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1
Introduction
This contribution highlights issues with the current split terminal scenarios in TR 33.924 and proposes corrections and enhancements. 
The main principle is to modify the split terminal scenarios so that HTTP digest is run between BA and OP/NAF and GBA push (for scenario 1) or normal GBA (scenario 2 and 3) is used to create the username and password for HTTP digest.   
2
Discussion
Scenario 1:

The figure below is from clause 4.4.2 of TR 33.924 (scenario 1).
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Figure 4.4.2-4 from TR 33.924

The following issues have been identified with scenario 1.

1. User makes a visual comparison to verify that AA session and BA session are linked. Users may not understand the meaning of comparing the session IDs and may well be tempted to press “yes” without carefully comparing the session IDs. This opens possibilities to misuse GBA authentication
2. AA sends a HTTP(S) GET to OP/NAF and OP/NAF responds with a redirect to BA. This funtionality is not according to HTTP specification since redirect should be sent to the sender of the request. As a consequence the BA would discard an unsolicited redirect message. 
3. The session ID is not cryptographically tied to the GBA session (AA session) nor OpenID session (BA session). 
4. The OP/NAF does not get any assurance that the AA session is linked to the BA session. This increases the risk to misuse GBA authentication.
5. Session ID is sent as “whole” (although protected with TLS, if used). Leaked session ID increases the risk to misuse GBA authentication.
Proposal for enhancement for scenario 1:


[image: image2.emf] 

NAF/OP  

BA  

AA  

1 -  User supplied identifier   

BSF 

RP  

2 - Retrieval of OP address  

3 -  Setup of shared   Secret (opt)   

4 -  Redirect   ME browser to OP with OpenId authentication request  

5 -  HTTP(S) GET request  

6 -  OP maps BA to AA    From its database  

7 -  HTTP(S)  Unauthorized  Response   

9 -  GBA Push message to AA with push GPI and  Nonce NAF  

11 -  User copies  Nonce AA     and   session ID from AA to BA  

8 -  NAF retrieves keys and related inf ormation e.g.   lifetime, GUSS, etc  

14 - Redirect to RP with authentication assertion  

10 -  GPI processing   Derive NAF key(s)   Calculate Session ID  

15 - Check of assertion  

12 -  HTTP(S) GET request  with Authorization header  

13 -  Authenticate BA  


Figure: Proposed enhancement for scenario 1
The main principle is to run HTTP digest between BA and OP/NAF and use GBA push to create the username and password for HTTP digest. 
1. HTTP digest is used between BA and OP/NAF for authentication (steps 5, 7 and 12).
2. The user name and password (Session ID) for HTTP digest is created using GBA push. Using the session ID as password between BA and OP/NAF gives OP/NAF assurance that the AA session is linked to the BA session.
3. The session ID is cryptographically tied to the GBA session (AA session) and OpenID session (BA session). The session ID can be derived by the AA from NonceAA, NonceNAF and NAF key. 
4. User is involved by copying the username and password from AA to BA. The user experience will be very similar to some currently used authentication mechanisms in the internet.
5. No violation of HTTP as redirect is sent back to the BA.
6. No need to send OP/NAF address to AA (in old step 8). AA does not need an internet connection.

7. The session ID is sent as “whole” only from AA to BA. Otherwise only nonces are sent. This makes the misuse of session ID harder.
8. The session ID verification is harmonised in all scenarios 1, 2 and 3. 
Scenarios 2 and 3:

Similar reasons apply for scenarios 2 and 3.

The figure below is from clause 4.4.2 of TR 33.924 (scenarios 2 and 3).
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Figure 4.4.2-5 from TR 33.924

The following issues have been identified with scenarios 2 and 3.

1. User makes a visual comparison (for scenario 2) to verify that AA session and BA session are linked. Users may not understand the meaning of comparing the session IDs and may well be tempted to press “yes” without carefully comparing the session IDs. This opens possibilities to misuse GBA authentication

2. AA sends a HTTP(S) GET to OP/NAF and OP/NAF responds with a redirect to BA. This funtionality is not according to HTTP specification since redirect should be sent to the sender of the request. As a consequence the BA would discard an unsolicited redirect message. 
3. The session ID is not cryptographically tied to the GBA session (AA session) nor OpenID session (BA session). 
4. The OP/NAF does not get any assurance that the AA session is linked to the BA session. This increases the risk to misuse GBA authentication.

5. Session ID is sent as “whole” (although protected with TLS, if used). Leaked session ID increases the risk to misuse GBA authentication.
6. The session ID mapping is done differently in scenario 2 (by the user) and scenario 3 (by OP/NAF). This is harmonised in the proposal below.
Proposal for enhancement for scenarios 2 and 3:
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Figure: Proposed enhancement for scenarios 2 and 3 
The main principle is the same as in scenario 1, i.e. to run HTTP digest between BA and OP/NAF and use normal GBA to create the username and password for HTTP digest. 

1. HTTP digest is used between BA and OP/NAF for authentication (steps 5, 7 and 12).

2. The user name and password (Session ID) for HTTP digest is created using GBA. Using the session ID as password between BA and OP/NAF gives OP/NAF assurance that the AA session is linked to the BA session. 
3. The trigger for running GBA can vary, e.g. via SMS or come via local link.
4. The session ID is cryptographically tied to the GBA session (AA session) and OpenID session (BA session). The session ID can be derived from NonceAA, NonceNAF and NAF key. 

5. User is involved by copying the username and password from AA to BA (in scenario 2). The user experience will be very similar to currently used authentication mechanisms.

6. No violation of HTTP as redirect is sent back to the BA.

7. The session ID is sent as “whole” only from AA to BA. Otherwise only nonces are sent. This makes the misuse of session ID harder.

8. The session ID verification is harmonised in all scenarios 1, 2 and 3. 
4
Proposal
It is proposed to agree on the corrections and approve the accompanying CRs. 
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