
3GPP TSG SA WG3 Security — SA3#37 S3-050079
February 21-25, 2005
Sophia Antipolis, France

Source: Ericsson

Title: Optimization of GBA 

Agenda item: SEC1-SC

Document for: Discussion/Decision

1 Introduction
SA3 is currently discussing work related to GAA for Rel-7. Within this context it would be worthwhile to study 
possible optimizations of the GBA procedures. This contribution discusses some possible optimizations for GBA. 

2 Discussion
In current GBA the user needs to have two interfaces towards the network: Ua to the NAF and Ub to the BSF. In case 
the Ua interface also uses HTTP this means quite similar signalling over Ua and Ub. It would be worthwhile to study if 
this could be optimized. 

Below is described two possible alternatives how optimization could be achieved. Both alternatives assume that Ua 
interface uses HTTP Digest [1].  

In the first alternative the bootstrapping is done via NAF, i.e. Ub and Ua interfaces are combined. HTTP is used over 
Ua interface to carry double digest headers, first headers to carry HTTP Digest AKA between UE and BSF and second 
digest headers to carry HTTP Digest authentication between UE and NAF. The flow is described below.

UEUE BSFBSFNAFNAF

HTTP Req 
(Authz Header: Realm BSF, UE ID) Req 

(Authz Header: Realm BSF, UE ID) Fetch AVs

Resp 
(WWW-Auth Header: AKA challenge)HTTP 401  

(WWW-Auth Header: AKA challenge)
(WWW-Auth Header: NAF challenge)UE authenticates BSF

UE derives NAF keys

HTTP Req  
(Authz Header: AKA response)
(Authz Header: NAF response with 
NAF keys, cnonce)

Req  
(Authz Header: AKA response)
(Request NAF keys)

Resp 
(Auth Info Header: ok)
(NAF keys)

BSF authenticates UE 
BSF derives NAF keys

NAF authenticates UE 

HTTP 200 ok  
(Auth Info Header: ok)
(Auth Info Header: ok)

UE authenticates NAF 

Figure 1: GBA optimization using double HTTP digest headers 

In the second alternative the bootstrapping is done via NAF, i.e. Ub and Ua interfaces are combined. HTTP is used over 
Ua interface to carry single digest headers. The headers are used to carry HTTP Digest AKA between UE and BSF but 



Digest AKA is performed using NAF specific keys. It is noted that this alternative modifies the standard HTTP Digest 
AKA, but the current bootstrapping over Ub has already modified it, thus this is not considered as an issue. The flow is 
described below.

UEUE BSFBSFNAFNAF

HTTP Req 
(Authz Header: Realm BSF, UE ID) Req 

(Authz Header: Realm BSF, UE ID) Fetch AVs

Resp 
(WWW-Auth Header: AKA challenge)HTTP 401  

(WWW-Auth Header: AKA challenge)
UE authenticates BSF
UE derives NAF keys
UE calculates AKA 
response with NAF keys HTTP Req  

(Authz Header: AKA response 
with NAF keys, cnonce)

Req  
(Authz Header: AKA response
with NAF keys)
(Request NAF keys)

Resp 
(Auth Info Header: ok)
(Indication that UE is authenticated)
(NAF keys)

BSF authenticates UE 
BSF derives NAF keys
BSF calculates 200 
OK with NAF keys

NAF authenticates UE HTTP 200 ok  
(Auth Info Header: ok with NAF keys)

UE authenticates NAF 

Figure 2: GBA optimization using HTTP digest AKA with NAF keys

One scenario where the optimizations may be useful is the GAA – Liberty interworking. For example in the case where 
the Liberty IdP acts as a NAF as described in [2] and [3].

3 Conclusion & Proposal
In the context of GAA enhancements this contribution has shown two possible ways to optimize GBA procedure. It 
proposed that SA3 takes these alternatives into account when GAA enhancement are studied further. The optimizations 
may also be useful in Liberty – GAA interworking.

4 References
[1] RFC 2617, “HTTP Authentication: Basic and Digest Access Authentication”

[2] S3-040980, "Liberty and GAA relationship", Nokia

[3] S3-041039, “Ericsson Comments to Nokia´s Tdoc on S3-040980, Liberty and GAA relationship", 
Ericsson


	S3-050079_GBA_opt_pa4.doc

