3GPP TSG SA WG3 Security — S3#29 15 - 18 July 2003. San Francisco, USA

S3-030389

CHANGE REQUEST			
90 State			
т. 	55.216 CR CRNum #rev - * Current Version. 6.1.0 *		
For <u>HELP</u> on us	sing this form, see bottom of this page or look at the pop-up text over the # symbo	ls.	
Proposed change a	ffects: UICC apps # ME X Radio Access Network Core Netwo	ork X	
Title: ೫	Clarification on the usage of the Key length.		
Source: %	Siemens		
Work item code: %	Security Date: # 08/07/2003		
Category: #	F Release: # Rel-6		
	Use <u>one</u> of the following categories: Use <u>one</u> of the following release E (correction) 2 (GSM Phase 2)	es:	
	A (corresponds to a correction in an earlier release) R96 (Release 1996)		
	<i>B</i> (addition of feature), R97 (Release 1997) <i>C</i> (functional modification of feature) R98 (Release 1998)		
	D (editorial modification) R99 (Release 1999)		
	be found in 3GPP <u>TR 21.900</u> . <i>Rel-5</i> (<i>Release 4</i>)		
	Rel-6 (Release 6)		
Reason for change	: # 1) Currently the value of the parameter KLEN within this specificati	ion is	
	fixed to 64-bit which value the implementations derive from several 3GPP specifications (Kc).	other	
	 The current MAP specifications only allow Kc to be a multiple of which does not fit the full KLEN flexibility. 	8-bit	
	3) SA3 have decided that only two key lengths will be possible (SA3	\$#28):	
	64-bit or 128-bit. CN1 was contacted, and it was confirmed that preferred another algorithm Identifier (a.g. $CEA4$, $A5/4$) when a l	they	
	key length would be applicable in future.	onger	
	So according to (1) and (2) full KLEN flexibility is not used and not nos	sible	
	and according to (3) is not intended in future for GEA3 and A5/3.	51010,	
Summary of change	e: # Remove the unnecessary KLEN flexibility.		
Consequences if not approved:	Future doubt about KLEN flexibility applicable to the algorithms described in specification, which will not be in accordance with the MAP-interface restrict	this ions.	
Clauses affected:	# 4,5,6		
	YN		
Other specs	# N Other core specifications #		
affected:	N Test specifications N O&M Specifications		

Other comments: %

***** Begin of Change ****

4 A5/3 algorithm for GSM encryption

4.1 Introduction

The GSM A5/3 algorithm produces two 114-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

4.2 Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:

Table 3: GSM A5/3 inputs

Parameter	Size (bits)	Comment
COUNT	22	Frame dependent input COUNT[0]COUNT[21]
Kc	64–128KLEN	Cipher key Kc[0] Kc[KLEN-1], where KLEN is in the range
		64128 inclusive (see Notes 1 and 2 below)

Table 4. GSM A5/3 outputs

Parameter	Size (bits)	Comment
BLOCK1	114	Keystream bits BLOCK1[0]BLOCK1[113]
BLOCK2	114	Keystream bits BLOCK2[0]BLOCK2[113]

NOTE 1: At the time of writing, the standards specify that K_c is 64 bits long. Theis specification of the A5/3 algorithm only allows KLEN to be of value 64 for possible future enhancements to support longer keys.

NOTE 2: It must be assumed that K_c is unstructured data — it must not be assumed, for instance, that any bits of K_c have predetermined values.

4.3 Function Definition

(See figure B.2, Annex B).

We define the function by mapping the GSM A5/3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GSM A5/3.

So we define:

$CK[KLEN]...CK[127] = K_C[0]...K_C[127 - KLEN]$

(So in particular if **KLEN** = 64 then $\mathbf{CK} = \mathbf{K}_{\mathbf{C}} \parallel \mathbf{K}_{\mathbf{C}}$)

Apply KGCORE to these inputs to derive the output CO[0]...CO[227].

