Page 1

3GPP TSG-SA4 Meeting #93
S4-170496
Busan, Republic of Korea, 24-28 April 2017

update to S4-170455
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	26.347
	CR
	0002
	rev
	3
	Current version:
	14.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:

	TRAPI: Multiple Corrections

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	S4

	
	

	Work item code:
	TRAPI
	
	Date:
	2017-04-18

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Several typos, wrong references and style issues in the original submission. Also the RTP streaming API is generalized for extensibility

	
	

	Summary of change:
	Changes the document throughout to make it consistent and correcnt
Enabled extensibility

	
	

	Consequences if not approved:
	May lead to confusion for the implementers
Unnecessary text and implementation duplication

	
	

	Clauses affected:
	2, 3.2, 4.1, 4.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5, 6.1.1, 6.1.2, 6.2.2.1, 6.2.2.2, 6.2.2.3, 6.2.2.4, 6.2.2.5, 6.2.2.6, 6.2.3.1, 6.2.3.2.1, 6.2.3.2.5, 6.2.3.2.6, 6.2.3.3.1, 6.2.3.4.4, 6.2.3.7.2, 6.2.3.9.1, 6.2.3.9.5, 6.2.3.9.6, 6.2.3.10.1, 6.2.3.16.4, 6.2.3.20.1, 6.3.2.1, 6.3.2.3, 6.3.2.4, 6.3.2.5, 6.3.2.6, 6.3.3, 6.4, 7.1, 7.3, 8.2.3, Annex B.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

===== AUTONUM CHANGE =====
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".

[3]
3GPP TS 22.246: "Multimedia Broadcast/Multicast Service (MBMS) user services; Stage 1".

[4]
3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description".

[5]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[6]
3GPP TR 26.852: "Multimedia Broadcast/Multicast Service (MBMS); Extensions and profiling".

[7]
3GPP TS 26.247: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".

[8]
IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".

[9]
Object Management Group: "Interface Definition Language™ (IDL™) 4.0".

[10]
IETF RFC 3066: "Tags for the Identification of Languages".

[11]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[12]
3GPP TS 29.116: "Representational state transfer over xMB reference point between content provider and BM-SC".

[13]
IETF RFC 7595: "Guidelines and Registration Procedures for URI Schemes".

[14]
IETF RFC 7230: " Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[15]
IETF RFC 2616: " Hypertext Transfer Protocol (HTTP/1.1)".
===== AUTONUM CHANGE =====
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

API
Application Programming Interface

IDL
Interface Definition Language

JSON
JavaScript Object Notation
MAA
MBMS-Aware Application

MPD
Media Presentation Description

SDP
Session Description Protocol
USD
User Service Description

URL
Universal Resource Locator

===== AUTONUM CHANGE =====
4.1
Introduction

The present document addresses a specific interface for an end-to-end application service, namely the interface between the MBMS client and the MBMS-Aware Application (MAA) as shown in Figure 4.1-1. An application service provider may provide content through xMB (see TS 26.346 [5] and TS 29.116 [12]) to the BMSC, but may also provide information directly to an MAA. The BMSC uses MBMS User Services as well as MBMS bearer services and unicast bearers to communicate with the MBMS client. The present document deals with the interface between the MBMS client and the MAA, referred to as MBMS Application Programming Interfaces (MBMS-APIs). The APIs may be used directly by the MAA, or the MBMS URL Handler may use the MBMS-APIs after receiving an MBMS URL from a generic application.

[image: image1.emf]BM-SC

MBMS-

GW

MME

E-UTRAN

SGi-mb

SGmb

Sm

M1

Application

Service

Provider

xMB

M3

MBMS-

aware

Application

UE

Modem

MBMS

Client

MBMS-API

Application Service Discovery

TS26.346 including broadcast and unicast

Figure 4.1-1: End-to-end Architecture for Application Service Providers using eMBMS for Delivery
===== AUTONUM CHANGE =====
4.2
Network Architecture and MBMS User Services (Informative)

According to TS 26.346 [5], three distinct functional layers are defined for the delivery of an MBMS-based service:

1)
Bearers: Bearers provide the mechanism by which IP data is transported. MBMS bearers as defined in 3GPP TS 23.246 [4] and 3GPP TS 22.146 [2] are used to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of MBMS-based services. MBMS bearers may be used jointly with unicast PDP contexts in offering complete service capabilities.

2)
Delivery Method: When delivering MBMS content to a receiving application one or more delivery methods are used. The delivery layer provides functionality such as security and key distribution, reliability control by means of forward-error-correction techniques and associated delivery procedures such as file-repair, delivery verification. Three delivery methods are defined, namely download, streaming, and group communication. The present document does not address group communication.

3)
User service: The MBMS User service enables applications. Different applications impose different requirements when delivering content to MBMS subscribers and may use different MBMS delivery methods.

MBMS User Service architecture is based on an MBMS client on the UE side and a BM-SC on the network side. Details about the BM-SC functional entities are given in figure 4 of TS 26.346 [5].

The BM-SC and UE may exchange service and content related information either over point-to-point bearers or MBMS bearers whichever is suitable. Among others, the following MBMS procedures are defined in TS 26.346 [5]:

-
User Service Discovery / Announcement providing service description material to be presented to the end-user as well as application parameters used in providing service content to the end-user.

-
MBMS-based delivery of data/content from the BM-SC to the UE over IP multicast or over IP unicast.

-
Associated Delivery functions are invoked by the UE in relation to the MBMS data transmission. The following associated delivery functions are available:
-
File repair for download delivery method used to complement missing data.
===== AUTONUM CHANGE =====
4.3.1
Introduction

The MBMS system may provide services to an MAA for which all associated resources are delivered through an MBMS User Service including broadcast and unicast. The services may be made accessible through an MBMS-API defined in the present document. The present document defines an initial set of Application User Services and corresponding MBMS-APIs. For each Application User Services, one MBMS-API is defined.

MBMS Application User Services define how an MAA gets access to the content delivered via MBMS user services.

The specification may be extended to add additional Application User Services and MBMS-APIs.

The MBMS Application User Services that are covered by the present document are defined in this clause.
===== AUTONUM CHANGE =====
4.3.2
File Delivery Application User Service

The File Delivery Application User Service provides MAAs with methods to manage the reception of files delivered over MBMS Download Delivery services as defined in TS 26.346 [5]. Some of the defined interfaces allow an MBMS-Aware Application to get information on the available MBMS File Delivery Application Services and possibly on the files scheduled to be carried on these services; to start and stop the capture of files on these services; and to allow the MBMS Client to provide notifications associated with the reception of files. Clause 6.2 provides a complete description and the associated uses for the interfaces in the File Delivery Application Service API and includes an abstract IDL definition for these interfaces.
===== AUTONUM CHANGE =====
4.3.3
DASH Application User Service

The DASH Streaming Service API defined in clause 6.3 provides MAA with interfaces to manage the reception of DASH streaming content (as defined in TS 26.247 [7]) delivered over DASH-over-MBMS Streaming Services (as defined in TS 26.346 [5], clause 5.6). Some of the interfaces defined allow an MAA to get information on the available DASH Streaming Services; to start and stop the reception of DASH streaming content on these services; and to allow the MBMS Client to provide notifications associated with the receptions of DASH streaming content. Clause 6.3 provides a complete description and the associated uses for the interfaces in the DASH Streaming Service API and also includes an abstract IDL definition for these interfaces.
===== AUTONUM CHANGE =====
4.3.4
MBMS RTP Streaming User Service

MBMS RTP Streaming User Service provides the MAA with interfaces to access MBMS Streaming Delivery Services as defined in TS 26.346 [5]. The MAA may request start or stop any available RTP streaming service. The MAA will receive information about the RTP data. The API for the MBMS RTP Streaming User Services is defined in clause 6.4 using the the serviceType set to RTP for the service request.
The SDP provided in the sdpURI should be used together the RTP interface as documented in clause 7.5.
===== AUTONUM CHANGE =====
5
Reference Client Architecture

Figure 5.1 shows a general service architecture including a reference client. On the network side, an MAA and content provider provides media formats to a BM-SC, typically through the xMB interface and initiates services and sessions through the xMB interface. The BMSC establishes MBMS User Services and the lower layers support the delivery of the data through regular 3GPP unicast as well as MBMS broadcast bearers.

The MAA initiates the communication with the MBMS client using the MBMS-API. The MBMS client identifies the relevant services and provides the delivered user data to MAA. Typically, the media formats are provided through interfaces and to functions that conform to well-defined media delivery formats. The MAA controls the media client.

In TS 26.346 [5] the interface between the BMSC and the MBMS client for both unicast and broadcast related services and functions are defined. The interface between the MBMS client and the MAA is defined in the present document..

The focus of the present document is to define app-developer and web-friendly interfaces and programming structures to enable such an MAA to interact with the MBMS client.

An MAA that communicates with the MBMS client through APIs and possibly URL handlers as defined in the present document is referred to as MAA. The MBMS Client is a function that implements functionalities defined in TS 26.346 and provides APIs interfaces to expose relevant functionalities to an MAA.

 [image: image2.emf]NetworkUE

MBMS

Management

System

Application

and Content

Provider

Media and

Content Server

BMSC

eNode-B

xMB

TS26.116

Modem

MBMS Client

MBMS-Aware

Application

Media Server

Unicast

MBMS Broadcast bearers

Media Client

TS26.346

MBMS API

Media/Content Format

Application Data

Figure 5.1: General Reference Architecture for Client

Figure 5.2 shows a specific instantiation for the DASH Streaming Application User Service using the DASH Streaming MBMS-API. In this case the content formats conform to TS 26.247. The DASH client may be viewed as part of the MAA, and as 3GPP defines interfaces into a DASH client in TS 26.247 [7] also interfaces to the DASH client function are in focus of the present document.

[image: image4.emf]Network

UE

MBMS

Management

System

Application

and Content

Provider

DASH Server

BMSC

eNode-B

xMB

TS26.116

Modem

MBMS Client

MBMS-Aware

Application

DASH Server

Unicast

MBMS Broadcast bearers

DASH Client

TS26.346

DASH

Streaming

MBMS API

TS 26.247

TS 26.247

Application Data

Figure 5.2: Client Reference Architecture for DASH-over-MBMS Streaming

The control part of the MBMS-API are used for service discovery, registration, notifications, state changes and other control messages between the MAA and the MBMS client and for other control messages. The control part of the MBMS-APIs are defined in clause 6.

The data part interfaces are used to provide content delivered through MBMS User services to the MAA. However, the data is using formats and interfaces that are primarily MBMS independent such that for the MAA the delivery over MBMS is obscured. MBMS Client to application interfaces for data is primarily introduced in clause 7.
===== AUTONUM CHANGE =====
6.1.1
Background

Figure 6.1.1-1 provides a graphical overview of how the MBMS Control Application Programming Interface (API) fits into the UE architecture of delivering MBMS content to MAAs.

[image: image5.emf]MBMS URL

Handler

MBMS-Aware

Application

Application

URL Dispatch

MBMS-API

HTTP URL

Handler

HTTP

Function

MBMS Client

Figure 6.1.1-1: MAA to MBMS function API

The MBMS API implementation on High-Level Operating Systems and application development frameworks is typically realized as a programmatic library that is linked to the application code and that runs in the application context. That library implementation communicates with a particular MBMS Client implementation and abstracts the implementation-specific interactions with the MBMS Client from the MAA. The MBMS-API exposes to the MAA a set of simple interfaces described in the IDL definitions in clauses of the present document; in particular, the IDL makes use of callback functions as the means for the MBMS Client to notify MAAs of events relevant to the reception of content delivered over MBMS user services. The programmatic library communication with the MBMS Client is implementation-specific, it is not in the scope of the present document, and it can be implemented using different solution approaches (e.g., smartphone High-Level Operating System services, WebSockets, etc.).

It is understood that in some application development frameworks (e.g., HTML/Web Applications), linking a programmatic library to the MAA is not possible. In these cases, the callback functions may not be realized programmatically as function calls. In particular, the MAA may need to implement the necessary approach available on these frameworks (or the selected solution approach) to receive event notifications from the MBMS client in place of callback functions. For such frameworks, the implementation of callback functions described in the IDL of the present document is not required. However, the information structures defined on the IDL callback functions are to be communicated to the MAA when the MBMS Client generates the corresponding event notification to the MAA using the available (or selected) notification mechanism.

Figure 6.1.1-2 provides an overview of the graphical representation of multiple MAAs connecting to the MBMS client. Each MAA uses its own instantiation of the MBMS-API.

[image: image6.emf]MBMS-Aware

Application

MBMS Client

MBMS API

MBMS-Aware

Application

Figure 6.1.1-2: Multiple MAAs connecting to MBMS Client

Guidelines on API documentation are provided in Annex A.

It is also recommended to separate the description for MBMS client functions and the description of the MAA functions as it is expected that they are developed by independent parties.

===== AUTONUM CHANGE =====
6.1.2
Parameter description notation

In each Application Service API described in this clause, the parameters in the API interfaces are described in the following format:

-
dataType parameterName – description of the parameter.

Each interface parameter is defined via a separate item in the list of parameters. The dataType on the item defines the programmatic data type for the parameter named parameterName, as described on the IDL for the API; the dataType may be a complex structure on the IDL. The parameterName provides a name for a parameter on the API interface. A description follows to provide information on the meaning and use for the parameter.

===== AUTONUM CHANGE =====
6.2.2.1
Overview

Figure 6.2.2.1-1 provides an informative MBMS client state model in order to appropriately describe the messages on the service API. Five different states are defined as listed in Table 6.2.2.1-1.

Note that the state model is defined on the granularity per service and each MAA. This means that the MBMS client may at least conceptually have to maintain multiple state machines, namely one for each MAA/service combination.

The state model does not imply any implementation requirements for an MBMS client, but is used as a model to support the description of the APIs.

