarked in eBATS.

Steps both in encoding (at the PWS message signer) and verification (at the UE) of the Keyed-MAC can be as follows:

Keyed-MAC Signature Generation

INPUT: PWS Message Signer's private key dA, and associated ECQV certificate structure ICA, and a message to be signed M.

OUTPUT: A signed message M, with associated security information MAC; s; ICA.

1. Generate ephemeral key pair (d,Q).

2. Construct MAC key k = KDF(Q), where KDF is a key derivation function that takes as input a point, and possibly other information, and generates an encryption key.

3. Compute MAC = MACAlgorithm(M,k).

4. Compute h = Hash(MAC||M), where Hash is a suitable hash function, that takes as input additional information including a possible identity string.

5. Convert h to an integer e.

6. Calculate s = e _ dA+d (mod n).

Output s,MAC, along with input value ICA as the associated security data for M.

Keyed-MAC Signature Verification

INPUT: Signed message M, with security information s, MAC, ICA, and the CA's public

key QCA.

OUTPUT: VALID, or INVALID.

1. Compute h = Hash(MAC||M), with the same hash function used in the signature generation scheme, and the additional input information.

2. Convert h to an integer e.

3. Recover the PWS message signer's public key from the certificate, QA=ECQVPublicKeyReconstruction(CertA,QCA).

4. Compute Q' = sG-eQA.

5. Compute k' = KDF(Q'), using the same key derivation function used in the signature generation algorithm, including the same additional information.

6. Compute MAC' = MACAlgorithm(M,k').

If MAC' = MAC then return VALID, else return INVALID.

During this process the UE combines information contained within the implicit certificate with the public key of the appropriate CA to produce the message signer's public key. As several CAs may and indeed should be supported, a means is needed to distinguish which public key is used.

This can be achieved through use of the one byte CA-ID field described in clause 7.7.3.3. Each CA public key would be assigned a CA-ID value which the UE can read from the implicit certificate. Using the CA-ID the UE can look up the CA public key tied to that CA-ID in its provisioned list of CAs.

[image: image6]
Figure 7.6.3.3.2 – Example list provisioned CA public keys with associated CA-IDs

End of second change
-

2

Bytes

-

31

Bytes

-

28

Bytes

-

14

Keyed MAC

Timestamp

Message

PWS

Implicit Certificate

s

MAC

CBC

CBE

x

-

:Built with CA

Step1

Message Signer

& Security

PWS Message

Network

Operator

Open Channel

:

Step3

& Security

Message*

PWS

Signature & Implicit Certificate

Implicit Certificate

:

Step2

public key

x

-

0011011111010000110010100111

00100101

1001111010011110100111101001

00001101

List of provisioned CA public keys

Public Key (28 bytes)

byte)

1

ID (

-

CA

Bytes

CA

with

UE

x

-

)

Authority (CA

Certificate

UE

[image: image1.png][image: image7.emf][image: image8.png][image: image9.emf][image: image10.emf][image: image11.emf][image: image12.emf][image: image13.emf][image: image14.emf][image: image15.emf][image: image16.emf][image: image17.emf][image: image18.emf][image: image19.emf][image: image20.emf][image: image21.emf][image: image22.emf][image: image23.emf][image: image24.emf][image: image25.emf][image: image26.emf][image: image27.emf][image: image28.emf][image: image29.emf][image: image30.emf][image: image31.emf][image: image32.emf][image: image33.emf][image: image34.emf][image: image35.emf][image: image36.emf][image: image37.emf][image: image38.emf][image: image39.emf][image: image40.emf][image: image41.emf][image: image42.emf][image: image43.emf][image: image44.emf][image: image45.emf][image: image46.emf][image: image47.emf][image: image48.emf][image: image49.emf][image: image50.emf][image: image51.emf][image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf][image: image58.emf][image: image59.emf][image: image60.emf][image: image61.emf][image: image62.emf][image: image63.emf][image: image64.emf][image: image65.emf][image: image66.emf][image: image67.emf][image: image68.emf][image: image69.emf][image: image70.emf][image: image71.emf][image: image72.emf][image: image73.emf][image: image74.emf][image: image75.emf][image: image76.emf]