Technical Specification Group Services and System Aspects 1 SGS#10(00)0570
Meeting #10, Bangkok, Thailand, 11-14 December 2000 Agenda Item: 7.4.3

Presentation of Specification to TSG

Presentation to: TSG SA Meeting #10
Document for presentation: TS 26.230, Version 2.0.0
Presented for: Approval

Agenda Item: 743

Title of document:

Cellular Text Telephone Modem; Transmitter Bit Exact C-Code description

Abstract of document:

This document contains the description of the C-code for the CTM modem 26.226, intended for text
telephone transmission in the voice path.

The code itself is attached.

Changes since last presentation to TSG-SA WG4:
Main changes since last version:
* Code corrected in the Baudot area
» Framelength reduced from 160 samples to one sample in order to reduce delay.
e The limitation to the CTM and Baudot case clearly stated in the scope.
» Section 4.3 “Code Hierarchy” has been corrected and formatted anew.

» Fix of a bug that was a result of the reduction of the frame length from 160 to one. This affects the constants in
Section 4.4 as well as the files ctm_defines.h and ctm_tranmsitter.c in the attached zip archive.

e Bug in the attached source code fixed
(last line of file diag_deinterleaver.c, function shift_deinterleaver())

Outstanding Issues:

None.

Contentious Issues:

None.

3G TS 26230 V 2.0.0 (2000-12)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System
Aspects;

Cellular Text Telephone Modem;

Transmitter Bit Exact C-Code

(Release 5)

The present document has been developed within the 3™ Generation Partnership Project (3GPP ™) and may be further elaborated for the purposes of
3GPP. The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented. This
Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this
Specification. Specifications and reports for implementation of the 3GPP ™ system should be obtained via the 3GPP Organisational Partners'
Publications Offices.

Keywords

3GPP, Global Text Telephony, CTM

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://mww.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

3GPP

Contents

Scope6

1. L0 4P YT L= (T Lo T 6
2. Definitions and ADDIEVIALIONS.........cocviiii it e e s s e e e s sbb e e s s s sbbe e s s sabbeeeseanes 6
3. (O o0 o SIS £ {001 (1 (T 7
3.1 CONENTS OF ThE € SOUICE COUEB........ueiiiicttiie ettt ettt et e e e ettt e e s e e e e s eb b e e s s ebb b e s s sabeseessabeeessbbasesssbanessrbanens 7
3.2 PrOQIam EXECULIONoueiiiitiitiiie ettt sttt ettt b e bbbt e e et e b e e b e ke e bt eb e e b e e Rt e s e e eb e ke sbeebeebeeneese et e nbesbeebeane e 7
3.3 (Ofa o[T T=T =T (o YOO USROS P PP PRPRO 10
3.3.1 INITIANIZATION FOULINES ... eviiiiietiie ettt ettt e e sttt e s s bt e e s bt e e e s sab e e e s sabbe s e sabaaesssbbaeessabaseesssranesssbbaneaas 10
3.3.2 SIgNal ProCESSING FUNCLIONScuiitiitiiiieie ettt bttt bbbttt et ee b e b besbeenes 11
3.4 Description of global constants used in the C-COUEcooiiiiiiiiiie e e 12
35 IR/ LI 1= 4T3 o SRS 13
3.6 UL ot o] g E o) A1 (= O o Lo [T 13
Annex A (informative): Change NISTOMYoii it 25

3GPP

Foreword

This Technical Specification has been produced by T1P1.

The contents of the present document are subject to continuing work within the 3GPP TSG and may change following
formal 3GPP approval. Should the 3GPP TSG modify the contents of this TS, it will be re-released by the 3GPP TSG
with an identifying change of release date and an increase in version number as follows:

Version X.y.z
where:
x the first digit:
1 presented to 3GPP for information;
2 presented to 3GPP for approval;
3 Indicates 3GPP approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

3GPP

Scope

This Technical Standard (TS) contains an electronic copy of the ANSI-C code for the Cellular Text Telephone Modem
(CTM) for reliable transmission of text telephone text via the speech channel of cellular networks. While CTM is
generally usable with text in UCS coding, the example application linked to CTM in this document is limited to use the
signals and character set of the Baudot type.