State changes may be the result of:
-
Requests from the MAA

-
Timer expiration in the MBMS client

-
Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

[image: image7.emf]CAPTURE_NOTIFY

CAPTURE_BACKGROUND

REGISTERED

IDLE

Timeout registrationValidityDuration

deregisterFdApp()

registerFdApp()

startFdCapture()

stopFdCapture()

registerFdApp()

deregisterFdApp()

startCaptureFd()

stopCaptureFd()

Figure 6.2.2.1-1: State Diagram

Table 6.2.2.1-1 describes the states for the MBMS client. Detailed descriptions are provided in the following subclauses.

Table 6.2.2.1-1: States and Parameters of MBMS Client

	States and Parameters
	Definition

	IDLE
	In this state the MAA is not registered with the MBMS client and it may not keep the service parameters up-to-date.

For more details see clause 6.2.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client. The MBMS client may not be aware of the state, it is only a state perceived by the MAA.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, but it is not providing file capture services to the MAA(s).

For more details see clause 6.2.2.4.

	CAPTURE_NOTIFY
	In this state the MBMS client provides file capture for one specific service to a registered MAA and notifies the MAA on any received file.

For more details see clause 6.2.2.5.

	CAPTURE_BACKGROUND
	In this state the MBMS client provides file capture for one specific service to an MAA without notifying the MAA on any received file for some agreed time.

For more details see clause 6.2.2.6.

===== AUTONUM CHANGE =====
6.2.2.2
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined Table 6.2.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.

Table 6.2.2.2-1: Parameters of MBMS Client

	States and Parameters
	Definition

	_Preconfigurations
	

	
	
	_maxRegistrationValidityDuration
	MBMS client parameter that provides the maximum time after deregistration that a client still captures files on behalf of an MAA.

	
	
	_defaultAvailabilityDeadline
	the time a file that is kept in the MBMS client owned storage location.

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the MAA and assigned to the app.

	
	_serviceClass[]
	A list of service classes identifying the services the MAA has access to.

	
	_registrationValidityDuration
	A period of time following the MAA de-registration over which the MBMS client continues to capture files for the MAA.

	
	_locationPath
	The storage location where the MAA wants the MBMS client to store collected files.

	
	_backgroundCaptureTimer
	Timer on how long files are captured in background.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a File Delivery Application service over which the MBMS client collects files for the MAA.

	
	
	_serviceClass
	The service class associated with the File Delivery Application service assigned the Service ID..

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client.

	
	
	_fileCaptureRequest[]

 - _fileURI

 - _disableFileCopy

 - _captureOnce
	A sequence of requested file captures from the MAA with some parameters.

The _fileURI identifies the file(s) as they will also be used on the FLUTE FDTs for the File Delivery Application Service Allowed values for the _fileURI include:

-
The empty string signals that the MAA is interested in
receiving all new files and updates to previously received
files.

-
A BaseURL, i.e., a complete path for subdirectory (a
prefix) identifying a group of files under that directory.

-
An absoluteURL, i.e., a complete URL that identifies a
single file resource.

 _disableFileCopy – when set to true, this signals that the MAA does not want the MBMS client to make the file available on the application space.

_captureOnce – when set to true, signals that a file matching a requested via the _fileURI (i.e. a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once.

	
	
	_fileURIStatus[]

 _URI

 _contentType

 _deliveryState

 _md5

 _deliverySchedule[]

 _start

 _stop

 _appState

 _notified

 _fileLocation
	A sequence of _fileURIStatus[] that states the status of files the MAA may be interested or the service provides, possibly using scheduling information. The internal parameters store relevant information on the file such as content_type or MD5, if the information is available yet.

The delivery state can be:

-
FD_RECEIVED - the file is received by the MBMS client and no more updates are expected according to the file schedule.

-
FD_SCHEDULED - scheduled, if a file schedule is delivered and a file is scheduled, but not yet received.

-
FD_IN_PROGRESS – the reception of the file is in progress

The delivery schedule records the current upcoming delivery schedules.

The application state may be transitioned to express that

-
the file was moved to the application,

-
failed if the move failed or

-
the location path points to an MBMS client controlled space.

A _notified flag is provided to indicate if the MAA has been notified on the reception of the file.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only _sessionSchedule records should be included for which the value of the _stop time is in the future.

===== AUTONUM CHANGE =====
6.2.2.3
MBMS Client Operation in IDLE state

In the IDLE state, the MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.

When the MBMS client received the registerFdApp() call as defined in subclause 6.2.3.2, then:
1)
The MBMS client checks the input parameters for consistency and sets the internal variables

a)
If appId is an empty string then the MBMS client throws a MISSING_PARA
METER result code in the registerFdResponse() as defined in subclause 6.2.3.3 and aborts these steps. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

b)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided, the MBMS client considers the MAA to be registered with a service class that is also empty and only allows the MAA to have access to File Delivery Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).

c)
On receiving a registerFdApp() following a deregisterFdApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setFdServiceClassFilter() method.

d)
If locationPath is not defined, the MBMS client provides means such that the MAA has access to the files the MBMS Client received on behalf of the MAA. If the locationPath is defined, the internal variable _locationPath is set to the value of the parameter.

e)
If registrationValidityDuration is not defined, the value of the internal parameter _registrationValidityDuration is set to 0 (zero) . If the registrationValidityDuration is defined, the internal variable _ registrationValidityDuration is set to this parameter, or to _maxRegistrationValidityDuration if the value of registrationValidityDuration is larger than _maxRegistrationValidityDuration.

f)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerFdApp() interface to send notifications of event occurrences to the MAA.

2)
generates a response registerFdResponse() as defined in subclause 6.2.3.3 and changes to REGISTERED state:

a. If the MBMS client functions cannot be activated for any reason, especially if the File Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message and may set acceptedFdRegistrationValidityDuration to any arbitrary value.

b. If the MAA did not provide a mandatory parameter, the MBMS client functions cannot be activated and the MISSING_PARAMETER registration response code is sent. The MBMS client may provide a message and may set acceptedFdRegistrationValidityDuration to any arbitrary value.

c. If the MBMS client functions can be activated, then

i. the RegResponseCode is set to REGISTER_SUCCESS registration response code,
ii. a message may be generated,
iii. the MBMS client sets the value of acceptedFdRegistrationValidityDuration to the _registrationValidityDuration.

d. The MBMS client sends the response with the above parameters
3)
If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching file delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then the MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER, then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call, it shall return version "1.0".
===== AUTONUM CHANGE =====
6.2.2.4
MBMS Client Operation in REGISTERED state

For each registered MAA and the assigned parameters according to Table 6.2.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest.
For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service classes registered by the MAA in _serviceClass[], one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever an updated USD is available:

-
For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

-
If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

-
The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

-
If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

-
The _serviceBroadcastAvailability is continuously updated set it to BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service), if not, it is set to BROADCAST_UNAVAILABLE (if the UE is NOT in broadcast coverage of the service).

-
If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _fileURI[] and _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client should only include _fileUri[] list if there is a current or a future scheduled transmission of that file. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future. The _deliveryState is set appropriately, e.g. to FD_SCHEDULED if the file is scheduled and FD_IN_PROGRESS, if the FDT is available, but the file reception is not yet completed.

If updates are provided and added to the _service[] parameter, the MBMS client should send a fdServiceListUpdate() callback as defined in clause 6.2.3.17.

When the getFdServices() call is received by the MBMS client as defined in clause 6.2.3.4, the MBMS client sets the parameters as follows:

-
If the _service[] list is empty, then an empty list is returned.

-
For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the language is set to the value _language.
-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
If at least one _sessionSchedule[] record is present then:
-
The activeDownloadPeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[]such that the corresponding _stop time is in the future.

-
The activeDownloadPeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present, or the _start and _stop on existing entries in _sessionSchedule[] are in the past:
-
The activeDownloadPeriodStartTime is set to 0.

-
The activeDownloadPeriodStopTime is set to 0.

When the setFdStorageLocation() method as defined in sub-clause 6.2.3.5 is received by the MBMS client, the MBMS client runs the following steps:

· It updates the internal variable _locationPath to the parameter value of locationPath provided in the call.

Note:
The MBMS client provides any new files for that MAA at the locationPath, but not ongoing file capture.

· If the storage location is empty the MBMS client selects a local directory on the device, which the MAA can access directly via file access interfaces or via HTTP GET methods (see sub-clauses 6.2.2.5 and 6.2.2.6).

When the setFdServiceClassFilter() is received, the MBMS client runs the following steps:

· It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

· Note that this does not necessarily change the ongoing MBMS client operation, e.g. capturing.
· The MBMS client issues a fdServiceListUpdate() notification as defined in clause 6.2.3.17 to the MAA to notify it of this effect.

When the startFdCapture() method is received, the MBMS client runs the following steps:

-
The MBMS client checks for errors and if necessary, the fdServiceError() notification as defined in clause 6.2.3.18 is initiated.

-
If the requested fileURI matches an existing outstanding startFdCapture() request as recorded on the _fileCaptureRequest[], the internal error code is set to FD_DUPLICATE_FILE_URI and the fdServiceError() notification as defined in clause 6.2.3.18 is initiated.

-
If the requested fileURI is ambiguous in the following manner

-
The fileURI is an absolute URL or a Base URL and there is an existing outstanding startFdCapture() with an empty fileURI, or

-
fileURI is an absolute URL and there is an existing outstanding startFdCapture() with an Base URL in the fileURI that is base URL for the aboluteURL.

then, the internal error code is set to FD_AMBIGUOUS_FILE_URI and the fdServiceError() notification as defined in 6.2.3.18 is initiated.

-
Otherwise, The fileURI is added to the internal list of the MBMS client _fileCaptureRequest[]. Any overlapping entry should be avoided.

-
The MBMS client removes existing outstanding startFdCapture() requests from _fileCaptureRequest[] when the requested fileURI on a startFdCapture() is broader (i.e., superseding older requests) than these existing outstanding startFdCapture() requests; this request consolidation will not impact ongoing file downloads, specifically:
-
When fileURI is empty on the new startFdCapture(), all existing outstanding startFdCapture() are removed.

-
When fileURI is a Base URL, existing outstanding startFdCapture() requests with an absolute URL are removed if the new fileURI in the request is a base URL for the absolute URL on these existing outstanding startFdCapture().

-
The _disableFileCopy is set to the value of disableFileCopy.

-
The _captureOnce is set to the value of captureOnce.

-
The MBMS client is in CAPTURE_NOTIFY mode.

Whenever there has been a change to the parameters reported to the MAA in response to a getFdServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _fileURIStatus[] adding new _URIs with _deliveryState set to FD_SCHEDULED, the MBMS client notifies MAA with fdServiceListUpdate() as defined in clause 6.2.3.17.

When the deregisterFdApp() is received, the client moves to IDLE state.

===== AUTONUM CHANGE =====
6.2.2.5
MBMS Client Operation in CAPTURE_NOTIFY State
In the CAPTURE_NOTIFY state, the MBMS client carries out all actions as in the REGISTERED state.

For one MBMS user service identified with one service record in the internal parameter _service[] with a specific _serviceID the MBMS client continuously updates the internal parameters for this service.

In addition, for each fileCaptureRequest[] record in the service record:
1)
If the _fileUri is empty then the MBMS client receives all new and updated files delivered on this MBMS service with service ID serviceId. Updated files may be discovered by a change of the MD5 in the FDT.
2)
If the _fileUri is a complete absolute URI, then the MBMS client receives only that file delivered on the MBMS service with service ID serviceId which has a matching URL as the fileURI parameter if the file is received for the first time or is a new version since the last reception.

3)
If the _fileUri is a Base URI as defined in RFC 3986 [11], then the MBMS client receives all new and updated files delivered on the MBMS service with service ID serviceId which are delivered through the MBMS user service with a matching BaseURL of the one defined in the fileURI parameter.

Furthermore, the MBMS Client performs the actions as follows.
4)
For each file announced via the file schedule element and matching any of the capture requests in _fileCaptureRequest[]:
-
the MBMS client creates an entry in the _fileURIStatus[] adding the _URI and delivery schedules _deliverySchedule[] and sets the _deliveryState to FD_SCHEDULED.

-
The MBMS Client should send a fdServiceListUpdate() callback as defined in clause 6.2.3.17.

5)
For each file announced in the FDT and matching any of the capture requests in fileCaptureRequest[], the MBMS client:
-
Updates or creates an entry adding the _URI.
-
Sets the _deliveryState to FD_IN_PROGRESS.
-
Does not download the same version of the file if the Content-MD5 in the File element of the FDT Instance is the same as a previously received version of the file.
-
If a MIME type was defined via the FDT describing that file transmission, the _contentType parameter is set to the value of the Content-Type as in the File entry of the FDT. If the MIME type is not defined, the _contentType parameter is set to an empty string. The MD5 may be extracted from the FDT if present.

6)
For each successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[]:
-
The MBMS client updates the _deliveryState to FD_RECEIVED.
-
If the _locationPath is defined and if the MBMS client is successful in copying/moving the collected file to the directory in _locationPath, the MBMS client sets the _appState to moved and the _fileLocation pointing to the file in the _locationPath.
-
If the _locationPath is empty, (i.e. _appState indicates that MBMS client space needs to be used or that the MBMS client selected a location on the MAA space) or if the MBMS client is not successful in copying/moving the collected file to the directory defined in _locationPath (_appState is set to indicate the failure) then the _fileLocation is set to:

-
A complete file name (including the directory path) on the UE local file system where the file can be accessed by the MAA. The file may be stored under an MBMS client defined directory that is accessible to the MAA.

-
An HTTP URL where the MAA can retrieve the file using the HTTP GET method. This format may be used when the file is stored on a location that is not directly accessible to the MAA.

-
The MBMS client announces it through fileAvailable() notification as defined in clause 6.2.3.8 to the MAA by setting the parameters as follows:

-
The serviceId is set to the _serviceID.

-
The fileUri is set to the value of _URI.

