SA WG3 Temporary Document

Page 5
-

3GPP TSG SA WG3 Security — S3#59
S3-100533
26 - 30 April 2010
Lisbon, Portugal
Source:

Ericsson, ST-Ericsson
Title:

Corrections to split terminal scenarios
Document for:

Discussion and decision
Agenda Item:

8.3 GAA – OpenID interworking
Work Item / Release:

1
Introduction
This contribution highlights issues with the current split terminal scenarios in TR 33.924 and proposes corrections and enhancements.
The main principle is to modify the split terminal scenarios so that HTTP digest is run between BA and OP/NAF and GBA push (for scenario 1) or normal GBA (scenario 2 and 3) is used to create the username and password for HTTP digest.
2
Discussion
Scenario 1:

The figure below is from clause 4.4.2 of TR 33.924 (scenario 1).

[image: image1.emf]NAF/OP

BA

AA

1- User supplied identifier

BSF

RP

2-Retrieval of OP address

3- Setup of shared

Secret(opt)

4- redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

6- OP maps BA to AA

From its database

6-HTTP Response with Session ID

8-Push message for AA. Includes GBA push GPI, session ID, and NAF/OP contact address.

11-HTTP GET with P-TID + proof of challenge processing

9- User visually maps AA and BA sessions

7- NAF retrieves keys and related information e.g lifetime,GUSS,etc OP/NAF authenticates the user.

12-Redirect to RP with authentication assertion

10- GPI processing

Derive NAF key(s)

13-Check of assertion

NAF/OP NAF/OP

BA BA

AA AA

1- User supplied identifier

BSF BSF

RP RP

2-Retrieval of OP address

3- Setup of shared

Secret(opt)

4- redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

6- OP maps BA to AA

From its database

6-HTTP Response with Session ID

8-Push message for AA. Includes GBA push GPI, session ID, and NAF/OP contact address.

11-HTTP GET with P-TID + proof of challenge processing

9- User visually maps AA and BA sessions

7- NAF retrieves keys and related information e.g lifetime,GUSS,etc OP/NAF authenticates the user.

12-Redirect to RP with authentication assertion

10- GPI processing

Derive NAF key(s)

13-Check of assertion

Figure 4.4.2-4 from TR 33.924

The following issues have been identified with scenario 1.

1. User makes a visual comparison to verify that AA session and BA session are linked. Users may not understand the meaning of comparing the session IDs and may well be tempted to press “yes” without carefully comparing the session IDs. This opens possibilities to misuse GBA authentication
2. AA sends a HTTP(S) GET to OP/NAF and OP/NAF responds with a redirect to BA. This funtionality is not according to HTTP specification since redirect should be sent to the sender of the request. As a consequence the BA would discard an unsolicited redirect message.
3. The session ID is not cryptographically tied to the GBA session (AA session) nor OpenID session (BA session).
4. The OP/NAF does not get any assurance that the AA session is linked to the BA session. This increases the risk to misuse GBA authentication.
5. Session ID is sent as “whole” (although protected with TLS, if used). Leaked session ID increases the risk to misuse GBA authentication.
Proposal for enhancement for scenario 1:

[image: image2.emf]

NAF/OP

BA

AA

1 - User supplied identifier

BSF

RP

2 - Retrieval of OP address

3 - Setup of shared Secret (opt)