1. Normative references

This TS incorporates by dated and undated reference, provisions from other publications. These normative references
are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent
amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or
revision. For undated references, the latest edition of the publication referred to applies.

[1] 3GPP 26.226, Cellular Text Telephone Modem (CTM), General Description

[2] ISO/IEC 10646-1 Information technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane

2. Definitions and Abbreviations
For the purposes of this TS, the following abbreviations apply:
CT™M Cellular Text Telephone Modem
FEC Forward Error Correction
FSK Frequency Shift Key
HCO Hearing Carry Over, (individual may be able to hear, but cannot speak) Alternating transmission
of speech and text.
PCM Pulse Code Modulation
RX Receive
TX Transmit
TTY Text Telephone
UCs Universal Multiple-Octet Coded Character Set
UTF UCS transformation format
VAD Voice Activity Detection
VCO Voice Carry Over, Alternating transmission of speech and text

3GPP

3. C code structure

This clause gives an overview of the structure of the bit-exact C code and provides an overview of the contents and
organization of the C code attached to this document.

The C code has been verified on the following system.

- Sun Microsystems workstations with SUN Solaris"™ operating system and the the Gnu C Compiler (gcc version
2.7.2.3) and GNU Make 3.77;

The C code has also been successfully compiled and used in the following environment, with the exception that it can
not be guaranteed that the upper part of the UCS code table in fileucs_functi ons. ¢ will be compiled correctly
since it depends on the codepage setting of the environment.

- IBM PC/AT compatible computers with Windows™ NT 4.0 operating system and Microsoft Visual C++ 6.0™

compiler.

3.1 Contents of the C source code

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. All these
files are in the root level of the ZIP-archive.

Makefiles are provided for the platforms in which the C code has been verified (listed above). They are called
“Makefile” for GNU Make and “Makefile.vc” for Microsoft Visual C++™.

For the Sun Microsystems platform, an example shell script for a transmission via two signal adaptation modules is
given in "test_negotiation". For the Microsoft Windows™ platform, no shell script or batch program is provided.

The software can be compiled using the commands
make al | or gmake all in case of Gnu Make
nmake /f Makefile.vc in case of Microsoft Visual C++.

The executables are compiled into the directory ./ sol ari s (in case of Gnu Make) or into the actual directory in
case of Microsoft Visual C++™.

The directory . / pat t er ns provides the file baudot . pcmthat serves as input signal for the test script
test _negoti ati on. All output data oft est _negot i at i on will be stored into the directory . / out put . If
required, this directory will be created by t est _negot i at i on automatically.

3.2 Program execution

The CTM signal adaptation module is implemented in the execuable adapt ati on_swi t ch (in case of Sun
Solaris™ platform) or adapt ati on_swi t ch. exe (in case of the Micorsoft Windows™ platform).

The program should be called like:

adaptation_switch -ctmn <file> -ctrmout <file>
-baudotin <file> -baudotout <file>

using the following parameters:

-ctmin <input _file> input file with CTM si gnal
- ct mout <output _file> output file for CTM si gnal
- baudoti n <input_file> input file with Baudot Tones

3GPP

- baudot out <output_file> output file for Baudot Tones

-t ext out <text _file> output text file from CTM receiver (optional)
- nunmsanpl es <nunber > nunber of sanples to process (optional)
-nonegoti ati on di sabl es the negotiation (optional)

All files contain 16-bit linear encoded PCM audio samples, which are swapped according to the platform’s endian type
(Sun Microsystems platforms use big endian, Intel platforms use little endian). An example file baudot . pcm
containing a Baudot Code modem signal (big endian) is provided in the subdirectory . / pat t er ns.

Due to the fact that the signal adaptation module expects a successful negotiation before Baudot Code signals can be
converted to CTM signals, the signal adaptation module has to be executed several times in two instances in order to
execute a successful negotiation. For the Sun Microsystems platform, a shell script t est _negoti ati on is
provided for executing the following structure:

baudot . pcm - - - >| I >| | ---> baudot _out.pcm
| adapt#1 | | adapt#2 |
/dev/null <---]| | <----mmeeeea - | | <--- /dev/zero

First, the adaptation module #1 is executed. At this first run, the signal ctm_backward is not known. Therefore, the
negotiation does not get a positive acknowledge, so that the transmission falls back to Baudot Tones.