-
The fileLocation is set to the value of the _fileLocation.

-
The contentType is set to the _contentType.

-
If the _appState is failed or internal, the MBMS client sets the value of the availabilityDeadline to the internal variable _defaultAvailabilityDeadline, otherwise sets the value to 0.

-
The internal _notified flag is set to true.
-
If the _captureOnce is set to true, the corresponding fileURI is excluded/removed from the _fileCaptureRequest[] and from the internal _fileURIStatus[] list.

7)
For each non-successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[] (after file repair failed or when file repair is not defined for the service):

-
The MBMS client sets the sets the _deliveryState to FD_SCHEDULED
-
The MBMS client announces it through fileDownloadFailure() notification as defined in 6.2.3.10 to the MAA with the following parameter settings:
-
The serviceId is set to the _serviceID.

-
The fileUri is set to the value of _URI.

Whenever the in the internal _fileURIStatus[] was changed, the MBMS client should issue a fileDownloadStateUpdate()notification as defined in 6.2.3.15 with the following parameters:
-
The serviceId is set to the _serviceID.

The MBMS client moves to REGISTERED state if the _fileCaptureRequest[] is empty.

When the getFdAvailableFileList() API call as defined in clause 6.2.3.12 is received, the MBMS client runs the following steps:

-
For the service with internal _serviceId set to the input parameter serviceID, for each successfully received file (i.e. internal _deliveryState being received) that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record with an internal status _notified set to false, the following parameters are assigned
-
The fileUri is set to the value of _URI.

-
The fileLocation is set to the value of the _fileLocation.

-
The contentType is set to the _contentType.

-
If the _appState is failed or internal, the MBMS client sets the value of the availabilityDeadline to the internal variable _defaultAvailabilityDeadline, otherwise sets the value to 0.

-
The internal status _notified set to true.
When the MBMS client receives a stopFdCapture() request as defined in clause 6.2.3.13 that matches an entry in the internal parameter _fileCaptureRequest[]:
-
The MBMS client removes this entry from the _fileCaptureRequest[] record in order to stop any on-going and future file receptions that match that particular record.

-
The MBMS client should keep records of outstanding startFdCapture() requests that are unambiguous such that a stopFdCapture() can unambiguously remove an entry in the internal parameter _fileCaptureRequest[] from an earlier startFdCapture() request.
-
The MBMS client may also send a failure indication via the fdServiceError() with the FD_AMBIGUOUS_FILE_URI error code when the requested fileURI on a stopFdCapture() is more specific than an existing outstanding startFdCapture() requests that is broader:

-
When fileURI is an absolute URL or a Base URL and there exists an entry in the internal parameter _fileCaptureRequest[] with an empty fileURI.

-
When fileURI is an absolute URL and there exists an entry in the internal parameter _fileCaptureRequest[] with an empty fileURI. With an Base URL in the _fileURI that is base URL for the aboluteURL.

-
The MBMS client may send a failure indication via the fdServiceError() with the FD_STOP_FILE_URI_NOT_FOUND error code to any stopFdCapture() request that does not match an entry in the internal parameter _fileCaptureRequest[].

When the getFdActiveServices() API call as defined in clause 6.2.3.14 is received, the MBMS client runs the following steps:

-
For the service with internal _serviceId set to the input parameter serviceID, for each entry in the internal parameter _fileCaptureRequest[] one record in the response is set with the fileUri set to the value of _URI.
When the MBMS Client receives getFdDownloadStateList()API call as defined in clause 6.2.3.16, it runs the following steps:

-
For the service with internal _serviceId set to the input parameter serviceID, for each file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record, the following parameters are assigned:
-
The fileUri is set to the value of _URI.

-
The state is set to the internal value _deliveryState.
If the deregisterFdApp() API call invoked the MBMS client:
-
And if the _fileCaptureRequest[] record contains no more entries or the _registrationValidityDuration is set to zero, the MBMS client moves to IDLE state.

-
If the _fileCaptureRequest[] record contains one or more entries, the MBMS client moves to CAPTURE_BACKGROUND state.

===== AUTONUM CHANGE =====
6.2.2.6
MBMS Client Operation in CAPTURE_BACKGROUND State
When the MBMS client enters this state, the internal _backgroundCaptureTimer is set to _registrationValidityDuration and started. The MBMS client remains in this state until this timer expires, or the MAA invokes a new registerFdApp() API call.

Once the time for the registration validation has expired, the MBMS client clears all context for the MAA and returns to IDLE state for the MAA. Until this is the case, the MBMS client performs the following actions.

The MBMS client carries out all actions as in the CAPTURE_NOTIFY state, except for those associated with sending notifications (invoking call-back functions) to the app.

While an MAA is deregistered and files are received for that MAA, if multiple versions of the same file (i.e., the same fileURI but different Content-MD5 in the FDT for a File Delivery Application Service) are received, only the last file version received is kept by the MBMS client and made available to the MAA after the new registration.

If the MAA is not currently registered at the time and the download of files for that MAA fails, the MBMS client is not able to inform MAA.

For one MBMS user service identified with one service record in the internal parameter _service[] with a specific _serviceID the MBMS client continuously updates the internal parameters for this service. Whenever the delivery state is changed in the state, the internal _notified flag is set to false.

===== AUTONUM CHANGE =====
6.2.3.1
Overview

Table 6.2.3.1-1 provides an overview over the methods defined for the File Delivery Application Service API. Different types are indicated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between the MAA (A) and the MBMS client (C) is provided.

Table 6.2.3.1-1: Methods defined for File Delivery Application Service API

	Method
	Type
	Direction
	Brief Description
	Clause

	registerFdApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.2.3.2

	deregisterFdApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.2.3.9

	startFdCapture
	State change
	A -> C
	Start download of files over file delivery service
	6.2.3.7

	stopFdCapture
	State change
	A -> C
	Stop download of files for the file delivery service
	6.2.3.13

	getFdActiveServices
	Status query
	C <-> A
	Get list of currently active services
	6.2.3.14

	getFdAvailableFileList
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.2.3.12

	getFdServices
	Status query
	C <-> A
	Retrieves the list of File Delivery services defined in the USD
	6.2.3.4

	getFdDownloadStateList
	Status query
	C <-> A
	Retrieves the state of files pending download
	6.2.3.16

	getVersion
	Status query
	C <-> A
	the version of the File Delivery Application Service interface
	6.2.3.21

	setFdServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.2.3.6

	setFdStorageLocation
	Update to parameter list
	A -> C
	Sets the storage location to store the MAA downloaded files
	6.2.3.5

	registerFdResponse
	Response
	C -> A
	The response to the MAA service register API
	6.2.3.3

	fileAvailable
	Notification
	C -> A
	Notification to MAA when a new file is downloaded per MAA capture request
	6.2.3.8

	fdServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for file delivery services
	6.2.3.17

	fdServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with broadcast download of service
	6.2.3.18

	fileDownloadFailure
	Notification
	C -> A
	Notification to MAA that download of a requested file failed
	6.2.3.10

	inaccessibleLocation
	Notification
	C -> A
	Notification to MAA that the storage location set by the MAA is not accessible by the MBMS Client.
	6.2.3.20

	insufficientStorage
	Notification
	C -> A
	Notification to MAA indicating a warning on the low storage condition
	6.2.3.19

	fileDownloadStateUpdate
	Notification
	C -> A
	Notify MAA of a change in the state of pending file downloads
	6.2.3.15

	fileListAvailable
	Notification
	C -> A
	Notify MAA when the list of downloaded files is available to retrieve
	6.2.3.11

===== AUTONUM CHANGE =====
6.2.3.2.1
Overview

This clause defines registerFdApp() interface.

An MAA calls the registerFdApp() interface to register with the MBMS Client to consume File Delivery Application Services. The registerFdApp() interface has two purposes:

1)
It signals to the MBMS Client that an MAA is interested to consume MBMS services. This registration may be considered as pre-condition for the MBMS Client to keep checking for updates to the File Delivery Application Services defined.
2)
It allows the MAA to identify its callback listeners defined in the File Delivery Application Service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with the reception of files.

Note:
Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerFdApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.2.3.2.1-1 shows a call flow and the usage of the registerFdApp() interface.

[image: image8.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerFdApp()

deregisterFdApp()

getFdServices()

registerFdResponse()

Figure 6.2.3.2.1-1: MAA Registration sequence diagram
===== AUTONUM CHANGE =====
6.2.3.2.5
Expected MBMS Client Actions

When this method is received, the MBMS client registers the app. For more details refer to clause 6.2.2.3.
===== AUTONUM CHANGE =====
6.2.3.2.6
Post-Conditions

The application expects a registerFdResponse() as defined in clause 6.2.3.3.

===== AUTONUM CHANGE =====
6.2.3.3.1
Overview

This subclause defines the registerFdResponse() call.

As illustrated in Figure 6.2.3.2.1-1, the MBMS client responds to an MAA call to the registerFdApp() API with a registerFdResponse() call back providing the result of the registration request.

===== AUTONUM CHANGE =====
6.2.3.4.4
Expected MBMS Client Actions

When this method is received, the MBMS client returns its internal parameters. For more details see clause 6.2.2.3.
===== AUTONUM CHANGE =====
6.2.3.7.2
Parameters

The parameters for the startFdCapture() API are:

-
string serviceId – see clause 6.2.3.4.2. The service ID for the service for which the files are captured.

-
string fileUri – identifies the files to be captured on the service identified in serviceId. Allowed values include:

-
The empty string signals that the MAA is interested in receiving all new files and updates to previously received files.

-
A BaseURL, i.e., a complete path for subdirectory (a prefix) identifying a group of files under that directory.

-
An absoluteURL, i.e., a complete URL that identifies a single file resource.

-
boolean disableFileCopy – when set to true, this signals that the MAA does not want the MBMS client to make the file available on the MAA space.
-
boolean captureOnce – when set to true, signals that the file requested via the fileURI (or a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once.

===== AUTONUM CHANGE =====
6.2.3.9.1
Overview

This clause defines the deregisterFdApp() call.

An MAA registers services classes with the MBMS client to request the capture of files on File Delivery Application Services, but the MAA does not have to be currently registered while files are being captured as discussed earlier. The MAA may deregister using the deregisterFdApp() call.

===== AUTONUM CHANGE =====
6.2.3.9.5
Expected MBMS Client Actions

The MBMS client no longer sends notifications.

If open file capture requests exist, the MBMS client continues collection files in the background until the time for _registrationValidityDuration expires.

For more details see 6.2.2.4.

===== AUTONUM CHANGE =====
6.2.3.9.6
Post-Conditions

The MAA is no longer registered with the MBMS client to receive notifications.

===== AUTONUM CHANGE =====
6.2.3.10.1
Overview

This clause defines the fileDownloadFailure()callback function.

As illustrated in Figure 6.2.3.10.1-1, once the MBMS client has attempted to collect symbols for a file (possibly even via the unicast file repair procedure), that match an outstanding startFdCapture() request from an MAA, the MBMS client may still not be able to recover the file. Once the MBMS client detects that it failed FEC decoding the file, the MBMS client invokes the fileDownloadFailure() callback function (which the application registered with the MBMS client.

[image: image9.emf]startFdCapture()

fileDownloadFailure()

MBMS Aware

Application

MBMS Client

Open FLUTE session and receive a file but fail FEC

decoding or fil repair for the file

stopFdCapture()

Figure 6.2.3.10.1-1: Signaling download failures
===== AUTONUM CHANGE =====
6.2.3.16.4
Usage of Method for MAA
An MAA may be interested to retrieve the current state for files downloaded or being downloaded by the MBMS client on behalf of that MAA. The MAA may choose to request this information in response to a notification from the MBMS client of such state change via a fileDownloadStateUpdate() notification.

The MAA may also detect via updated service definition information (i.e., via a fdServiceListUpdate() followed by a getFdServices()) that a file previously advertised on an earlier getFdServices() and which the MAA requested to be capture is no longer described on the information retrieved via the latest getFdServices(), and the MAA did not receive a fileAvailable() or a fileDownloadFailure() reporting the successful or failed reception of the requested file, respectively. This could happen because the requested file is no longer advertised as available for request (there is no current of future transmission for the file described on a fileSchedule in the schedule description fragment), but the file is still pending file repair.

An interested MAA can request information on the current state for files requested to be downloaded by the MBMS client on behalf of that MAA by invoking the getFdDownloadStateList() API.

===== AUTONUM CHANGE =====
6.2.3.20.1
Overview

This clause defines the inaccessibleLocation() callback function.

As illustrated in Figure 6.2.3.20.1-1, the locationPath where the MAA registered to have its requested files copied may not be available (e.g., SD card not inserted/locked). When the MBMS client detects that the register locationPath is not accessible, the MBMS client will send the warning indication via the inaccessibleLocation() API to signal the MAA of the storage access limitation; this can be done at different times, e.g., following a startFdCapture() as illustrated in Figure 6.2.3.20.1-1. The MAA may select an alternative locationPath, or prompt the user to choose another locationPath. The MAA can notify the MBMS client of the new locationPath via the setFdStorageLocation() API.

[image: image10.emf]startFdCapture()

inaccessibleLocation()

MBMS Aware

Application

MBMS Client

The storage location is not accessible for the

MBMS client to copy files

Figure 6.2.3.20.1-1: Signaling a storage access condition limitation impacting file download

===== AUTONUM CHANGE =====
6.3.2.1

Overview

Figure 6.3.2-1 provides an informative client state model in order to appropriately describe the messages on the DASH streaming service API. Four different states are defined. State changes may happen based on:

· Calls from the MAA or the DASH client

· Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

· Changes in the reception conditions

[image: image11.emf]IDLE

REGISTEREDACTIVE

STALLED

r

e

g

i

s

t

e

r

S

t

r

e

a

m

i

n

g

A

p

p

(

)

d

e

R

e

g

i

s

t

e

r

S

t

r

e

a

m

i

n

g

A

p

p

(

)

startStreamingService()

stopStreamingService()

s

e

r

v

i

c

e

S

t

a

l

l

e

d

(

)

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

Figure 6.3.2-1: State Diagram

Table 6.3.2-1 defines states for the MBMS client. Detailed descriptions are provided in the following subclauses .