4 - Redirect ME browser to OP with OpenId authentication request

5 - HTTP(S) GET request

6 - OP maps BA to AA From its database

7 - HTTP(S) Unauthorized Response

9 - GBA Push message to AA with push GPI and Nonce NAF

11 - User copies Nonce AA and session ID from AA to BA

8 - NAF retrieves keys and related inf ormation e.g. lifetime, GUSS, etc

14 - Redirect to RP with authentication assertion

10 - GPI processing Derive NAF key(s) Calculate Session ID

15 - Check of assertion

12 - HTTP(S) GET request with Authorization header

13 - Authenticate BA

Figure: Proposed enhancement for scenario 1
The main principle is to run HTTP digest between BA and OP/NAF and use GBA push to create the username and password for HTTP digest.
1. HTTP digest is used between BA and OP/NAF for authentication (steps 5, 7 and 12).
2. The user name and password (Session ID) for HTTP digest is created using GBA push. Using the session ID as password between BA and OP/NAF gives OP/NAF assurance that the AA session is linked to the BA session.
3. The session ID is cryptographically tied to the GBA session (AA session) and OpenID session (BA session). The session ID can be derived by the AA from NonceAA, NonceNAF and NAF key.
4. User is involved by copying the username and password from AA to BA. The user experience will be very similar to some currently used authentication mechanisms in the internet.
5. No violation of HTTP as redirect is sent back to the BA.
6. No need to send OP/NAF address to AA (in old step 8). AA does not need an internet connection.

7. The session ID is sent as “whole” only from AA to BA. Otherwise only nonces are sent. This makes the misuse of session ID harder.
8. The session ID verification is harmonised in all scenarios 1, 2 and 3.
Scenarios 2 and 3:

Similar reasons apply for scenarios 2 and 3.

The figure below is from clause 4.4.2 of TR 33.924 (scenarios 2 and 3).

[image: image3.emf]NAF/OP

BA

AA

1- User supplied identifier

BSF

RP

2-Retrieval of OP address

3- Setup of shared

Secret (opt)

4- redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

6-HTTP Response Session ID

9-HTTP GET + Session ID (Initiate GBA authentication)

10-401 unauthorized+ GBA challenge

11- Optional bootstrapping

12-HTTP(S) request carrying B-TID

13- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

14-Redirect to RP with authentication assertion

7b-Setting up secure tunnel and AA receives Session ID via local link

15-Check of assertion

7a – Push message for AA to initíate GBA authentication (includes session ID)

8-Session ID mapping

NAF/OP NAF/OP

BA BA

AA AA

1- User supplied identifier

BSF BSF

RP RP

2-Retrieval of OP address

3- Setup of shared

Secret (opt)

4- redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

6-HTTP Response Session ID

9-HTTP GET + Session ID (Initiate GBA authentication)

10-401 unauthorized+ GBA challenge

11- Optional bootstrapping

12-HTTP(S) request carrying B-TID

13- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

14-Redirect to RP with authentication assertion

7b-Setting up secure tunnel and AA receives Session ID via local link

15-Check of assertion

7a – Push message for AA to initíate GBA authentication (includes session ID)

8-Session ID mapping

Figure 4.4.2-5 from TR 33.924

The following issues have been identified with scenarios 2 and 3.

1. User makes a visual comparison (for scenario 2) to verify that AA session and BA session are linked. Users may not understand the meaning of comparing the session IDs and may well be tempted to press “yes” without carefully comparing the session IDs. This opens possibilities to misuse GBA authentication

2. AA sends a HTTP(S) GET to OP/NAF and OP/NAF responds with a redirect to BA. This funtionality is not according to HTTP specification since redirect should be sent to the sender of the request. As a consequence the BA would discard an unsolicited redirect message.
3. The session ID is not cryptographically tied to the GBA session (AA session) nor OpenID session (BA session).
4. The OP/NAF does not get any assurance that the AA session is linked to the BA session. This increases the risk to misuse GBA authentication.

5. Session ID is sent as “whole” (although protected with TLS, if used). Leaked session ID increases the risk to misuse GBA authentication.
6. The session ID mapping is done differently in scenario 2 (by the user) and scenario 3 (by OP/NAF). This is harmonised in the proposal below.
Proposal for enhancement for scenarios 2 and 3:

[image: image4.emf]

NAF/OP

BA

AA

1 - User supplied identifier

BSF

RP

2 - Retrieval of OP address

3 - Setup of shared secret (opt)

4 - R edirect ME browser to OP with OpenId authentication request

5 - HTTP(S) GET request

6 - HTTP(S) Unauthorized Response (opt : OP/NAF URL)