Then signal adaptation module #2 is executed for the first time.

After that, adaptation module #1 is executed for the second time. With this second run, the signal ctm_backward is
valid. Therefore, the negotiation receives a valid acknowledge, so that CTM signals are transmitted.

At last, adaptation module #2 is executed for the second time. With this run, adaptation module #2 receives a valid
CTM signal so that the baudot_out.pcm signal can be generated.

After executing each of the modules twice, the signal baudot_out.pcm is analyzed. This analysis is also performed by
the program adaptation_switch. First, the Baudot detector of adaptation_switch is used for this analysis in order to
examine whether the regenerated Baudot signal can be decoded correctly. In a second step it is examined whether the
regenerated signal still contains any CTM preambles. This investigation is performed by means of the CTM detector
that is integrated in adaptation_switch. This last test fails if the CTM detector is able to detect any CTM preamble in the
regenerated signal.

During the execution of the script test_negotiation the following text output shall be generated:

Execut e adaptation nodule #1 (first pass)

EE R I R I I I R I I I I S I I I R I S I I I R I R I R R

Cel lul ar Text Tel ephone Modem (CTM - Exanpl e | nplenentation for
Conversi on between CTM and Baudot Code (use option -h for help)

EE R R I I I I I I R I S R I I I R S R I I S R I R S

nunber of sanples to process: 100000

>>> Enquiry Burst generated! <<<
THE>>> Enquiry Burst generated! <<<
>>> Enquiry Burst generated! <<<
CELL

Execut e adaptation nodule #2 (first pass)

khkhkkhkhkhhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhhhdhhhdhhhddhrdxhkrkkdrx*x*

Cel lul ar Text Tel ephone Modem (CTM - Exanpl e | nplenentation for

3GPP

Conver si on between CTM and Baudot Code (use option -h for help)

khkkhkkhkhkhkhkhhkhkhhhhhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhkhdkhkrkhkrkk krk*x*

>>> CTM from far-end detected! <<<

>>> Enquiry From Far End Detected! <<<
THE>>> Enquiry From Far End Detected! <<<
>>> Enquiry From Far End Detected! <<<
CELL

EE R R R R I I I I I R I I I R R I I R I I R I R S

Cel l ul ar Text Tel ephone Modem (CTM - Exanple | nplenentation for
Conversi on between CTM and Baudot Code (use option -h for help)

khkkhkkhkhkhkhkhhkhkhhhhhhhkhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhdhhhddkhrkhkrkk krx*x*

>>> Enquiry Burst generated! <<<
THE>>> CTM from far-end detected! <<<

CELLULAR TEXT TELEPHONE MODEM (CTM ALLOWS RELI ABLE
TRANSM SSI ON OF A TEXT TELEPHONE CONVERSATI ON ALTERNATI NG
W TH A SPEECH CONVERSATI ON THROUGH THE EXI STI NG SPEECH
COVMUNI CATI ON PATHS I N CELLULAR MOBI LE PHONE SYSTEMS.
TH S RELI ABILITY | S ACH EVED BY AN | MPROVED MODULATI ON
TECHNI QUE, | NCLUDI NG ERROR PROTECTI ON, | NTERLEAVI NG AND
SYNCHRONI ZATI ON.

EE R R R I R I I I I I R I S R I I I I R I S I R I I R I R R L

Cel l ul ar Text Tel ephone Modem (CTM - Exanpl e |nplenentation for
Conver si on between CTM and Baudot Code (use option -h for hel p)

khkhkkhkhkhkhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhkhhhdhdkhkrdhkrkkhrk*x*

>>> CTM from far-end detected! <<<

>>> Enquiry From Far End Detected! <<<

THE CELLULAR TEXT TELEPHONE MODEM (CTM ALLOWS RELI ABLE
TRANSM SSI ON OF A TEXT TELEPHONE CONVERSATI ON ALTERNATI NG
W TH A SPEECH CONVERSATI ON THROUGH THE EXI STI NG SPEECH
COVMUNI CATI ON PATHS I N CELLULAR MOBI LE PHONE SYSTEMS.