Table 6.3.2-1: States of MBMS Client

	States and Parameters
	Definition

	IDLE
	In this state the MBMS client does not have a registered MAA and it may not keep the service definition up to date.

For more details see clause 6.3.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, and it may be providing file capture services to the MAA(s).

In this state the MBMS client sends callback notifications to the MAA.

For more details see clause 6.3.2.4.

	ACTIVE
	In this state the MBMS client provides all services to of the REGISTERED state and also provides the streaming service to the MAA.

For more details see clause 6.3.2.5.

	STALLED
	In this state the MBMS client provides all services to of the REGISTERED state, but the streaming services is at least temporarily stalled.

For more details see clause 6.3.2.6.

===== AUTONUM CHANGE =====
6.3.2.3
MBMS Client Operation in IDLE state

In the IDLE state, the MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.

When the registerStreamingApp() as defined in subclause 6.3.3.2 is invoked, then:
1. The MBMS client checks the input parameters for consistency and sets the internal variables:
a)
If the functions of the MBMS client is not accessible, the MBMS client throws a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE result code in the registerStreamingResponse() as defined in subclause 6.3.3.3 and abort the following steps and may at least temporarily move in NOT_AVAILABLE state.
b)
If appId is an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerStreamingResponse() as defined in subclause 6.3.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

c)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided the MBMS client considers the MAA to be registered with a service class that is also empty and only allow the MAA to have access to DASH Streaming Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).
d)
On receiving a registerStreamingApp() following a deregisterStreamingApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setStreamingServiceClassFilter() method.

e)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerStreamingApp() interface to send notification of event occurrences to the MAA.

2. generates a response registerStreamingResponse() as defined in subclause 6.3.3.3 and changes to REGISTERED state as defined in clause 6.3.2.4:

a)
If the MBMS client functions cannot be activated for any reason, especially if the Streaming Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message.

b)
If the MAA did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent.

c)
If the MBMS client functions can be activated, then:
i)
the RegResponseCode is set to REGISTER_SUCCESS registration response code;
ii)
a message may be generated.
d)
Sends the response with the above parameters.
3. If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching streaming delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER, then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call as defined in clause 6.3.3.13, it shall return version 1.0.

===== AUTONUM CHANGE =====
6.3.2.4

MBMS Client Operation in REGISTERED state

For each registered MAA and the assigned parameters according to Table 6.3.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest.
For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service classes registered by the MAA in _serviceClass[] and which is identified as a DASH-over-MBMS service according to the definition in TS 26.346 [5], clause 5.6, one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever a new USD is available:

· For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

· If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

· The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

· If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

· The MPD metadata fragment referenced by either the r9:mediaPresentationDescription element or by an a r12:appService referencing an MPD and conforming to TS 26.247 [7] is extracted by the MBMS client. The contained MPD is stored in the _MPD parameter and the Initialization Segments are stored in the _IS[]. The _mpdURI parameter is generated at which location the MPD will be made available.
· The _serviceBroadcastAvailability is continuously updated set it to
· BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service),
· BROADCAST_UNAVAILABLE, if broadcast is not available (if the UE is NOT in broadcast coverage of the service).
· If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
If updates are provided and added to the _service[] parameter, the MBMS client should send a streamingServiceListUpdate() callback as defined in clause 6.3.3.6.

When the getStreamingServices() method is received as defined in clause 6.3.3.4, the MBMS client sets the parameters as follows:

· If the _service[] list is empty, the list is empty.
· For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the name is set to the value _name,

-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
The _mpdURI is assigned to mpdURI.

-
If at least one _sessionSchedule[] record is present then:
-
The activeDownloadPeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].

-
The activeDownloadPeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present:
-
The activeDownloadPeriodStartTime is set to 0.

-
The activeDownloadPeriodStopTime is set to 0.

When the setStreamingServiceClassFilter() as defined in clause 6.3.3.5 is received, the MBMS client runs the following steps:

· It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

· The MBMS client dis-associates the service classes previously associated with the MAA that are not included on this list.

· The MBMS client associates the service classes not previously associated with the MAA that are newly included on this list.

· The MBMS client issues a streamingServiceListUpdate() notification as defined in clause 6.3.3.6 to the MAA to notify of this effect.

When the startStreamingService() method as defined in clause 6.3.3.7 is received with a parameter serviceID, the MBMS client runs the following steps:

· The MBMS client checks for errors and if necessary, the streamingServiceError() notification as defined in clause 6.3.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code STREAMING_INVALID_SERVICE. Otherwise it may use the error code STREAMING_UNKNOWN_ERROR. An error message may be provided in the errorMsg string.

· If the service with the serviceId parameter can be started:
-
The MBMS client uses the MPD in the _MPD parameter and the remaining associated metadata to offer a valid media presentation to the DASH client by providing a DASH server in the MBMS client. For different options to provide such a service, refer to clause 7.
-
The URL to the MPD that is exposed to the MAA for DASH consumption is stored in the internal variable _mpdURI. The MPD stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband MPD updates.
-
The MBMS client sends a serviceStarted() notification as defined in clause 6.3.3.8 with the serviceId being passed along with the notification.
-
The MBMS client moves to ACTIVE state as defined in clause 6.3.2.5.
Whenever there has been a change to the parameters reported to the MAA in response to a getStreamingServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _mpdURI, the MBMS client notifies the MAA with streamingServiceListUpdate() as defined in clause 6.3.3.6.

When the deregisterStreamingApp() is received, all internal parameters for the MAA are cleared and the client moves to IDLE state.

===== AUTONUM CHANGE =====
6.3.2.5
MBMS Client Operation in ACTIVE state

In the ACTIVE state, the MBMS client carries out all actions as in the REGISTERED state.

The MBMS client continuously downloads the DASH resources and makes them available as announced in the MPD. For different options to provide such a service to the MAA and DASH client, refer to clause 7. The URL to the MPD that is exposed to the MAA for DASH consumption is stored in the internal variable _mpdURI. The MPD stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband MPD updates.
When the MBMS client receives a stopStreamingService() request as defined in clause 6.3.3.9 that matches an active service.

· The MBMS client checks for errors and if necessary, the streamingServiceError() notification as defined in clause 6.3.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code STREAMING_INVALID_SERVICE. Otherwise it may use the error code STREAMING_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.
· the MBMS client stops providing the DASH resources at its DASH server, i.e. at the location announced in the MPD referenced by the _mpdURI.

· The MBMS client moves to REGISTERED state as defined in clause 6.3.2.4.

When the MBMS client receives a stopStreamingService() request as defined in clause 6.3.3.9 that matches an active service, the MBMS client terminates the download of the resources of this download delivery session and no longer makes it available at the indicated resources in the MPD. The MBMS client transitions to REGISTERED state
When the MBMS the internal parameter _serviceBroadcastAvailability transitions to BROADCAST_UNAVAILABLE, and no alternative delivery method is defined, or if the service is no longer available for other reasons (e.g. frequency conflict), then the service is stalled. In this case the MBMS client:
· No longer makes available the resources in the announced locations by the _mpdURI and the references therein.
· Sends a serviceStalled() notification as defined in clause 6.3.3.11, along with one of the following reasons:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

· Transitions to the STALLED state as defined in clause 6.3.2.6.

===== AUTONUM CHANGE =====
6.3.2.6

MBMS Client Operation in STALLED state

In the STALLED state, the MBMS client carries out all actions as in the REGISTERED state.

In this state the MBMS client continuously monitors if the service can be made available again.

Once the service gets available again, the MBMS client:
· The MBMS client downloads the DASH resources and makes them available as announced in the MPD. For different options to provide such a service, refer to clause 7. The URL to the MPD that is exposed to the MAA for DASH consumption is stored in the internal variable _mpdURI. The MPD stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband MPD updates
· The MBMS client sends a serviceStarted() notification as defined in clause 6.3.3.8 with the serviceId being passed along with the notification.
· The MBMS client moves to ACTIVE state as defined in clause 6.3.2.5.
===== AUTONUM CHANGE =====
6.3.3
Methods

6.3.3.1
Overview

Table 6.3.3.1-1 provides an overview over the methods defined for the Streaming Delivery Application Service API. Different types are differentiated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between MAA (A) and MBMS Client (C) is provided.

Table 6.3.3.1-1: Methods defined for Streaming Delivery Application Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerStreamingApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.3.3.2

	deregisterStreamingApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.3.3.10

	startStreamingService
	State change
	A -> C
	Starts streaming service
	6.3.3.7

	stopStreamingService
	State change
	A -> C
	Stop streaming service
	6.3.3.9

	getStreamingServices
	Status query
	C <-> A
	Get list of currently active services
	6.3.3.4

	getVersion
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.3.3.13

	setStreamingServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.3.3.5

	registerStreamingResponse
	Update to parameter list
	C-> A
	The response to the MAA streaming service register API
	6.3.3.3

	serviceStarted
	Notification
	C -> A
	Notification to MAA when the streaming service started.
	6.3.3.8

	streamingServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for DASH streaming delivery services
	6.3.3.6

	streamingServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with the download of service
	6.3.3.12

	serviceStalled
	Notification
	C -> A
	Notification to MAA that download DASH segments failed
	6.3.3.11

6.3.3.2
Registration

6.3.3.2.1
Overview

This clause defines registerStreamingApp() interface.

An MAA calls the registerStreamingApp() interface to register with the MBMS Client to consume streaming services. The registerStreamingApp() interface has two purposes:

1) It signals to the MBMS Client that an MAA is interested to consume MBMS DASH Streaming Services.

2) It allows the MAA to identify its callback listeners defined in the Streaming Service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with streaming.

Note:
 Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerStreamingApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.3.3.2-1 shows the registration process.

[image: image12.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()

Figure 6.3.3.2-1: Application Registration sequence diagram

6.3.3.2.2
Parameters

The parameters for the registerFdApp() API are:

· string appId – provides a unique ID for the MAA registering with the MBMS client, which uses this identity to maintain state information for a particular MAA. The uniqueness of the ID is in the context of any MAA that may possibly register with MBMS client. Uniqueness is typically provided on platform level.

· any platformSpecificAppContext – a platform-specific context for the registering MAA that enables the MBMS client to get extra information about the MAA that may be need to enable the MAA to have access to MBMS services, e.g., to enable MAA authentication or to enable the MAA to communicate with the MBMS client via platform (e.g., HLOS) services.

· sequence<string> serviceClassList – provides a comma-separated list of service classes which the MAA is interested to register. Each service class string can be any string or it may be empty.

· ILTEFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with DASH Streaming Application Service APIs for the registering MAA.

Note:
The callback element in the IDL description is optional and only included when the MAA development framework supports programmatic callback interfaces. If callbacks are not supported on a given MAA development framework, the same information content as defined on the callback structures is to be provided to the MAA via the notification method available with that development framework when the respective condition is met.

6.3.3.2.3
Pre-Conditions

The MAA has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The MAA is pre-configured with the set of service classes that allows it to consume the DASH Streaming Services associated with these service classes.

The MAA has access to a DASH Streaming client.

The MAA may use this method at launch or after a deregisterStreamingApp() has been called.

The MBMS client is in IDLE state.

6.3.3.2.4
Usage of Method for MAA
The MAA uses the method registerStreamingApp() to register with the MBMS Client to consume Streaming Services.

The MAA provides its appId and, if applicable, some platform specific MAA context, platformSpecificAppContext.

The MAA provides the set of service classes which the MAA is interested to register.

6.3.3.2.5
Expected MBMS Client Actions

When this method is invoked, the MBMS client registers the app, if possible. For more details refer to clause 6.3.2.3.

6.3.3.2.6
Post-Conditions

The MAA expects the registerStreamingResponse() as defined in clause 6.3.3.3.

6.3.3.3

DASH Streaming Application Service Registration Response

6.3.3.3.1
Overview

This clause defines registerStreamingResponse()call.

As illustrated in Figure 6.3.3.2-1, the MBMS client responds to an MAA call to the registerStreamingApp() API with a registerStreamingResponse() call back providing the result of the registration request.

6.3.3.3.2
Parameters

The parameters for the registerStreamingResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

-
REGISTER_SUCCESS – indicates that the registration has been processed successfully and the MAA can proceed with other API interactions with the MBMS client for Streaming Delivery Application Services.

-
FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the Streaming Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running and no MBMS service will be available to the MAA.

-
MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

· string message – provides an associated text description of the error message. The message may be empty.

6.3.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerStreamingApp() API as defined in clause 6.3.3.2.

6.3.3.3.4
Expected MBMS Client Actions

The MBMS client responds accordingly and depending on the response moves to one of the states: IDLE, NOT_AVAILABLE, or REGISTERED. For more details refer to clause 6.3.2.4.

6.3.3.3.5
Usage of Method for MAA
Once the MAA receives a the registerStreamingResponse() with the RegResponseCode set to REGISTER_SUCCESS, the MAA can proceed with other API interactions with the MBMS client.
If the MBMS client is temporarily in NOT_AVAILABLE, if the registerFdResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the MAA may periodically recheck if the state of the MBMS client changes by retrying the registerFdRequest()API.

If the MBMS client is responding with MISSING_PARAMETERS, the MAA should fix the parameters and retry the registerFdRequest() API.

6.3.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.

If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.

6.3.3.4
Getting information on available DASH Streaming Application Services

6.3.3.4.1
Overview

This clause defines getStreamingServices() API call.

The registerStreamingApp() interface returns the complete list of available Streaming Services information. As illustrated in Figure 6.3.3.2-1, after a successful registration with the MBMS client, the MAA can use the getStreamingServices() API to discover the available Streaming Services associated with the service classes registered via the registerStreamingApp().

