CHANGE REQUEST

\&
55.216 CR CRNum s rev - \& Current version:
6.1 .0 \%

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathscr{H} symbols.

Proposed change affects: UICC apps $\not \square$ ME \mathbf{X} Radio Access Network \square Core Network \mathbf{X}

Reason for change: \mathscr{H}

1) Currently the value of the parameter KLEN within this specification is fixed to 64-bit which value the implementations derive from several other 3GPP specifications (Kc).
2) The current MAP specifications only allow Kc to be a multiple of 8-bit which does not fit the full KLEN flexibility.
3) SA3 have decided that only two key lengths will be possible (SA3\#28): 64 -bit or 128-bit. CN1 was contacted, and it was confirmed that they preferred another algorithm-Identifier (e.g. GEA4, A5/4) when a longer key length would be applicable in future.

So according to (1) and (2) full KLEN flexibility is not used and not possible; and according to (3) is not intended in future for GEA3 and A5/3.

Summary of change: \& Remove the unnecessary KLEN flexibility.
Consequences if \& Future doubt about KLEN flexibility applicable to the algorithms described in this not approved: specification, which will not be in accordance with the MAP-interface restrictions.

Other comments: \mathscr{H}

$4 \quad$ A5/3 algorithm for GSM encryption

4.1 Introduction

The GSM A5/3 algorithm produces two 114-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

4.2 Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:
Table 3: GSM A5/3 inputs

Parameter	Size (bits)	Comment
COUNT	22	Frame dependent input COUNT[0]...COUNT[21]
K_{c}	64-128KLEN	Cipher key $\mathbf{K}_{c}[0] \ldots \mathbf{K}_{c}[K L E N-1]$, where KLEN is in the range 64... 128 inclusive (see Notes 1 and 2 below)

Table 4. GSM A5/3 outputs

Parameter	Size (bits)	Comment
BLOCK1	114	Keystream bits BLOCK1[0]...BLOCK1[113]
BLOCK2	114	Keystream bits BLOCK2[0]...BLOCK2[113]

NOTE 1: At the time of writing, the standards specify that K_{c} is 64 bits long.-Theis specification of the $\mathbf{A 5 / 3}$ algorithm only allows KLEN to be of value 64for possible future enhancements to support longer keys.
NOTE 2: It must be assumed that $\mathbf{K}_{\mathbf{c}}$ is unstructured data - it must not be assumed, for instance, that any bits of $\mathbf{K}_{\mathbf{c}}$ have predetermined values.

4.3 Function Definition

(See figure B.2, Annex B).
We define the function by mapping the GSM A5/3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GSM A5/3.

So we define:
CA[0]...CA[7] = 00001111
CB[0]...CB[4] = 00000
CC[0]...CC[9] = 0000000000
CC[10]...CC[31] = COUNT[0]...COUNT[21]
$\mathrm{CD}[0]=0$
CE[0]...CE[15] = 0000000000000000
CK[0]...CK[KLEN-1] $=K_{C}[0] \ldots K_{C}[$ KLEN-1]
If KLEN < 128 then

CK[KLEN] ...CK[127] $=\mathbf{K}_{\mathrm{C}}[0] \ldots \mathrm{K}_{\mathrm{C}}[127-$ KLEN $]$
(So in particular if KLEN $=64$ then $\mathbf{C K}=\mathbf{K}_{\mathbf{C}} \| \mathbf{K}_{\mathbf{C}}$)
$\mathbf{C L}=228$
Apply KGCORE to these inputs to derive the output CO[0]...CO[227].
Then define:
BLOCK1[0]...BLOCK1[113] = CO[0]...CO[113]
BLOCK2[0]...BLOCK2[113] = CO[114]...CO[227]

$5 \quad$ A5/3 algorithm for ECSD encryption

5.1 Introduction

The ECSD A5/3 algorithm produces two 348-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

5.2 Inputs and Outputs

The inputs to the algorithm are given in table 5, the output in table 6:
Table 5: ECSD A5/3 inputs

Parameter	Size (bits)	Comment
COUNT	22	Frame dependent input COUNT[0]...COUNT[21]
$\mathrm{K}_{\mathbf{c}}$	$64-128 \mathrm{KLEN}$	Cipher key $\mathbf{K}_{c}[0] \ldots \mathrm{K}_{c}[\mathrm{KLEN}-1]$, where KLEN is in the range

Table 6: ECSD A5/3 outputs

Parameter	Size (bits)	Comment
BLOCK1	348	Keystream bits BLOCK1[0]...BLOCK1[347]
BLOCK2	348	Keystream bits BLOCK2[0]...BLOCK2[347]

NOTE 1: At the time of writing, the standards specify that $\mathbf{K}_{\mathbf{C}}$ is 64 bits long. Theis specification of the $\mathbf{A 5} / \mathbf{3}$ algorithm only allows KLEN to be of value 64. for possible future enhancements to support longer keys.
NOTE 2: It must be assumed that $\mathbf{K}_{\mathbf{C}}$ is unstructured data - it must not be assumed, for instance, that any bits of $\mathbf{K}_{\mathbf{C}}$ have predetermined values.