TH S RELI ABILITY | S ACH EVED BY AN | MPROVED MODULATI ON
TECHNI QUE, | NCLUDI NG ERROR PROTECTI ON, | NTERLEAVI NG AND
SYNCHRONI ZATI ON.

Now we try to decode the regenerated Baudot signal. The text nessage
shal | be decoded conpletely now. ..

EE R R I I I R I I I R I R I R I I R S I R I R I R R I R I R L O

Cel l ul ar Text Tel ephone Modem (CTM - Exanpl e |nplenentation for
Conver si on between CTM and Baudot Code (use option -h for hel p)

khkhkkhkkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhdhhhdhhhddhrdxhkrkkdrk*x*

THE CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELI ABLE
TRANSM SSI ON OF A TEXT TELEPHONE CONVERSATI ON ALTERNATI NG
W TH A SPEECH CONVERSATI ON THROUGH THE EXI STI NG SPEECH
COVMUNI CATI ON PATHS I N CELLULAR MOBI LE PHONE SYSTEMS.
THI'S RELIABILITY IS ACH EVED BY AN | MPROVED MODULATI ON
TECHNI QUE, | NCLUDI NG ERRCR PROTECTI ON, | NTERLEAVI NG AND

3GPP

SYNCHRONI ZATI ON.

Testing whether the regenerated Baudot signal is free of CTM headers.
No CTM burst shall be detected now. ..

EE R R R R I I I I I I I R I I S I R R I I R I R I R L

Cel l ul ar Text Tel ephone Modem (CTM - Exanple |nplenentation for
Conver si on between CTM and Baudot Code (use option -h for hel p)

khkkhkkhkkhkhkhkhhhkhhhhhhhkhhhhhhhhhhhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhkhdkhkrdhkrkkhkrk*x*

3.3 Code hierarchy

This section gives an overview of the hierarchy how the functions are used in the signal adaptation module. All
standard C functions: printf(), fwrite(), etc. have been omitted. Also, all functions related to the asynchronous transfer
between the signal processing functions by means of FIFO buffers (Shorti nt _fi f o_push,

Shortint _fifo_pop,etc.) are not listed in the charts.

The following functions are not part of the actual CTM bit exact specification but are included to allow demonstration
of CTM in a Baudot environment:

 init_baudot_tonedemod
e init_baudot_tonemod

» baudot_tonedemod

e convertUCScode2char
e convertChar2TTYcode
e baudot_tonemod

» convertTTYcode2char

e convertChar2UCScode

3.3.1 Initialization routines

The following functions are called for the initialization of the signal adaptation module.

init_baudot_tonedemod
init_baudot_tonemod
init_ctm_transmitter init_interleaver generate_scambling_sequence
m_sequence
init_tonemod
conv_encoder_init
generate_resync_sequence m_sequence |
calc_mute_positions
init_ctm_receiver init_tonedemod sin_fip |
viterbi_init
calc_mute_positions
init_deinterleaver generate_scambling_sequence
init_wait_for_sync m_sequence
generate_scambling_sequence

3GPP

3.3.2

The following functions are called during the main signal processing loop.

Signal Processing Functions

baudot_tonedemod

iir_filt

ctm_receiver

tonedemod

rotate_right

rotate_left

wait_for_sync

reinit_deinterleaver

viterbi_reinit

diag_deinterleaver

shift_deinterleaver

mutingRequired

viterbi_exec

reinit_wait_for_sync

reinit_deinterleaver

viterbi_reinit
transformUTF2UCS

convertUCScode2char

convertChar2TTYcode

baudot_tonemod

convertTTYcode2char

convertChar2UCScode

ctm_transmitter transformUCS2UTF

reinit_interleaver

conv_encoder_exec

mutingRequired

diag_interleaver

diag_interleaver_flush

tonemod

3GPP

3.4 Description of global constants used in the C-code

The following constants are defined in the file ct m def i nes. h

Constant Value Description

MAX | DLE_SYMB 5 Number of Idle Symbols at End of Burst
CHC _RATE 4 Rate of the Error Protection