6.3.3.4.2
Parameters

The getStreamingServices() API returns a list describing the available DASH Streaming Services, where each service is described by the following output only parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per RFC 3066 [10].

· string serviceClass – identifies the service class which is associated with the service.

· string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.

· string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC 3066 [10].

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.

-
The possible values are:

-
BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

-
SERVICE_UNAVAILABLE – if content for the service is at all available at the current device location.

· string mpdUri – provides an HTTP URL where the MPD for the DASH Streaming Application Service is hosted and available for DASH clients access.

· EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active DASH Streaming Application Service start time, when DASH media segments and other resources start being broadcast over the air.

· EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active DASH Streaming Application Service stop time, when DASH media segments and other resources stop being broadcast over the air.

6.3.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state.

6.3.3.4.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client returns the streaming service parameters. For more details refer to clause 6.3.2.4.
6.3.3.4.5
Usage of Method for MAA
The MAA should use this call right after the registerStreamingResponse() notification as defined in clause 6.3.3.3 is received or after the streamingServiceListUpdate() notification as defined in clause 6.3.3.6 is received.

The MAA should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the streaming service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the MAA.

The mpdURI should be used by the MAA to initiate playback by initiating a DASH client. The MAA should assume that Media Presentation can be consumed by the DASH client without any further interaction with the MAA.
 The parameters activeServicePeriodStartTime and activeBroadacstPeriodEndTime provides the MAA the ability to determine the current broadcast state for the service as follows:

· If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, DASH content is being broadcast for the service at the current time.

· If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

6.3.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The MAA uses the serviceId to identify the service in subsequent communication with the MBMS client.

6.3.3.5
Updating the registered service classes

6.3.3.5.1
Overview

This clause defines setStreamingServiceClassFilter() call.

While an MAA is actively registered with the MBMS client to consume DASH Streaming Services, the MAA can call the setStreamingServiceClassFilter() API to update the list of service classes the MAA wants to be registered with, see Figure 6.3.3.5.1-1.
[image: image13.emf]MBMS Aware

Application

MBMS Client

registerStreamingApp()

deregisterStreamingApp()

setStreamingServiceClassFilter()

registerStreamingResponse()

streamingServiceListUpdate()

getStreamingServices()

Figure 6.3.3.5.1-1: Sequence diagram for updating the registered service classes for an MAA
6.3.3.5.2
Parameters

The parameters for the setStreamingServiceClassFilter() method are:

· sequence<string> serviceClassList – see clause 6.3.3.2.2

6.3.3.5.3
Pre-Conditions

The MAA is actively registered with the MBMS client to consume DASH Streaming Services, and MBMS client is in REGISTERED state for the MAA.

6.3.3.5.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client updates the internal parameters and is expected to provide a streamingServiceListUpdate() notification as defined in clause 6.3.3.6. For more details refer to clause 6.3.2.4.

6.3.3.5.5
Usage of Method for MAA
The MAA may invoke the setStreamingServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The MAA should be aware that the updates are only active once an streamingServiceListUpdate() notification is received that confirms the new service class filters.

6.3.3.5.6
Post-Conditions

The MAA expects a streamingServiceListUpdate() notification as defined in clause 6.3.3.6.

6.3.3.6
Updating the Streaming Service List

6.3.3.6.1
Overview

This clause defines streamingServiceListUpdate() notification.

This notification is used by the MBMS client to inform the MAA about a successful API call setStreamingServiceClassFilter() as shown in Figure 6.3.3.5.1-1 or other updates in streaming service list.

6.3.3.6.2
Parameters

None.

6.3.3.6.3
Pre-Conditions

The MBMS client is in REGISTERED state for the MAA. The MAA has issued a setStreamingServiceClassFilter()API call.

6.3.3.6.4
Expected MBMS Client Actions

The MBMS client issues this notification as a response to a successful setStreamingServiceClassFilter()API call or to the response to updates of the service list provided in the MPD. For more details see clause 6.3.2.4.

6.3.3.6.5
Usage of Method for MAA
The MAA is informed about the updates of the service class list and may issues a getStreamingServices() API call as defined in clause 6.3.3.4 to obtain the updated service list.

6.3.3.6.6
Post-Conditions

The MAA has the latest service list. No state change is involved.

6.3.3.7
Start DASH Streaming Service

6.3.3.7.1
Overview

This clause defines startStreamingService() API.

After the DASH Streaming Application Service registration, the MAA can make calls on the startStreamingService() API for the MBMS client to start reception of DASH content received over unicast or broadcast as shown in Figure 6.3.3.7-1.

[image: image14.emf]startStreamingService()

stopStreamingService()

MBMS Aware

Application

MBMS Client

Iniitiate File Download, e.g. open FLUTE

session (local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Terminate File Download

Stop Playback

Get MPD/DASH Segments

Figure 6.3.3.7-1: MAA starts DASH streaming services
6.3.3.7.2
Parameters

The parameters for the startStreamingService() API are:

· string serviceId – see definition in clause 6.3.3.2.2.

6.3.3.7.3

Pre-Conditions

The MBMS client is in REGISTERED state.

The MAA has the latest service list, for example through the getStreamingServices() API call as defined in clause 6.3.3.4.

6.3.3.7.4
Usage of Method for MAA
The MAA can make calls on the startStreamingService() API for the MBMS client to start reception of DASH content received over unicast or broadcast.
When MAA is no longer interested in consuming the Streaming Service, it should call the stopStreaming() API call as defined in clause 6.3.3.9.

6.3.3.7.5
MBMS Client Actions

When this method is invoked, the MBMS client starts the streaming service, if possible. For more details see clause 6.3.2.4.

6.3.3.7.6
Post-Conditions

The MAA expects a serviceStarted() notification as defined in clause 6.3.3.8 or an appropriate error message.

6.3.3.8
Notification that DASH Streaming for a Service has started

6.3.3.8.1
Overview

This clause defines serviceStarted() callback function.

As illustrated in Figure 6.3.3.7-1, once the MBMS client has successfully collected all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.

6.3.3.8.2
Parameters

The parameters for the serviceStarted() API are:

· string serviceId – see definition in clause 6.3.3.2.2.

6.3.3.8.3
Pre-Conditions

The MAA issued a startStreamingService() API call.

The MBMS client is in REGISTERED state for the serviceId.

6.3.3.8.4
Expected MBMS Client Actions

The MBMS client issues this notification if the service is started successful. For details see clause 6.3.2.4.

6.3.3.8.5
Usage of Method for MAA
Once the MAA receives the callback on the successful start of the service with the serviceId, the MAA may start the streaming service by initiating a DASH Media Presentation at a DASH client by handing over the mpdURI received during the registration process for this service.

6.3.3.8.6
Post-Conditions

The DASH client can communicate with the MBMS client. The MBMS client makes available the DASH-over-MBMS service based on the MPD referenced in by the mpdURI of the service.

6.3.3.9
Stop DASH Streaming Service

6.3.3.9.1
Overview

This clause defines stopStreamingService() API.

As Figure 6.3.3.7-1 illustrates, when an MAA that issued a startStreamingService() for a service is no longer interested in consuming the DASH content for that service, it will call the stopStreamingService() API call.

6.3.3.9.2
Parameters

The parameter for the stopStreamingService() API is:

· string serviceId – see definition in clause 6.3.3.2.2.

6.3.3.9.3
Pre-Conditions

The MBMS client is in ACTIVE state for this MAA.

6.3.3.9.4
Usage of Method for MAA
If an MAA is no longer interested in consuming the DASH service, it should call the stopStreamingService() API call. Latest at the same time, the MAA should inform the DASH client about the termination of the service and the DASH client should no longer request resources that are provided directly or referenced by the mpdURI.

6.3.3.9.5
MBMS Client Actions

The MBMS terminates the reception. For more details see clause 6.3.2.5.

6.3.3.9.6
Post-Conditions

The MBMS client is in REGISTERED state. The Media Presentation referenced by the mpdURI can no longer be accessed as the referenced Segments will no longer be provided at the announced location in the MPD.

6.3.3.10
DASH Streaming Application Service De-registration

6.3.3.10.1
Overview

This clause defines deregisterStreamingApp() API call.

An MAA registers services classes with the MBMS client to request the start of streaming for DASH Streaming Application Services. The MAA that registered with the MBMS client via the registerStreamingApp() API should invoke the deregisterStreamingApp() before exiting. The MBMS clients stops monitoring for Service Announcement updates when there are no MAAs registered. There are no parameters for the registerStreamingApp() API.

6.3.3.10.2
Parameters

None.

6.3.3.10.3
Pre-Conditions

The MBMS client is in REGISTERED state for this MAA.

6.3.3.10.4
Usage of Method for MAA
MAA registered with the MBMS client via the registerStreamingApp() API should invoke the deregisterStreamingApp() before exiting.

If the MAA deregisters, it will no longer receive notifications from the MBMS client and all context is cleared.

6.3.3.10.5
MBMS Client Actions

The MBMS client no longer sends notifications and clears all context for the MAA.

6.3.3.10.6
Post-Conditions

The MAA is no longer registered with the MBMS client.

The MBMS client is in IDLE mode.

6.3.3.11
Notification that DASH Streaming for a Service has stalled

6.3.3.11.1
Overview

This clause defines the serviceStalled() notification.

The MBMS client enables consumption of a DASH Streaming Application Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. However, due to UE mobility in and out of broadcast coverage for some DASH Streaming Application Services, the serviceBroadcastAvailability for those services may change to SERVICE_UNAVAILABLE (i.e., the UE moves out of coverage for that service). Other circumstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client can signal the MAA that the service is temporarily not available for playback by invoking the serviceStalled() API.

When broadcast reception of the service is re-established, the MBMS client will signal the MAA that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.3.3.11.1.

[image: image15.emf]startStreamingService()

MBMS Aware

Application

MBMS Client

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Segments unavailable, e.g.

out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

serviceStalled()

Segments available, e.g.

Back inbroadcast coverage

Start Playback (MPD url)

serviceStarted()

Figure 6.3.3.11.1: Signaling that a DASH streaming service stalled

6.3.3.11.2
Parameters

The parameter for the serviceStalled() API are:

· string serviceId – identifies the DASH Streaming Application Service for which broadcast receptions have temporarily stalled.

· StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

6.3.3.11.3
Pre-Conditions

The MBMS client is in ACTIVE mode.

6.3.3.11.4
Expected MBMS Client Actions

The MBMS client provides a serviceStalled() notification in case it can no longer provide the referenced resources in the Media Presentation provided with mpdURI. For more details refer to clause 6.3.2.5.

6.3.3.11.5
Usage of Method for MAA
The MAA should stop the DASH client playback on reception of the serviceStalled() notification. However, unless the MAA is no longer interested in the content, it should not issue a stopStreamingService() call in order to allow the MBMS client from trying to collect DASH content once the download problem is resolved. The MAA should inform the user of the temporary service interruption.

If the DASH client maintains in STALLED state for too long, the MAA should stop the service by issuing a stopStreamingService().

6.3.3.11.6
Post-Conditions

The MBMS client is in STALLED mode.

6.3.3.12
Notification of DASH Streaming Application Service errors

6.3.3.12.1
Overview

This clause the streamingServiceError() notification.

As illustrated in Figure 6.3.3.12.1-1, the startStreamingService() request from an MAA may not be served, so the MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the MAA's startStreamingService().

[image: image16.emf]startStreamingService()

streamingServiceError()

MBMS Aware

Application

MBMS Client

startStreamingService() validation

errors detected

Figure 6.3.3.12.1-1: Signaling errors with the startStreamingService() request from the DASH Streaming Application
Figure 6.3.3.12.1-2 also illustrates that the streamingServiceError() is used to signal the error code for the result of processing the MAA's a stopStreamingService() request.

[image: image17.emf]stopStreamingCapture()

streamingServiceError()

MBMS Aware

Application

MBMS Client

stopStreamingCapture() validation

errors detected

Figure 6.3.3.12.1-2: Signaling errors with the stopStreamingService() request from the DASH Streaming Application

6.3.3.12.2
Parameters

The parameters for the streamingServiceError() API are:

· string serviceId – identifies the DASH Streaming Application Service on which the MBMS client failed.

· StreamingErrorCode errorCode – identifies the error code for the reason causing the startStreamingService() or the stopStreamingService() request for the serviceId to fail. The available error codes are:

-
STREAMING_INVALID_SERVICE – signals that serviceID defined on the startStreamingService() or the stopStreamingService() request is not currently defined or it is not associated with the service classes with the MAA is registered.

-
STREAMING_UNKNOWN_ERROR – signals an error condition not explicitly identified.

· string errorMsg – may provide additional textual description of the error condition.

6.3.3.12.3
Pre-Conditions

The MBMS client has received a the startStreamingService() or a stopStreamingService() request.

6.3.3.12.4
Expected MBMS Client Actions

The MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the MAA. For more details refer to clause 6.3.2.4 and 6.3.2.5.
6.3.3.12.5
Usage of Method for MAA
If the MAA receives this notification, it should revalidate the capture call. The MAA should also update the service list by issuing a getStreamingServices() as defined in clause 6.3.3.4.

6.3.3.12.6
Post-Conditions

No state change is applied.

6.3.3.13
Checking the version for DASH Streaming Application Service interface

6.3.3.13.1
Overview

This clause defines the getVersion() request function.

6.3.3.13.2
Parameters

The parameters for the getVersion()API call are:

· string version – identifies the version of the MBMS clients API implementation.

6.3.3.13.3
Pre-Conditions

The MBMS client may be in any state.

6.3.3.13.4
Usage of Method for MAA
In order for the MAA to know the version of the DASH Streaming Delivery Application Service interface, the getVersion() API call may be used. If the version number is not supported by the MAA, it should deregister and not use the API.

6.3.3.13.5
MBMS Client Actions

The getVersion() API returns the version of the implemented APIs of the MBMS client.
6.3.3.13.6
Post-Conditions

No state changes apply.

