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***** Begin of Change **** 

 

4 A5/3 algorithm for GSM encryption 

4.1 Introduction 
The GSM A5/3 algorithm produces two 114-bit keystream strings, one of which is used for uplink 
encryption/decryption and the other for downlink encryption/decryption. 

We define this algorithm in terms of the core function KGCORE. 

4.2 Inputs and Outputs 
The inputs to the algorithm are given in table 3, the output in table 4: 

Table 3: GSM A5/3 inputs 

Parameter Size (bits) Comment 
COUNT 22 Frame dependent input  COUNT[0]…COUNT[21] 
KC 64–128KLEN Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 

64…128 inclusive (see Notes 1 and 2 below) 
 

Table 4. GSM A5/3 outputs 

Parameter Size (bits) Comment 
BLOCK1 114 Keystream bits BLOCK1[0]…BLOCK1[113] 
BLOCK2 114 Keystream bits BLOCK2[0]…BLOCK2[113] 

 
NOTE 1: At the time of writing, the standards specify that KC is 64 bits long.  Theis specification of the A5/3 algorithm 

only allows KLEN to be of value 64for possible future enhancements to support longer keys. 
NOTE 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC 

have predetermined values. 
 

4.3 Function Definition 
(See figure B.2, Annex B). 

We define the function by mapping the GSM A5/3 inputs onto the inputs of the core function KGCORE, and mapping 
the output of KGCORE onto the outputs of GSM A5/3. 

So we define: 

CA[0]…CA[7] = 0 0 0 0 1 1 1 1 

CB[0]…CB[4] = 0 0 0 0 0 

CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0 

CC[10]…CC[31] = COUNT[0]…COUNT[21] 

CD[0] = 0 

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1] 

If KLEN < 128 then 
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CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN] 

(So in particular if KLEN = 64 then CK = KC || KC) 

CL = 228 

Apply KGCORE to these inputs to derive the output CO[0]…CO[227]. 

Then define: 

BLOCK1[0]…BLOCK1[113] = CO[0]…CO[113] 

BLOCK2[0]…BLOCK2[113] = CO[114]…CO[227] 

5 A5/3 algorithm for ECSD encryption 

5.1 Introduction 
The ECSD A5/3 algorithm produces two 348-bit keystream strings, one of which is used for uplink 
encryption/decryption and the other for downlink encryption/decryption. 

We define this algorithm in terms of the core function KGCORE. 

5.2 Inputs and Outputs 
The inputs to the algorithm are given in table 5, the output in table 6: 

Table 5: ECSD A5/3 inputs 

Parameter Size (bits) Comment 
COUNT 22 Frame dependent input  COUNT[0]…COUNT[21] 
KC 64–128KLEN Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 

64…128 inclusive (see Notes 1 and 2 below) 
 

Table 6: ECSD A5/3 outputs 

Parameter Size (bits) Comment 
BLOCK1 348 Keystream bits BLOCK1[0]…BLOCK1[347] 
BLOCK2 348 Keystream bits BLOCK2[0]…BLOCK2[347] 

 
NOTE 1: At the time of writing, the standards specify that KC is 64 bits long.  Theis specification of the A5/3 algorithm 

only allows KLEN to be of value 64. for possible future enhancements to support longer keys. 
NOTE 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC 

have predetermined values. 
 

5.3 Function Definition 
(See figure B.3, Annex B). 

We define the function by mapping the ECSD A5/3 inputs onto the inputs of the core function KGCORE, and mapping 
the output of KGCORE onto the outputs of ECSD A5/3. 

So we define: 

CA[0]…CA[7] = 1 1 1 1 0 0 0 0 

CB[0]…CB[4] = 0 0 0 0 0 

CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0 
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CC[10]…CC[31] = COUNT[0]…COUNT[21] 

CD[0] = 0 

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1] 

If KLEN < 128 then 

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN] 

(So in particular if KLEN = 64 then CK = KC || KC) 

CL = 696 

Apply KGCORE to these inputs to derive the output CO[0]…CO[695]. 

Then define: 

BLOCK1[0]…BLOCK1[347] = CO[0]…CO[347] 

BLOCK2[0]…BLOCK2[347] = CO[348]…CO[695] 

6 GEA3 algorithm for GPRS encryption 

6.1 Introduction 
The GPRS GEA3 algorithm produces an M-byte keystream string.  M can vary; in this specification we assume that M 
will never exceed 216 = 65536. 

We define this algorithm in terms of the core function KGCORE. 

6.2 Inputs and Outputs 
The inputs to the algorithm are given in table 7, the output in table 8: 

Table 7: GEA3 inputs 

Parameter Size (bits) Comment 
INPUT 32 Frame dependent input  INPUT[0]…INPUT[31] 
DIRECTION 1 Direction of transmission indicator DIRECTION[0] 
KC 64–128KLEN Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 

64…128 inclusive (see Notes 1 and 2 below) 
M  Number of octets of output required, in the range 1 to 65536 

inclusive 
 

Table 8: GEA3 outputs 

Parameter Size (bits) Comment 
OUTPUT 8M Keystream octets OUTPUT{0}…OUTPUT{M-1} 

 
NOTE 1: At the time of writing, the standards specify that KC is 64 bits long.  Theis specification of the GEA3 algorithm 

only allows KLEN to be of value 64.allows for possible future enhancements to support longer keys. 
NOTE 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC 

have predetermined values. 
 

6.3 Function Definition 
(See figure B.4, Annex B). 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6 

CR page 6 

We define the function by mapping the GEA3 inputs onto the inputs of the core function KGCORE, and mapping the 
output of KGCORE onto the outputs of GEA3. 

So we define: 

CA[0]…CA[7] = 1 1 1 1 1 1 1 1 

CB[0]…CB[4] = 0 0 0 0 0 

CC[0]…CC[31] = INPUT[0]…INPUT[31] 

CD[0] = DIRECTION[0] 

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1] 

If KLEN < 128 then 

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN] 

(So in particular if KLEN = 64 then CK = KC || KC) 

CL = 8M 

Apply KGCORE to these inputs to derive the output CO[0]…CO[8M-1]. 

Then for 0 ≤ i ≤ M-1 define: 

OUTPUT{i} = CO[8i]…CO[8i + 7] 

where CO[8i] is the most significant bit of the octet. 

 

******End of Change *** 


	S3-030389_CR55216 Key length Sie.doc