CHC K 5 Constraint Length of the Error Protection
SYMB_LEN 40 Length of one CTM symbol
LENGTH_TONE_VEC 1 frame size

LENGTH TX BI TS 8 number of bits per 20 ms frame

BI TS PER _SYMB 8 bits per symbol

NCYCLES 0 2 Number of periods for symbol #0
NCYCLES 1 3 Number of periods for symbol #1
NCYCLES 2 4 Number of periods for symbol #2
NCYCLES 3 5 Number of periods for symbol #3

THRESHOLD_ RELI ABI LI TY_FOR_SUPPRESSI NG autpur 100
THRESHOLD RELI ABI LI TY_FOR_XCORR 200
THRESHOLD_RELI ABI LI TY_FOR_ GO NG OFFLINE 100
MAX_NUM UNRELI ABLE_GROSS BITS 400

Characters with lower reliability are suppressed
Bits with lower reliability don’t contribute to xcorr
Threshold for regarding a bit as unreliable
Receiver goes offline after 400 unreliable bits

NUM BI TS _GUARD | NTERVAL 6 Number of muted bits between two bursts

WAI T_SYNC _REL_THRESHOLD 0O 20316 (=0.62) rel. threshold for preamble

WAI T_SYNC REL THRESHOLD 1 17039 (=0.52) rel. threshold for preamble

WAl T_SYNC _REL_THRESHOLD 2 23065 (=0.71) dto. in case that RX is already online
RESYNC REL_THRESHOLD 26542 Threshold for Resynchronization (=0.81)
GUARD BI T_SYMBOL 10 magic number indicating that a bit shall be muted
intlvB 8 Interleaver block length (number of rows)
intlvD 2 Interleaver block distance (interlace factor)
denodSyncLns 1 Number of demodulator sync lines

dei nt SynclLns 0 Number of deinterleaver sync lines

| DLE_SYMB 0x16 UCS code for Idle Synbol

ENQU_SYMB 0x05 UCS code for Enquiry Synbol

ENQUI RY_TI MEQUT 3040 number of 20-ms frames for negotiation

NUM_ENQUI RY_BURSTS 3 number of enquiry attempts

NUM MUTE_ROWS 4 Number of Intl. rows that shall be muted

RESYNC SEQ LENGTH 32 length of the resynchronization sequence,
must be a multiple of 8

NUM BI TS BETWEEN RESYNC 352 Distance between two resync sequences, the value
NUM_BI TS _BETWEEN RESYNC+RESYNC_SEQ LENGTH
must be a multiple of CHC_RATE, intlvB, and
BITS_PER_CHAR, and must be greater than
intlvB*((intlvB-1)*intlvD+NUM MJTE_RONS

BAUDOT_NUM | NFO BI TS 5 number of information bits per Baudot character

BAUDOT_SHI FT_FI GURES 27 code of shift to figures symbol

BAUDOT_SHI FT_LETTERS 31 code of shift to letters symbol

BAUDOT_BI T_DURATI ON 176 must be 176 (for 45.45 baud) or 160 (50 baud)

BAUDOT _LP_FI LTERORDER 1 Order of the low-pass filters in function
baudot _t onedenod()

BAUDOT_BP_FI LTERORDER 2 Order of the according band-pass filters, must

be equal to 2* BAUDOT_BP_FI LTERORDER

3GPP

3.5 Type Definitions

In order to make the C code platform-independent, the following type definitions have been used, which are defined in

t ypedef s. h:

defined type neaning

correspondi ng constants

Char character (none)

Bool bool ean true, false

Shorti nt 16-bit signed m nShortint, maxShortint
UShorti nt 16-bit unsi gned m nUShortint, maxUShorti nt
Longi nt 32-bit signed nm nLongi nt, maxLongi nt
ULongi nt 32-bit unsigned m nULongi nt, maxULongi nt