===== AUTONUM CHANGE =====
6.4
MBMS Packet Delivery Service API

6.4.1
Introduction

The MBMS packet Streaming delivery Service API provides MAAs with interfaces to manage the reception of packet services delivered over MBMS User services. This API is intended to support packet streaming MAAs.

The IDL for the MBMS Packet Delivery Service API is defined in clause B.4.
The Packet Delivery Service API supports different types of Application Services by using an argument in the service request.
6.4.2
MBMS Client State Model for MBMS packet delivery
6.4.2.1
Overview

Figure 6.4.2.1-1 provides an informative client state model in order to appropriately describe the messages on the MBMS Packet Delivery service API. Four different states are defined as listed in Table 6.4.2.1-1. State changes may happen based on:

· Calls from the MAA or the packet streaming client

· Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

· Changes in the reception conditions

[image: image18.emf]IDLE

REGISTEREDACTIVE

STALLED

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

d

e

R

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

startPacketService()

stopPacketService()

s

e

r

v

i

c

e

S

t

a

l

l

e

d

(

)

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

Figure 6.4.2.1-1: State Diagram

Table 6.4.2.1-1 defines states for the MBMS client. Detailed descriptions are provided in the following subclauses.

Table 6.4.2.1-1: States of MBMS Client

	States and Parameters
	Definition

	IDLE
	In this state the MBMS client does not have a registered MAA and it may not keep the service definition up to date.

For more details see clause 6.4.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, and it may be providing file capture services to the MAA(s).

In this state the MBMS client sends callback notifications to the MAA.

For more details see clause 6.4.2.4.

	ACTIVE
	In this state the MBMS client provides all services to of the REGISTERED state and also provides the PACKET service to the MAA.

For more details see clause 6.4.2.5.

	STALLED
	In this state the MBMS client provides all services to of the REGISTERED state, but the packet services is at least temporarily stalled.

For more details see clause 6.4.2.6.

6.4.2.2
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined in Table 6.4.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.

Table 6.4.2.2-1: Parameters of MBMS Client for MBMS Packet Delivery Service

	Internal Parameters
	Definition

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the MAA and assigned to the app.

	
	serviceType
	specifies the service type the MAA has requested.

	
	_serviceClass[]
	A list of service classes identifying the services the MAA has access to.

	
	_registrationValidityDuration
	A period of time following the MAA de-registration over which the MBMS client continues to capture files for the MAA, see clause.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a packet Application service over which the MBMS client collects files for the MAA.

	
	
	_serviceClass
	The service class associated with the packet Application service assigned the Service ID.

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client. Three different types are defined:

BROADCAST_AVAILABLE – UE is in broadcast coverage

BROADCAST_UNAVAILABLE – UE is outside of broadcast coverage

	
	
	_SDP

_interfaceName

_sdpURI
	The latest SDP associated to the service

The network interface name from which the started MBMS Packet Delivery service can be received.

The URI which is provided to the MAA for initiating the Packet Session.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only sessionSchedule records should be included for which the value of the _stop time is in the future.

6.4.2.3

MBMS Client Operation in IDLE state

The MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.

When the registerPacketApp()is invoked, then

1. The MBMS client checks the input parameters for consistency and sets the internal variables:
a) If the functions of the MBMS client is not accessible, the MBMS client throws a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE result code in the registerPacketResponse() as defined in subclause 6.4.3.3 and abort the following steps and may at least temporarily move in NOT_AVAILABLE state.
b) If the MBMS client supports serviceType provided in the service _serviceType record. If the MBMS client does not support the service, it will respond with the appropriate error code, see below.
c) If the service type provided in the serviceType field, in the request is recognized by the MBMS client, an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerPacketResponse() as defined in subclause 6.4.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.
c)
If appId is an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerPacketResponse() as defined in subclause 6.4.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

d)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided, the MBMS client considers the MAA to be registered with a service class that is also empty and only allow the MAA to have access to MBMS Packet Delivery Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).

e)
On receiving a registerPacketApp() following a deregisterPacketApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setPacketServiceClassFilter() method.

f)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerPacketApp()interface to send notification of event occurrences to the Application.

2. generates a response registerPacketResponse() as defined in subclause 6.4.3.3 and changes to REGISTERED state as defined in clause 6.4.2.4:

a)
If the MBMS client functions cannot be activated for any reason, especially if the Packet Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide an error message.

b)
If the MAA did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent.
c)
If the MBMS client does not support the service type, the NON_SUPPORTED_SERVICE_TYPE registration response code is sent.
d)
If the MBMS client functions can be activated, then:
i)
the RegResponseCode is set to REGISTER_SUCCESS registration response code;
ii)
a message may be generated.
e)
Sends the response with the above parameters
3. If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching Packet delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER or NON_SUPPORTED_SERVICE_TYPE then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call as defined in clause 6.4.3.13, it shall return version 1.0.

6.4.2.4
MBMS Client Operation in REGISTERED state

For each registered MAA and the assigned parameters according to Table 6.4.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] using the service type serviceType and service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest.

For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service type and service classes registered by the MAA in serviceType and _serviceClass[] and which is identified as a MBMS Packet Delivery service according to the definition in TS 26.346 [5], clause 8, one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever a new USD is available:

· For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

· If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

· The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

· If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

· The SDP metadata fragment referenced by either the r9:sessionDescription element referencing an SDP and conforming to TS 26.346 [5] is extracted by the MBMS client. The contained SDP is stored in the _SDP parameter. The _sdpURI parameter is generated at which location the SDP will be made available. The name of the network interface from which the Packet data is available is stored in the _interfaceName parameter
· The _serviceBroadcastAvailability is continuously updated set it to BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service), if not, it is set to BROADCAST_UNAVAILABLE (if the UE is NOT in broadcast coverage of the service).
· If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
If updates are provided and added to the _service[] parameter, the MBMS client should send a packetServiceListUpdate() callback as defined in clause 6.4.3.6.

When the getPacketServices() method is received as defined in clause 6.4.3.4, the MBMS client sets the parameters as follows:

· If the _service[] list is empty, the list is empty

· For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the lang is set to the value _lang.
-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
The _sdpURI is assigned to spdURI.

-
If at least one _sessionSchedule[] record is present then

-
The activeServicePeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].

-
The activeServicePeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present:
-
The activeServicePeriodStartTime is set to 0.

-
The activeServicePeriodStopTime is set to 0.

When the setPacketServiceClassFilter() as defined in clause 6.4.3.5 is received, the MBMS client runs the following steps:

· It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

· The MBMS client dis-associates the service classes previously associated with the MAA that are not included on this list.

· The MBMS client associates the service classes not previously associated with the MAA that are newly included on this list.

· The MBMS client issues a rtpServiceListUpdate() notification as defined in clause 6.4.3.6 to the MAA to notify of this effect.

When the startPacketService() method as defined in clause 6.4.3.7 is received with a parameter serviceID, the MBMS client runs the following steps:

· The MBMS client checks for errors and if necessary, the packetServiceError() notification as defined in clause 6.4.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code PACKET_INVALID_SERVICE. Otherwise it may use the error code PACKET_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.

· If the service with the serviceId parameter can be started:
-
The MBMS client uses the SDP in the _SDP parameter and the remaining associated metadata to offer a valid session to the packet client by providing a server in the MBMS client. Clause 7 provides different provides service specific interfaces.
-
The URL to the SDP that is exposed to the MAA for Packet consumption is stored in the internal variable _sdpURI. The SDP stored at this URI shall not be changed for a session.
-
The MBMS client sends a serviceStarted() notification as defined in clause 6.4.3.8 with the serviceId being passed along with the notification.
-
The MBMS client moves to ACTIVE state as defined in clause 6.4.2.5.
Whenever there has been a change to the parameters reported to the MAA in response to a getPacketServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _sdpURI the MBMS client notifies MAA with packetServiceListUpdate() as defined in clause 6.4.3.6.

When the deregisterPacketApp() is received, all internal parameters for the MAA are cleared and the client moves to IDLE state.

6.4.2.5

MBMS Client Operation in ACTIVE state

The MBMS client carries out all actions as in the REGISTERED state.

The MBMS client continuously receives the packet data and makes it available as announced in the SDP. For different options depending on the service type, refer to clause 7. The URL to the SDP that is exposed to the MAA for Packet consumption is stored in the internal variable _sdpURI.
When the MBMS client receives a stopPacketService() request as defined in clause 6.4.3.9 that matches an active service, then

· the MBMS client checks for errors and if necessary, the packetServiceError() notification as defined in clause 6.4.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code PACKET_INVALID_SERVICE. Otherwise it may use the error code PACKET_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.
· the MBMS client stops providing the session at its internal server, i.e. at the location announced in the SDP referenced by the _sdpURI.

· The MBMS client moves to REGISTERED state as defined in clause 6.4.2.4.

When the MBMS client receives a stopPacketService() request as defined in clause 6.4.3.9 that matches an active service, the MBMS client terminates the reception of the data of this delivery session and no longer makes it available at the indicated resources in the SDP. The MBMS client transitions to REGISTERED state
When the MBMS the internal parameter _serviceBroadcastAvailability transitions to BROADCAST_UNAVAILABLE, and no alternative delivery method is defined, or if the service is no longer available for other reasons (e.g. frequency conflict), then the service is stalled. In this case the MBMS client:

· no longer makes available the resources in the announced locations by the _sdpURI and the references therein,

· sends a serviceStalled() notification as defined in clause 6.4.3.11, along with one of the following reasons:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startPacketService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

· Transitions to the STALLED state as defined in clause 6.4.2.6.

6.4.2.6

MBMS Client Operation in STALLED state

The MBMS client carries out all actions as in the REGISTERED state.

In this state the MBMS client continuously monitors if the service can be made available again.

Once the service gets available again, the MBMS client

· The MBMS client receives the packet streams and makes them available as announced in the SDP. The URL to the SDP that is exposed to the MAA for Packet consumption is stored in the internal variable _sdpURI.
· The MBMS client sends a serviceStarted() notification as defined in clause 6.4.3.8 with the serviceId being passed along with the notification.
· The MBMS client moves to ACTIVE state as defined in clause 6.4.2.5.
6.4.3
Methods

6.4.3.1
Overview

Table 6.4-2 provides an overview over the methods defined for the MBMS Packet Delivery Service API. Different types are provided, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow is provided between the MAA (A) and the MBMS Client (C).

Table 6.4-2: Methods defined for MBMS Packet Delivery Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerPacketApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.4.3.2

	deregisterPacketApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.4.3.10

	startPacketService
	State change
	A -> C
	Starts Packet service
	6.4.3.7

	stopPacketService
	State change
	A -> C
	Stop Packet service
	6.4.3.9

	getPacketServices
	Status query
	C <-> A
	Get list of currently active services
	6.4.3.4

	getVersion
	Status query
	C <-> A
	Get the API version
	6.4.3.13

	setPacketServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on MBMS Packet Delivery services in which it is interested
	6.4.3.5

	registerPacketResponse
	Update to parameter list
	C -> A
	The response to the MAA Packet service register API
	6.4.3.3

	serviceStarted
	Notification
	C -> A
	Notification to MAA when the MBMS Packet Delivery service started
	6.4.3.8

	rtpServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for MBMS Packet Delivery services
	6.4.3.6

	rtpServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with the reception download of service
	6.4.3.12

	serviceStalled
	Notification
	C -> A
	Notification to MAA that MBMS Packet Delivery service failed
	6.4.3.11

6.4.3.2

Registration

6.4.3.2.1
Overview

This clause defines registerPacketApp() interface.

An MAA calls the registerPacketApp() interface to register with the MBMS Client to consume MBMS Packet Delivery services. The registerPacketApp() interface has two purposes:

· It signals to the MBMS Client that an MAA is interested to consume MBMS Packet Delivery Services.

· It allows the MAA to identify its callback listeners defined in the MBMS Packet Delivery service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with Packet-over-MBMS.

Note: Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerPacketApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.4-2 shows the registration process.

[image: image20.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

B

M

S

C

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

r

e

g

i

s

t

e

r

P

a

c

k

e

t

R

e

s

p

o

n

s

e

(

)

P

e

r

i

o

d

i

c

S

e

r

v

i

c

e

D

i

s

c

o

v

e

r

y

(

b

a

s

e

d

o

n

c

o

n

f

i

g

u

r

a

t

i

o

n

p

a

r

a

m

e

t

e

r

)

g

e

t

P

a

c

k

e

t

S

e

r

v

i

c

e

s

(

)

d

e

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-2 MAA Registration sequence diagram

6.4.3.2.2
Parameters

The parameters for the registerPacketApp() API are:

· ServiceType serviceType – provides the service type that the MAA wants to access. Different service types for packet streaming are defined in clause 4.3.
· string appId – provides a unique ID for the MAA registering with the MBMS client, which uses this identity to maintain state information for a particular MAA. The uniqueness of the ID is in the context of any MAA that may possibly register with MBMS client. Uniqueness is typically provided on platform level.
· any platformSpecificAppContext – a platform-specific context for the registering MAA that enables the MBMS client to get extra information about the MAA that may be need to enable the MAA to have access to MBMS services, e.g., to enable MAA authentication or to enable the MAA to communicate with the MBMS client via platform (e.g., HLOS) services.
· sequence<string> serviceClassList – provides a comma-separated list of service classes which the MAA is interested to register. Each service class string can be any string or it may be empty.
· ILTEPacketServiceCallback callBack – provides the MBMS client with the call back functions associated with MBMS Packet Delivery Service APIs for the registering MAA.

Note:
The callback element in the IDL description is optional and only included when the MAA development framework supports programmatic callback interfaces. If callbacks are not supported on a given MAA development framework, the same information content as defined on the callback structures is to be provided to the MAA via the notification method available with that development framework when the respective condition is met.

