
CR page 1

3GPP TSG SA WG3 Security — S3#29 S3-030389
15 - 18 July 2003, San Francisco, USA

CR-Form-v7

CHANGE REQUEST

� 55.216 CR CRNum � rev - � Current version: 6.1.0 �

For HELP on using this form, see bottom of this page or look at the pop-up text over the � symbols.

Proposed change affects: UICC apps� ME X Radio Access Network Core Network X

Title: � Clarification on the usage of the Key length.

Source: � Siemens

Work item code: � Security Date: � 08/07/2003

Category: � F Release: � Rel-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: � 1) Currently the value of the parameter KLEN within this specification is

fixed to 64-bit which value the implementations derive from several other
3GPP specifications (Kc).

2) The current MAP specifications only allow Kc to be a multiple of 8-bit
which does not fit the full KLEN flexibility.

3) SA3 have decided that only two key lengths will be possible (SA3#28):
64-bit or 128-bit. CN1 was contacted, and it was confirmed that they
preferred another algorithm-Identifier (e.g. GEA4, A5/4) when a longer
key length would be applicable in future.

So according to (1) and (2) full KLEN flexibility is not used and not possible;
and according to (3) is not intended in future for GEA3 and A5/3.

Summary of change: � Remove the unnecessary KLEN flexibility.

Consequences if �
not approved:

Future doubt about KLEN flexibility applicable to the algorithms described in this
specification, which will not be in accordance with the MAP-interface restrictions.

Clauses affected: � 4,5,6

 Y N
Other specs � N Other core specifications �
affected: N Test specifications
 N O&M Specifications

CR page 2

Other comments: �

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

***** Begin of Change ****

4 A5/3 algorithm for GSM encryption

4.1 Introduction
The GSM A5/3 algorithm produces two 114-bit keystream strings, one of which is used for uplink
encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

4.2 Inputs and Outputs
The inputs to the algorithm are given in table 3, the output in table 4:

Table 3: GSM A5/3 inputs

Parameter Size (bits) Comment
COUNT 22 Frame dependent input COUNT[0]…COUNT[21]
KC 64–128KLEN Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range

64…128 inclusive (see Notes 1 and 2 below)

Table 4. GSM A5/3 outputs

Parameter Size (bits) Comment
BLOCK1 114 Keystream bits BLOCK1[0]…BLOCK1[113]
BLOCK2 114 Keystream bits BLOCK2[0]…BLOCK2[113]

NOTE 1: At the time of writing, the standards specify that KC is 64 bits long. Theis specification of the A5/3 algorithm

only allows KLEN to be of value 64for possible future enhancements to support longer keys.
NOTE 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC

have predetermined values.

4.3 Function Definition
(See figure B.2, Annex B).

We define the function by mapping the GSM A5/3 inputs onto the inputs of the core function KGCORE, and mapping
the output of KGCORE onto the outputs of GSM A5/3.

So we define:

CA[0]…CA[7] = 0 0 0 0 1 1 1 1

CB[0]…CB[4] = 0 0 0 0 0

CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0

CC[10]…CC[31] = COUNT[0]…COUNT[21]

CD[0] = 0

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 64 then CK = KC || KC)

CL = 228

Apply KGCORE to these inputs to derive the output CO[0]…CO[227].

Then define:

BLOCK1[0]…BLOCK1[113] = CO[0]…CO[113]

BLOCK2[0]…BLOCK2[113] = CO[114]…CO[227]

5 A5/3 algorithm for ECSD encryption

5.1 Introduction
The ECSD A5/3 algorithm produces two 348-bit keystream strings, one of which is used for uplink
encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

5.2 Inputs and Outputs
The inputs to the algorithm are given in table 5, the output in table 6:

Table 5: ECSD A5/3 inputs

Parameter Size (bits) Comment
COUNT 22 Frame dependent input COUNT[0]…COUNT[21]
KC 64–128KLEN Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range

64…128 inclusive (see Notes 1 and 2 below)

Table 6: ECSD A5/3 outputs

Parameter Size (bits) Comment
BLOCK1 348 Keystream bits BLOCK1[0]…BLOCK1[347]
BLOCK2 348 Keystream bits BLOCK2[0]…BLOCK2[347]

NOTE 1: At the time of writing, the standards specify that KC is 64 bits long. Theis specification of the A5/3 algorithm

only allows KLEN to be of value 64. for possible future enhancements to support longer keys.
NOTE 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC

have predetermined values.

5.3 Function Definition
(See figure B.3, Annex B).

We define the function by mapping the ECSD A5/3 inputs onto the inputs of the core function KGCORE, and mapping
the output of KGCORE onto the outputs of ECSD A5/3.

So we define:

CA[0]…CA[7] = 1 1 1 1 0 0 0 0

CB[0]…CB[4] = 0 0 0 0 0

CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

CC[10]…CC[31] = COUNT[0]…COUNT[21]

CD[0] = 0

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 64 then CK = KC || KC)

CL = 696

Apply KGCORE to these inputs to derive the output CO[0]…CO[695].

Then define:

BLOCK1[0]…BLOCK1[347] = CO[0]…CO[347]

BLOCK2[0]…BLOCK2[347] = CO[348]…CO[695]

6 GEA3 algorithm for GPRS encryption

6.1 Introduction
The GPRS GEA3 algorithm produces an M-byte keystream string. M can vary; in this specification we assume that M
will never exceed 216 = 65536.

We define this algorithm in terms of the core function KGCORE.

6.2 Inputs and Outputs
The inputs to the algorithm are given in table 7, the output in table 8:

Table 7: GEA3 inputs

Parameter Size (bits) Comment
INPUT 32 Frame dependent input INPUT[0]…INPUT[31]
DIRECTION 1 Direction of transmission indicator DIRECTION[0]
KC 64–128KLEN Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range

64…128 inclusive (see Notes 1 and 2 below)
M Number of octets of output required, in the range 1 to 65536

inclusive

Table 8: GEA3 outputs

Parameter Size (bits) Comment
OUTPUT 8M Keystream octets OUTPUT{0}…OUTPUT{M-1}

NOTE 1: At the time of writing, the standards specify that KC is 64 bits long. Theis specification of the GEA3 algorithm

only allows KLEN to be of value 64.allows for possible future enhancements to support longer keys.
NOTE 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC

have predetermined values.

6.3 Function Definition
(See figure B.4, Annex B).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

We define the function by mapping the GEA3 inputs onto the inputs of the core function KGCORE, and mapping the
output of KGCORE onto the outputs of GEA3.

So we define:

CA[0]…CA[7] = 1 1 1 1 1 1 1 1

CB[0]…CB[4] = 0 0 0 0 0

CC[0]…CC[31] = INPUT[0]…INPUT[31]

CD[0] = DIRECTION[0]

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 64 then CK = KC || KC)

CL = 8M

Apply KGCORE to these inputs to derive the output CO[0]…CO[8M-1].

Then for 0 ≤ i ≤ M-1 define:

OUTPUT{i} = CO[8i]…CO[8i + 7]

where CO[8i] is the most significant bit of the octet.

******End of Change ***

	S3-030389_CR55216 Key length Sie.doc