3.6 Functions of the C Code

voi d baudot _t onedenod(Shortint* toneVec, Shortint numSanpl es,
fifo state t* ptrQutFifoState,

baudot tonedenod state t* state);
Pur pose: Dermodul at or for Baudot Tones
Defined in: baudot functions.c

| nput Vari abl es:
t oneVec
nunBSanpl es

| nput/ Qut put Vari abl es:
ptrQut Fi foState

state

Vector containing the input audio signal
Length of toneVec

Pointer to the state of the output shift register
cont ai ni ng the denodul ated TTY codes
Pointer to the state variabl e of baudot_t onedenod()

voi d baudot _t onenod(Shorti nt
Shor ti nt
Shor ti nt
Shor ti nt

i nput TTYcode,
*out put ToneVec,

| engt hToneVec,
*ptrNunBitsStill ToModul at e,

baudot _tonenod_state t* state);

Pur pose: Modul at or

for Baudot Tones

Defined in: baudot functions.c

| nput Vari abl es:
i nput TTYcode

| engt hToneVec

Qut put Vari abl es:
out put ToneVec
ptrNunBitsStill ToModul at e

| nput/ Qut put Vari abl es:
state

TTY code of the character that has to be nodul at ed.
i nput TTYcode nust be in the range 0...63, otherw se
it is assunmed that there is no character to

nodul at e.

I ndi cat es how many sanpl es have to be generated.

Vector where the output sanples are witten to.
I ndi cates how many bits are still in the fifo
buf fer.

Pointer to the state variabl e of baudot_tonedenod()

3GPP

void calc_nmute _positions(Shortint *nute_positions,
Shortint numrows to mute,
Shortint start_position,
Shortint B,
Shortint D);

Pur pose: Cal cul ation of the indices of the bits that have to be nuted
within one burst. The indices are returned in the vector
mut e_posi tions.

Defined in: init_interleaver.c

Shortint convert Char2ttyCode(char inChar);

Pur pose: Conversion fromcharacter into TTY code
Defined in: baudot functions.c

| nput Vari abl es:
i nChar character that shall be converted

Ret urn Val ue: baudot code of the input or -1 in case that inChar
is not valid (e.g. inChar=="\0")

UShortint convert Char 2UCScode(char inChar);

Pur pose: Conversion fromcharacter into UCS code (Universal Miltiple-
Cct et Coded Character Set, Row 00 of the Multilingual plane
according to | SO I EC 10646-1). This routine only handl es
characters in the range 0..255 since that is all that is
required for denonstration of Baudot support.

Defined in: ucs_functions.c

| nput Vari abl es:
i nChar character that shall be converted

Ret urn Val ue: UCS code of the input or 0x0016 <IDLE> in case that
inChar is not valid (e.g. inChar=="\0")

char convertTTYcode2char (Shortint ttyCode);

Pur pose: Conversion from TTY code into Character
Defined in: baudot functions.c

| nput Vari abl es:
tt yCode Baudot code (nust be within the range 0...63) or -1
if there is nothing to convert

Return Val ue:
character (or '\0" if ttyCode is not valid)

char convert UCScode2char (UShortint ucsCode);

3GPP

Pur pose: Conversion from UCS code into character (Universal Miltiple-
Cct et Coded Character Set, Row 00 of the Multilingual plane
according to I SO I EC 10646-1). This routine only handl es
characters in the range 0..255 since that is all that is
required for denonstration of Baudot support.

Defined in: ucs_functions.c

| nput Vari abl es:
ucsCode UCS code index, nust be within the range 0...255

Ret urn Val ue: character (or '\0" if ucsCode is not valid)

voi d conv_encoder _exec(conv_encoder t* ptr_state, Shortint* in,
Shortint inbits, Shortint* out);

Pur pose: Execution of the convolutional encoder for error protection
Defined in: conv_encoder.c

| nput Vari abl es:
in Vector with net bits
inbits Nunmber of valid net bits in vector in

Qut put vari abl es:

out Vector with the encoded gross bits. The gross bits
are either 0 or 1. The vector out nust have at
| east CHC RATE*inbits el ements.