6.4.3.2.3
Pre-Conditions

The MAA has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The MAA is pre-configured with the set of service classes that allows it to consume the MBMS packet delivery services of the specified type associated with these service classes.

The MAA has access to a packet client that can consume the service type.

The MAA may use this method at launch or after a deregisterPacketApp() has been called.

The MBMS client is in IDLE state.

6.4.3.2.4
Usage of Method for MAA
The MAA uses the method registerPacketApp() to register with the MBMS Client to consume Packet Delivery services of a specific type using the serviceType parameter. Different service types are defined in clause 4.3.
The MAA provides its appId and, if applicable, some platform specific MAA context, platformSpecificAppContext.

The MAA provides the set of service classes which the MAA is interested to register.

6.4.3.2.5
Expected MBMS Client Actions

When this method is invoked, the MBMS registers the MAA, if possible. For more details refer to clause 6.4.2.3.
6.4.3.2.6
Post-Conditions

The MAA expects the registerPacketResponse() as defined in 6.4.3.3.

6.4.3.3

MBMS Packet Delivery Service Registration Response

6.4.3.3.1
Overview

This clause defines registerPacketResponse() call.

As illustrated in Figure 6.4-2, the MBMS client responds to an MAA call to the registerPacketApp() API with a registerPacketResponse() call back providing the result of the registration request.
6.4.3.3.2
Parameters

The parameters for the registerPacketResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

-
REGISTER_SUCCESS – indicates that the registration has been processed successfully and the MAA can proceed with other API interactions with the MBMS client for MBMS Packet Delivery Services.

-
FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the MBMS Packet Delivery Service API did not find an MBMS client available on the UE on which the MAA is running and no MBMS service will be available to the MAA.

-
MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.
-
NOT_SUPPORTED_SERVICE_TYPE – indicates that the service type requested in serviceType is not supported by the MBMS client.
· string message – provides an associated text description of the error message. The message may be empty.

6.4.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerPacketApp() API as defined in clause 6.4.3.2.

6.4.3.3.4
Expected MBMS Client Actions

The MBMS client responds accordingly and depending on the response moves to one of the states: IDLE, NOT_AVAILABLE, or REGISTERED. For more details refer to clause 6.4.2.4.
6.4.3.3.5
Usage of Method for MAA
Once the MAA receives a the registerPacketResponse() with the RegResponseCode set to REGISTER_SUCCESS, the MAA can proceed with other API interactions with the MBMS client.

If the MBMS client is temporarily in NOT_AVAILABLE, if the registerPacketResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the MAA may periodically recheck if the state of the MBMS client changes by retrying the registerPacketApp() API.

If the MBMS client is responding with MISSING_PARAMETERS, the MAA should fix the parameters and retry the registerPacketApp() API.
If the MBMS client is responding with NON_SUPPORTED_SERVICE_TYPE, the MAA may check if other service types can be used to possible access the services, for example if the MAA supports handling other service types.
6.4.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.
6.4.3.4
Getting information on available MBMS Packet Delivery Services

6.4.3.4.1
Overview

This clause defines getPacketServices() API call.

The registerPacketApp() interface returns the complete list of available MBMS Packet Delivery Services information. As illustrated in Figure 6.4-2, after a successful registration with the MBMS client, the MAA can use the getPacketServices() API to discover the available MBMS Packet Delivery Services associated with the service classes registered via the registerPacketApp().
6.4.3.4.2
Parameters

The getPacketServices() API returns a list describing the available MBMS Packet Delivery Services, where each service is described by the following output only parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per RFC 3066 [10].

· string serviceClass – identifies the service class which is associated with the service.
· string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.
· string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC3066 [10].
· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.
-
The possible values are:

-
BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

· string sdpUri – provides an HTTP URL where the SDP for the MBMS Packet Delivery Service is hosted and available for media client access.

· string interfaceName – provides the network interface name from which the started MBMS Packet Delivery Service can be received by the media clients.

· EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active MBMS Packet Delivery Service start time, when data starts being broadcast over the air.

· EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active MBMS Packet Delivery Service stop time, when Packet data stops being broadcasted over the air.
6.4.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state.
6.4.3.4.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client returns the Packet service parameters. For more details refer to clause 6.4.2.4.

6.4.3.4.5
Usage of Method for MAA
The MAA should use this call right after the registerPacketResponse() notification as defined in clause 6.4.3.3 is received or after the rtpServiceListUpdate() notification as defined in clause 6.4.3.6 is received.

The MAA should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the MBMS Packet Delivery service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the MAA.

The sdpURI should be used by the MAA to initiate playback by initiating a Packet client. The MAA should assume that the Packet Session can be consumed by the Packet client without any further interaction with the MAA. The interfaceName should be used by the Packet client to filter the data stream reception from a specific network interface.

The parameters activeServicePeriodStartTime and activeServicePeriodEndTime provides the MAA the ability to determine the current broadcast state for the service as follows:

· If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, Packet content is being broadcast for the service at the current time.

· If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

6.4.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The MAA uses the serviceId to identify the service in subsequent communication with the MBMS client.
6.4.3.5
Updating the registered service classes

6.4.3.5.1
Overview

This clause defines setPacketServiceClassFilter() call.

While an MAA is actively registered with the MBMS client to consume MBMS Packet Delivery services, the MAA can call the setPacketServiceClassFilter() API to update the list of service classes the MAA wants to be registered with, see figure 6.4.3.5.1-1.

[image: image22.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

r

e

g

i

s

t

e

r

P

a

c

k

e

t

R

e

s

p

o

n

s

e

(

)

s

e

t

P

a

c

k

e

t

S

e

r

v

i

c

e

C

l

a

s

s

F

i

l

e

r

(

)

p

a

c

k

e

t

S

e

r

v

i

c

e

L

i

s

t

U

p

d

a

t

e

(

)

g

e

t

P

a

c

k

e

t

S

e

r

v

i

c

e

s

(

)

d

e

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4.3.5.1-1: Sequence diagram for updating the registered service classes for an MAA
6.4.3.5.2
Parameters

The parameters for the setPacketServiceClassFilter() method are:

· sequence<string> serviceClassList – see clause 6.4.3.2.2.

6.4.3.5.3
Pre-Conditions

The MAA is actively registered with the MBMS client to consume MBMS Packet Delivery services, and MBMS client is in REGISTERED state for the MAA.

6.4.3.5.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client shall update the internal parameters and is expected to provide a packetServiceListUpdate() notification as defined in clause 6.4.3.6. For more details refer to clause 6.4.2.4.

6.4.3.5.5
Usage of Method for MAA
The MAA may invoke the setPacketServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The MAA should be aware that the updates are only active once an packetServiceListUpdate() notification is received that confirms the new service class filters.

6.4.3.5.6
Post-Conditions

The MBMS client issues an packetServiceListUpdate() notification as defined in clause 6.4.3.6.

6.4.3.6
Updating the Packet Service List

6.4.3.6.1
Overview

This clause defines packetServiceListUpdate() notification.

This notification is used by the MBMS client to inform the MAA about a successful API call setPacketServiceClassFilter() as shown in Figure 6.4-3 or other updates in Packet service list.

6.4.3.6.2
Parameters

None.

6.4.3.6.3
Pre-Conditions

The MBMS client is in REGISTERED state for the MAA. The MAA has issued a setPacketServiceClassFilter()API call.

6.3.3.6.4
Expected MBMS Client Actions

The MBMS client issues this notification as a response to a successful setPacketServiceClassFilter()API call or to the response to updates of the service list provided in the SDP. For more details see clause 6.4.2.4.

6.4.3.6.5
Usage of Method for MAA
The MAA is informed about the updates of the service class list and may issues a getPacketServices() API call as defined in clause 6.4.3.4 to obtain the updated service list.

6.4.3.6.6
Post-Conditions

The MAA has the latest service list. No state change is involved.

6.4.3.7
Start MBMS Packet Delivery Service

6.4.3.7.1
Overview

This clause defines startPacketService() API.

After the MBMS Packet Delivery Service registration, the MAA can make calls on the startPacketService() API for the MBMS client to start reception of content received over broadcast, as shown in Figure 6.4.3.7.1-1.

[image: image24.wmf]M

e

d

i

a

C

l

i

e

n

t

M

A

A

M

B

M

S

C

l

i

e

n

t

M

B

M

S

U

s

e

r

S

e

r

v

i

c

e

R

e

c

e

p

t

i

o

n

s

t

a

r

t

e

d

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

p

r

o

v

i

d

e

S

D

P

i

n

i

t

i

a

t

e

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

s

t

o

p

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

s

t

o

p

p

a

c

k

e

t

r

e

c

e

p

t

i

o

n

M

B

M

S

U

s

e

r

S

e

r

v

i

c

e

R

e

c

e

p

t

i

o

n

s

t

o

p

p

e

d

s

t

o

p

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4.3.7.1-1: MAA starts MBMS Packet Delivery services
6.4.3.7.2
Parameters

The parameters for the startPacketService() API are:

· string serviceId – see clause 6.4.3.4.2.

6.4.3.7.3
Pre-Conditions

The MBMS client is in REGISTERED state.

The MAA has the latest service list, for example through the getPacketServices() API call as defined in clause 6.4.3.4.

6.4.3.7.4
Usage of Method for MAA
The MAA can make calls on the startPacketService() API for the MBMS client to start reception of Packet data over the MBMS system.
When the MAA is no longer interested in consuming the Packet Session, it should call the stopPacketService() API call as defined in clause 6.4.3.9. It should also inform the media client to stop packet reception.
6.4.3.7.5
MBMS Client Actions

When this method is invoked, the MBMS client starts the Packet service, if possible. For more details see clause 6.4.2.4.

6.4.3.7.6
Post-Conditions

The MAA expects a serviceStarted() notification as defined in clause 6.4.3.8 or an appropriate error message.

6.4.3.8
Notification that MBMS Packet Delivery Service has started

6.4.3.8.1
Overview

Once the MBMS client has successfully collected all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.
6.4.3.8.2
Parameters

The parameters for the serviceStarted() API are:

· string serviceId – see definition in clause 6.4.3.2.2.

6.4.3.8.3
Pre-Conditions

The MAA issued a startPacketService() API call.

The MBMS client is in REGISTERED state for the serviceId.

6.4.3.8.4
Expected MBMS Client Actions

The MBMS client issues this notification if the service is started successful. For details see clause 6.4.2.4.

6.4.3.8.5
Usage of Method for MAA
Once the MAA receives the callback on the successful start of the service with the serviceId, the MAA may start the MBMS Packet Delivery service initiating a Packet Session at a Packet client by handing over the sdpURI received during the registration process for this service. The media client iniates the packet forwarding.
6.4.3.8.6
Post-Conditions

The Packet client can communicate with the MBMS client. The MBMS client makes available the MBMS Packet Delivery service based on the SDP referenced in by the sdpURI of the service.

6.4.3.9
Stop MBMS Packet Delivery Service

6.4.3.9.1
Overview

This clause defines stopPacketService() API.

As figure 6.4-4 illustrates, when an MAA that issued a startPacketService() for a service is no longer interested in consuming the Packet session for that service, it will call the stopPacketService() API call.
6.4.3.9.2
Parameters

The parameter for the stopPacketService() API is:

· string serviceId – see definition in clause 6.4.3.2.2.

6.4.3.9.3
Pre-Conditions

The MBMS client is in ACTIVE state for this MAA.

6.4.3.9.4
Usage of Method for MAA
If an MAA is no longer interested in consuming the Packet service, it should call the stopPacketService() API call. Latest at the same time, the MAA should inform the Packet client about the termination of the service and the Packet client should no longer receive data that are referenced by the sdpURI.

6.4.3.9.5
MBMS Client Actions

The MBMS terminates the reception and no longer forwards the packets to the media client. For more details see clause 6.4.2.5.

6.4.3.9.6
Post-Conditions

The MBMS client is in REGISTERED state. The Packet Session referenced by the sdpURI can no longer be accessed as the referenced data will no longer be provided at the announced location in the SDP.

6.4.3.10
MBMS Packet Delivery Service De-registration

6.4.3.10.1
Overview

This clause defines deregisterPacketApp() API.

An MAA registers service classes with the MBMS client to request the start of streaming for MBMS Packet Delivery Services. The MAA that registered with the MBMS client via the registerPacketApp() API should invoke the deregisterPacketApp() before exiting. An implicit stopPacketService() call is performed for all MBMS Packet Delivery Services that have been started since the last registerPacketApp() call. If there are no MAA interested in an MBMS Packet Delivery Service, the MBMS client stops capturing data for this Service.

The MBMS client stops monitoring for Service Announcement updates when there are no MAAs registered. There are no parameters for the registerPacketApp() API.

6.4.3.10.2
Parameters

None.

6.4.3.10.3
Pre-Conditions

The MBMS client is in REGISTERED state for this MAA.

6.4.3.10.4
Usage of Method for MAA
MAA registered with the MBMS client via the registerPacketApp() API should invoke the deregisterPacketApp() before exiting.

6.4.3.10.5
MBMS Client Actions

The MBMS client no longer sends notifications and clears all context for the MAA.

6.4.3.10.6
Post-Conditions

The MAA is no longer registered with the MBMS client.

The MBMS client is in IDLE mode.

6.4.3.11
Notification that MBMS Packet Delivery Service has stalled

6.4.3.11.1
Overview

This clause the serviceStalled() notification.

The MBMS client enables consumption of a MBMS Packet Delivery service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. Other circumstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the MAA that the service is temporarily not available for playback by invoking the serviceStalled() API.

When broadcast reception of the service is re-established, the MBMS client will signal the MAA that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.4-5.