19 - Redirect to RP with authentication assertion

8 b - Setting up secure tunnel, sending GBA trigger via local link

20 - Check of assertion

8 a – Push message for AA to init í ate GBA authentication (includes GBA trigger)

9 - HTTP(S) GET (Initiate GBA authentication)

10 - 401 unauthorized+ GBA challenge

11 - Optional bootstrapping

12 - HTTP(S) GET carrying B - TID

13 - NAF retri eves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

14 - HTTP(S) RSP Nonce NAF

16 a - User copies Nonce AA and session ID from AA to BA

16 b - AA sends Nonce AA and session ID to BA over local link

17 - HTTP(S) GET request with Authorization header

15 - Generate Nonce AA and session ID

18 - Authenticate BA

7 - Map BA to AA

Figure: Proposed enhancement for scenarios 2 and 3
The main principle is the same as in scenario 1, i.e. to run HTTP digest between BA and OP/NAF and use normal GBA to create the username and password for HTTP digest.

1. HTTP digest is used between BA and OP/NAF for authentication (steps 5, 7 and 12).

2. The user name and password (Session ID) for HTTP digest is created using GBA. Using the session ID as password between BA and OP/NAF gives OP/NAF assurance that the AA session is linked to the BA session.
3. The trigger for running GBA can vary, e.g. via SMS or come via local link.
4. The session ID is cryptographically tied to the GBA session (AA session) and OpenID session (BA session). The session ID can be derived from NonceAA, NonceNAF and NAF key.

5. User is involved by copying the username and password from AA to BA (in scenario 2). The user experience will be very similar to currently used authentication mechanisms.

6. No violation of HTTP as redirect is sent back to the BA.

7. The session ID is sent as “whole” only from AA to BA. Otherwise only nonces are sent. This makes the misuse of session ID harder.

8. The session ID verification is harmonised in all scenarios 1, 2 and 3.
4
Proposal
It is proposed to agree on the corrections and approve the accompanying CRs.
1.

2.

4.

2.

1.

4.

1.

5.

5.

5.

6.

2.

3.

1.

5.

3.

2.

1.

1.

3GPP

SA WG3 TD

_1332847994.doc

12- HTTP(S) GET request with Authorization header

15-Check of assertion

10- GPI processing

Derive NAF key(s)

Calculate Session ID

14-Redirect to RP with authentication assertion

8- NAF retrieves keys and related information e.g. lifetime, GUSS, etc

11- User copies NonceAA

and session ID from AA to BA

9- GBA Push message to AA with push GPI and NonceNAF

7- HTTP(S) Unauthorized Response

6- OP maps BA to AA

From its database

5- HTTP(S) GET request

4- Redirect ME browser to OP with OpenId authentication request

3- Setup of shared

Secret (opt)

2-Retrieval of OP address

RP

BSF

1- User supplied identifier

AA

BA

NAF/OP

13- Authenticate BA

_1332878581.doc

17- HTTP(S) GET request with Authorization header

16b- AA sends NonceAA and session ID to BA over local link

16a- User copies NonceAA and session ID from AA to BA

14- HTTP(S) RSP NonceNAF

13- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

12- HTTP(S) GET carrying B-TID

11- Optional bootstrapping

10- 401 unauthorized+ GBA challenge

9- HTTP(S) GET (Initiate GBA authentication)

8a – Push message for AA to initíate GBA authentication (includes GBA trigger)

20-Check of assertion

8b- Setting up secure tunnel, sending GBA trigger via local link

19- Redirect to RP with authentication assertion

6- HTTP(S) Unauthorized Response (opt : OP/NAF URL)

5- HTTP(S) GET request

4- Redirect ME browser to OP with OpenId authentication request

3- Setup of shared secret (opt)

2- Retrieval of OP address

RP

BSF

1- User supplied identifier

AA

BA

NAF/OP

15- Generate NonceAA and session ID

18- Authenticate BA

7- Map BA to AA