5.3 Function Definition

(See figure B.3, Annex B).
We define the function by mapping the ECSD A5/3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of ECSD A5/3.

So we define:

$$
\begin{aligned}
& \mathrm{CA}[0] \ldots \mathrm{CA}[7]=11110000 \\
& \mathrm{CB}[0] \ldots \mathrm{CB}[4]=00000 \\
& \mathrm{CC}[0] \ldots \mathrm{CC}[9]=0000000000
\end{aligned}
$$

CC[10]...CC[31] = COUNT[0]...COUNT[21]
$\mathrm{CD}[0]=0$
CE[0]...CE[15] = 0000000000000000
CK[0]...CK[KLEN-1] $=\mathrm{K}_{\mathrm{C}}[0] \ldots \mathrm{K}_{\mathrm{C}}[$ KLEN-1]
If KLEN < 128 then
CK[KLEN] ...CK[127] $=\mathrm{K}_{\mathrm{C}}[0] \ldots \mathrm{K}_{\mathrm{C}}[127-$ KLEN $]$
(So in particular if KLEN $=64$ then $\mathbf{C K}=\mathbf{K}_{\mathbf{C}} \| \mathbf{K}_{\mathbf{C}}$)
CL=696
Apply KGCORE to these inputs to derive the output CO[0]...CO[695].
Then define:
BLOCK1[0]...BLOCK1[347] = CO[0]...CO[347]
BLOCK2[0]...BLOCK2[347] = CO[348]...CO[695]

6 GEA3 algorithm for GPRS encryption

6.1 Introduction

The GPRS GEA3 algorithm produces an M-byte keystream string. M can vary; in this specification we assume that M will never exceed $2^{16}=65536$.

We define this algorithm in terms of the core function KGCORE.

6.2 Inputs and Outputs

The inputs to the algorithm are given in table 7, the output in table 8:
Table 7: GEA3 inputs

Parameter	Size (bits)	Comment
INPUT	32	Frame dependent input INPUT[0]...INPUT[31]
DIRECTION	1	Direction of transmission indicator DIRECTION[0]
K_{C}	64-128KLEN	Cipher key $\mathbf{K}_{c}[\mathbf{0}] \ldots \mathbf{K}_{\mathbf{c}}[$ KLEN-1], where KLEN is in the range $64 . . .128$ inclusive (see Notes 1 and 2 below)
M		Number of octets of output required, in the range 1 to 65536 inclusive

Table 8: GEA3 outputs

Parameter	Size (bits)	Comment
OUTPUT	8 M	Keystream octets OUTPUT\{0\}...OUTPUT\{M-1\}

NOTE 1: At the time of writing, the standards specify that K_{c} is 64 bits long. Theis specification of the GEA3 algorithm only allows KLEN to be of value 64. allows for possible future enhancements to support longer keys.
NOTE 2: It must be assumed that $\mathbf{K}_{\mathbf{C}}$ is unstructured data - it must not be assumed, for instance, that any bits of $\mathbf{K}_{\mathbf{C}}$ have predetermined values.

6.3 Function Definition

(See figure B.4, Annex B).

We define the function by mapping the GEA3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GEA3.

So we define:

```
CA[0]...CA[7] = 11111111
CB[0]...CB[4] = 00000
CC[0]...CC[31] = INPUT[0]...INPUT[31]
CD[0] = DIRECTION[0]
CE[0]...CE[15] = 0000000000000000
CK[0] ...CK[KLEN-1] = \(K_{C}[0] \ldots K_{C}[\) KLEN-1]
If KLEN < 128 then
CK[KLEN] ...CK[127] = \(\mathrm{K}_{\mathrm{C}}[0] \ldots \mathrm{K}_{\mathrm{C}}[127-\) KLEN \(]\)
(So in particular if KLEN \(=64\) then \(\mathbf{C K}=\mathbf{K}_{\mathbf{C}} \| \mathbf{K}_{\mathbf{C}}\) )
\(\mathbf{C L}=8 \mathbf{M}\)
```

Apply KGCORE to these inputs to derive the output CO[0]...CO[8M-1].
Then for $0 \leq \boldsymbol{i} \leq \mathbf{M}-\mathbf{1}$ define:
OUTPUT $\{i\}=\mathrm{CO}[8 i] \ldots \mathrm{CO}[8 i+7]$
where $\mathbf{C O}[8 i]$ is the most significant bit of the octet.