[image: image26.wmf]M

e

d

i

a

C

l

i

e

n

t

M

A

A

M

B

M

S

C

l

i

e

n

t

M

B

M

S

U

s

e

r

S

e

r

v

i

c

e

R

e

c

e

p

t

i

o

n

a

c

t

i

v

a

t

e

d

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

p

r

o

v

i

d

e

S

D

P

i

n

i

t

i

a

t

e

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

P

l

a

y

o

u

t

M

o

v

e

o

u

t

o

f

b

r

o

a

d

c

a

s

t

c

o

v

e

r

a

g

e

R

e

c

e

p

t

i

o

n

s

t

a

l

l

e

d

s

e

r

v

i

c

e

S

t

a

l

l

e

d

(

)

m

a

y

i

n

f

o

r

m

o

n

p

a

c

k

e

t

r

e

c

e

p

t

i

o

n

i

n

t

e

r

r

u

p

t

i

o

n

S

t

a

l

l

e

d

M

o

v

e

i

n

t

o

b

r

o

a

d

c

a

s

t

c

o

v

e

r

a

g

e

R

e

c

e

p

t

i

o

n

r

e

s

t

a

r

t

e

d

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

m

a

y

i

n

f

o

r

m

o

n

p

a

c

k

e

t

r

e

c

e

p

t

i

o

n

r

e

a

c

t

i

v

a

t

i

o

n

P

l

a

y

o

u

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-5: Signaling that a MBMS Packet Delivery service stalled

6.4.3.11.2
Parameters

The parameter for the serviceStalled() API are:

-
string serviceId – identifies the MBMS Packet Delivery Service for which broadcast receptions have temporarily stalled.

-
StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startPacketService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

6.4.3.11.3
Pre-Conditions

The MBMS client is in ACTIVE mode.

6.4.3.11.4
Expected MBMS Client Actions

The MBMS client provides a serviceStalled() notification in case it can no longer provide the referenced resources in the Packet Session provided with sdpURI. For more details refer to clause 6.4.2.5.

6.4.3.11.5
Usage of Method for MAA
The MAA should stop the Packet client playback on reception of the serviceStalled() notification. However, unless the MAA is no longer interested in the content, it should not issue a stopPacketService() call in order to allow the MBMS client from trying to collect Packet content once the download problem is resolved. The MAA may inform the user of the temporary service interruption.

If the media client maintains in STALLED state for too long, the MAA should stop the service by issuing a stopPacketService().

6.4.3.11.6
Post-Conditions

The MBMS client is in STALLED mode.

6.4.3.12
Notification of MBMS Packet Delivery Service errors

6.4.3.12.1
Overview

This clause defines the packetServiceError() notification.

As illustrated in Figure 6.4-5, the startPacketService() request from an MAA may not be served, so the MBMS client will send a failure indication via the packetServiceError() to signal the error code for the result of processing the MAA's startPacketService().

[image: image28.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

s

t

a

r

t

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

s

t

a

r

t

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

v

a

l

i

d

a

t

i

o

n

e

r

r

o

r

d

e

t

e

c

t

e

d

p

a

c

k

e

t

S

e

r

v

i

c

e

E

r

r

o

r

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-5: Signaling errors with the startPacketService() request from the Packet-over-MBMS

Figure 6.4-6 also illustrates that the packetServiceError() is used to signal the error code for the result of processing the MAA's a stopPacketService() request.

[image: image30.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

s

t

o

p

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

s

t

o

p

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

v

a

l

i

d

a

t

i

o

n

e

r

r

o

r

d

e

t

e

c

t

e

d

p

a

c

k

e

t

S

e

r

v

i

c

e

E

r

r

o

r

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-6: Signaling errors with the stopPacketService() request from the Packet-over-MBMS

6.4.3.12.2
Parameters

The parameters for the rtpServiceError() API are:

-
string serviceId – identifies the MBMS Packet Delivery Service on which the MBMS client failed.

-
PacketErrorCode errorCode – identifies the error code for the reason causing the startPacketService() or the stopPacketService() request for the serviceId to fail. The available error codes are:

-
Packet_INVALID_SERVICE – signals that serviceID defined on the startPacketService() or the stopPacketService() request is not currently defined or it is not associated with the service classes with the MAA is registered.

-
Packet_UNKNOWN_ERROR – signals an error condition not explicitly identified.

-
string errorMsg – may provide additional textual description of the error condition.

6.4.3.12.3
Pre-Conditions

The MBMS client has received a the startPacketService() or a stopPacketService() request.

6.4.3.12.4
Expected MBMS Client Actions

The MBMS client will send a failure indication via the packetServiceError() to signal the error code for the result of processing the MAA. For more details refer to clauses 6.4.2.4 and 6.4.2.5.
6.4.3.12.5
Usage of Method for MAA
If the MAA receives this notification, it should revalidate the capture call. The MAA should also update the service list by issuing a getPacketServices() as defined in clause 6.4.3.4.

6.4.3.12.6
Post-Conditions

No state change is applied.

6.4.3.13
Checking the version for MBMS Packet Delivery Service interface

6.4.3.13.1
Overview

This clause defines the getVersion() request function.

6.4.3.13.2
Parameters

The parameters for the getVersion()API call are:

· string version – identifies the version of the MBMS clients API implementation.

6.4.3.13.3
Pre-Conditions

The MBMS client may be in any state.

6.4.3.13.4
Usage of Method for MAA
In order for the MAA to know the version of the MBMS Packet Delivery Service interface, the getVersion() API may be used. If the version number is not supported by the MAA, it should deregister and not use the API.

6.4.3.13.5
MBMS Client Actions

The getVersion() API returns the version of the implemented APIs of the MBMS client.

6.4.3.13.6
Post-Conditions

No state changes apply.
===== AUTONUM CHANGE =====
7.1
Introduction

This section provides and overview of potential interfaces between the MBMS client and the MAA for the data delivered over the MBMS system. The interfaces are typically within the UE, but may also be supported over a network interface, for example from a gateway running the MBMS client and a remote terminal running the MAA. The interfaces may be used by implementations by referring to the capabilities of the interfaces defined in this clause.

===== AUTONUM CHANGE =====
7.3
HTTP Interface

The MBMS client may provide an HTTP server such that the MAA can access the files delivered over the MBMS User services by using regular HTTP Methods. The MBMS client may act as an HTTP cache for the resources delivered through the MBMS system.
The MBMS client offering delivered files and DASH Segments through HTTP Interface should comply with a server as specified in RFC 2616 [15]. MBMS Clients providing resources through an HTTP interface should implement relevant HTTP server functionalities to support HTTP GET methods as required by the APIs.
MAAs communicating with the MBMS client over HTTP should comply with a client as specified in RFC 2616 [15]. MAAs should use the HTTP GET method or the HTTP partial GET method, as specified in RFC 2616 [15] to access files offered at HTTP-URLs.
MAAs communicating with the MBMS client over HTTP should support partial-file-accept requests and partial file responses as defined in TS 26.346 [5], clause 7.9.2.1.

Without excluding other response options, as a response to a partial-file-accept request using a regular HTTP GET request an MAA may typically receive one of the following responses:

1)
200 OK with Content-Type set to the Media Type of the requested object

2)
200 OK with the Content-Type set to application/3gpp-partial and the message format according to the definition in clause 7.9.2.2 of TS 26.346 [5].

3)
416 Requested Range Not Satisfiable with the additional information according to the definition in clause 7.9.2.2 of TS 26.346 [5].

4)
404 Not Found.
Case 1 is the regular response.

Guidelines for handling request responses according to case 4 from above are provided in clause A.7 of TS 26.247 [6].

Guidelines for handling request responses 2 and 3 from above are provided in clause A.9 of TS 26.247 [6].

===== AUTONUM CHANGE =====
7.5
RTP Streaming Delivery Method Interface

The MBMS Client should provide an interface such that the data delivered using the MBMS Streaming delivery method is provided as a packet stream that complies with a media format that can be decoded by the media receiver that is part of the MBMS client by offering a conforming SDP in the sdpURI. As a recommendation:

-
The MBMS Client implements the functions of the "Hypothetical FEC Decoder" as defined in clause 8.2.2.11 of TS 26.346 [5],

-
The MBMS Client provides the MAA with:

-
A SDP that describes the packet stream.
-
The network interface from which the data stream can be received. For that purpose, the MBMS Client may forward the packets locally, e.g. through a virtual network interface, or through the network to the client. In such an example, the MBMS client is expected to modify the SDP provided over in the User Service Description accordingly.
===== AUTONUM CHANGE =====
8.2.3
Examples

mbms://www.example.com/sample&label=http://v.example.com/sample.html#p6
-
the serviceId is mbms://www.example.com/sample;
-
the label of the desired resource is http://v.example.com/sample.html.
 ===== AUTONUM CHANGE =====
B.4
IDL for MBMS RTP streaming delivery Service API

#include "EmbmsCommonTypes.idl"
module PacketService

{

 //Forward Declaration
 interface ILTEPacketServiceCallback;

 /**
 * @name PacketErrorCode
 * @brief List of the errors for Packet service
 */
 enum PacketErrorCode

 {

 PACKET_INVALID_SERVICE, /**< Invalid service ID */
 PACKET_UNKNOWN_ERROR /**< Unknown error */
 MISSING_PARAMETER

 /**< parameter is missing */

NON_SUPPORTED_SERVICE_TYPE /**< non supported service type */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for Packet service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };
 /**
 * @name ServiceType
 * @brief List of service types
 */
 enum ServiceType
 {

 RTP /**< Service Type for RTP */
 };

 /**
 * @name RegisterPacketAppData
 * @brief Packet Application registration information
 */
 struct RegisterPacketAppData

 {

 string ServiceType; /** The requested service type)
 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific Application context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name PacketServiceClassList
 * @brief ServiceClass information which the Application is interested in. It is for setPacketServiceClassFilter API.
 */
 typedef sequence<string> PacketServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name PacketServiceInfo
 * @brief Packet service information
 */
 struct PacketServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
 string sdpUri; /**< SDP URI used by Packet player */

 string interfaceName; /**< The network interface name used by the Packet player to receive the data described in the SDP. */
 EmbmsCommonTypes::Date activeServicePeriodStartTime; /**< The current/next active Packet service start time, when Packet data
 starts being broadcast over the air */
 EmbmsCommonTypes::Date activeServicePeriodEndTime; /**< The current/next active Packet service end time, when Packet data
 stops being broadcast over the air */
 sequence<long> SAIList; /**< Service Area IDs based on current location of the device*/
 };

 /**
 * @name PacketServices
 * @brief List of Packet service info objects
 */
 typedef sequence<PacketServiceInfo> PacketServices;

 /**
 * @name StartPacketServiceData
 * @brief Start Packet service information. It is used by StartPacketService API.
 */
 struct StartPacketServiceData

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name StopPacketServiceData
 * @brief Stop Packet service information.
 * It is used by the StopPacketService API.
 */
 struct StopPacketServiceData

 {

 string serviceId; /**< Streaming service ID from PacketServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Packet service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Packet service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name PacketServiceErrorNotification
 * @brief Packet service error information. It is used by the PacketServiceErrorNotification API.
 */
 struct PacketServiceErrorNotification

 {

 string serviceId; /**< Packet service Id from PacketServiceInfo */
 PacketErrorCode errorCode; /**< Packet service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Packet service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Packet service ID from PacketServiceInfo */
 StalledReasonCode reason; /**< Packet service stalled reason ID */
 };

 /**
 * @name RegisterPacketResponseNotification
 * @brief Packet Application registeration response information
 */
 struct RegisterPacketResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEPacketService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Packet service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerPacketApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterPacketAppData
 @see registerPacketResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerPacketApp(in RegisterPacketAppData regInfo, in ILTEPacketServiceCallback callBack);

 /**
 @name deregisterPacketApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterPacketApp();

 /**
 @name startPacketService
 @brief Start receiving Packet data over broadcast
 @param[in] StartPacketService Parameters for starting the Packet services API
 @pre Application is registered for Packet service
 @see StartPacketServiceData
 @see serviceStarted()
 @see packetServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startPacketService(in StartPacketServiceData serviceInfo);

 /**
 @name stopPacketService
 @brief Stop receiving Packet data over broadcast
 @param[in] StopPacketService Parameters for stoping the Packet services API
 @pre Application is registered for Packet service
 @see serviceStopped()
 @see StopPacketServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopPacketService(in StopPacketServiceData serviceInfo);

 /**
 @name setPacketServiceClassFilter
 @brief Application sets a filter on Packet services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with Packet service
 @see serviceUpdate()
 @see getPacketServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setPacketServiceClassFilter(in PacketServiceClassList serviceClassList);

 /**
 @name getPacketServices
 @brief Retrieves the list of Packet services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] PacketServices List of filtered Packet services
 @pre Application is registered for Packet service and received packetServiceListUpdate notification
 @see PacketServices
 @see packetServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getPacketServices(out PacketServices services);

 };

 interface ILTEPacketServiceCallback

 {

 /**
 @name registerPacketResponse
 @brief The response to the application Packet service register API.
 @param Notification Parameters for registering a Packet response
 @pre Application called registerPacketApp
 @see RegisterPacketResponseNotification
 @see registerPacketApp()
 **/
 void registerPacketResponse(in RegisterPacketResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that Packet service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for Packet service and called startPacketService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that Packet service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for Packet service and called stopPacketService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name packetServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for Packet service and called startPacketService
 @see PacketServiceErrorNotification
 **/
 void packetServiceError(in PacketServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for Packet service stalled notification
 @pre Application is registered for Packet service and called startPacketService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name packetServiceListUpdate
 @brief Notification to application on an update that is available for Packet services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for Packet service.
 @post call getPacketServices()
 **/
 void packetServiceListUpdate();

 };

};

_1554884630.bin

_1554885031.bin

_1554885299.bin

_1554885342.bin

_1554884696.bin

_1554715079.bin

_1554787460.vsd
IDLE

REGISTERED

ACTIVE

STALLED

registerPacketApp()

deRegisterPacketApp()

startPacketService()

stopPacketService()

serviceStalled()

serviceStarted()

_1554205232.vsd
Network

UE

MBMS Management System