Then define:

BLOCK1[0]...BLOCK1[113] = CO[0]...CO[113]

BLOCK2[0]...BLOCK2[113] = CO[114]...CO[227]

5 A5/3 algorithm for ECSD encryption

5.1 Introduction

The ECSD A5/3 algorithm produces two 348-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

5.2 Inputs and Outputs

The inputs to the algorithm are given in table 5, the output in table 6:

Table 5: ECSD A5/3 inputs

Parameter	Size (bits)	Comment
COUNT	22	Frame dependent input COUNT[0]COUNT[21]
Kc	64–128<u>KLEN</u>	Cipher key Kc[0] Kc[KLEN-1], where KLEN is in the range
		64128 inclusive (see Notes 1 and 2 below)

Table 6: ECSD A5/3 outputs

Parameter	Size (bits)	Comment
BLOCK1	348	Keystream bits BLOCK1[0]BLOCK1[347]
BLOCK2	348	Keystream bits BLOCK2[0]BLOCK2[347]

NOTE 1: At the time of writing, the standards specify that K_c is 64 bits long. Theis specification of the A5/3 algorithm only allows KLEN to be of value 64. for possible future enhancements to support longer keys.

NOTE 2: It must be assumed that K_c is unstructured data — it must not be assumed, for instance, that any bits of K_c have predetermined values.

5.3 Function Definition

(See figure B.3, Annex B).

We define the function by mapping the ECSD A5/3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of ECSD A5/3.

So we define:

CA[0]...CA[7] = 1 1 1 1 0 0 0 0

CB[0]...CB[4] = 00000

 $CC[0]...CC[9] = 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$

CC[10]...CC[31] = COUNT[0]...COUNT[21]

CD[0] = 0

 $CK[0]...CK[KLEN-1] = K_C[0]...K_C[KLEN-1]$

If KLEN < 128 then

 $CK[KLEN]...CK[127] = K_C[0]...K_C[127 - KLEN]$

(So in particular if **KLEN** = 64 then $\mathbf{CK} = \mathbf{K}_{\mathbf{C}} \parallel \mathbf{K}_{\mathbf{C}}$)

CL = 696

Apply KGCORE to these inputs to derive the output CO[0]...CO[695].

Then define:

BLOCK1[0]...BLOCK1[347] = CO[0]...CO[347]

```
BLOCK2[0]...BLOCK2[347] = CO[348]...CO[695]
```

6 GEA3 algorithm for GPRS encryption

6.1 Introduction

The GPRS **GEA3** algorithm produces an M-byte keystream string. M can vary; in this specification we assume that M will never exceed $2^{16} = 65536$.

We define this algorithm in terms of the core function KGCORE.

6.2 Inputs and Outputs

The inputs to the algorithm are given in table 7, the output in table 8:

Table 7: GEA3 inputs

Parameter	Size (bits)	Comment
INPUT	32	Frame dependent input INPUT[0]INPUT[31]
DIRECTION	1	Direction of transmission indicator DIRECTION[0]
Kc	64–128<u>KLEN</u>	Cipher key Kc[0] Kc[KLEN-1], where KLEN is in the range
		64128 inclusive (see Notes 1 and 2 below)
Μ		Number of octets of output required, in the range 1 to 65536
		inclusive

Table 8: GEA3 outputs

Parameter	Size (bits)	Comment
OUTPUT	8 M	Keystream octets OUTPUT{0}OUTPUT{M-1}

NOTE 1: At the time of writing, the standards specify that K_c is 64 bits long. Theis specification of the GEA3 algorithm only allows KLEN to be of value 64. allows for possible future enhancements to support longer keys.
 NOTE 2: It must be assumed that K_c is unstructured data — it must not be assumed, for instance, that any bits of K_c

have predetermined values.

6.3 Function Definition

(See figure B.4, Annex B).

We define the function by mapping the **GEA3** inputs onto the inputs of the core function **KGCORE**, and mapping the output of **KGCORE** onto the outputs of **GEA3**.

So we define:

(So in particular if **KLEN** = 64 then $\mathbf{CK} = \mathbf{K}_{\mathbf{C}} \parallel \mathbf{K}_{\mathbf{C}}$)

CL = 8M

Apply KGCORE to these inputs to derive the output CO[0]...CO[8M-1].

Then for $0 \le i \le M-1$ define:

OUTPUT $\{i\}$ = **CO**[8*i*]...**CO**[8*i* + 7]

where **CO[8***i*] is the most significant bit of the octet.

******End of Change ***