| nput / out put vari abl es:
*ptr_state state variable of the encoder

voi d conv_encoder _init(conv_encoder _t* ptr_state);

Pur pose: Initialization of the convol utional encoder
Defined in: conv_encoder. c

Qut put Vari abl es:
*ptr_state Initialized state variable of the encoder

void ctmreceiver(fifo_state t* ptr_signal _fifo_state
fifo_state t* ptr_output_char fifo_state,

Bool * ptr_early_nuting_required,
rx_state t* rx_state);
Pur pose: Runs the CTM Receiver for a block of (nomnally) 160 sanpl es.

Due to the internal synchronization, the nunber of processed
sanmpl es m ght vary between 156 and 164 sanples. The input of
the sanpl es and the out put of the decoded characters is
handl ed via fifo buffers, which have to be initialized
externally before using this function (see fifo.h for
detail s).

Defined in: ctmreceiver.c

i nput/out put vari abl es

*ptr_signal _fifo_state fifo state for the input sanples
*ptr_output_char_fifo_state fifo state for the output characters

3GPP

*ptr_early nmuting required returns whether the original audio signal must not

rx_state

be forwarded. This is to guarantee that the
preanbl e or resync sequence is detected only by the
first CTM device, if several CTM devices are
cascaded subsequently.

pointer to the variable containing the receiver
states

void ctmtransnitter(UShortint ucsCode,

Pur pose

Defined in:

i nput vari abl es:
ucsCode

si neCQut put

out put vari abl es:
t xToneVec

Shortint* t xToneVec,

tx_state_t* tx_state

Shorti nt *ptrNunBitsStill ToModul at e,
Bool sineCutput);

Runs the CTM Transmitter for a block of 160 output sanples,
representing 8 gross bits.

The bits, which are nodul ated into tones, are taken from an
internal fifo buffer. If the fifo buffer is enpty, zero-val ued
sanpl es are generated. The fifo buffer is filled with channel -
encoded and interleaved bits, which are generated internally
by coding the actual input character. Wth each call of this
function one or less input characters can be coded. If there
is no character to for transm ssion, one of the follow ng
codes has be used:

- 0x0016 <IDLE>: indicates that there is no character to
transmt and that the transnitter should stay in idle node, if
it is currently already in idle node. If the transmitter is
NOT in idle node, it mght generate <IDLE> synbols in order to
keep an active burst running. The CTM burst is termnated if
five <IDLE> synbol s have been generated consecutively.

- OxFFFF: although there is no character to transmt, a CIM
burst is initiated in order to signal to the far-end side that
CTM is supported. The burst starts with the <IDLE> synbol and
will be continued with <IDLE> synbols if there are no regul ar
characters handed over during the next calls of this function
The CTM burst is termnated if five <IDLE> synbols have been
transmitted consecutively.

In order to avoid an overflow of the internal fifo buffer, the
variable *ptrNunBitsStill ToModul ate shoul d be checked before
calling this function.

ctmtransnmitter.c

UCS code of the character or one of the code 0x0016
or OxFFFF

nmust be false in regular node; if true, a pure sine
out put signal is generated

out put signal (vector of 160 sanples)

i nput/out put vari abl es:

tx_state

pointer to the variable containing the transnitter
states

voi d di ag_dei nterl eaver (Shortint *out,

Shortint *in,
Shortint numvalid bits,
interleaver_state t *intl_state);

3GPP

Pur pose

Defined in:

Correspondi ng deinterleaver to diag_interleaver. An arbitrary
nunber of bits can be interleaved, depending of the I ength of
the vector "in". The vector "out", which nust have the sane
length than "in", contains the interleaved sanples.

Al states (menory etc.) of the interleaver are stored in the
variable *intl _state. Therefore, a pointer to this variable
nmust be handled to this function. This variable initially has
to be initialized by the function init_interleaver, which
offers also the possibility to specify the dinensions of the
dei nterl eaver matrix.

di ag_dei nterl eaver.c

void diag_interleaver(Shortint *out,

Pur pose

Defined in:

Shortint *in,
Shortint numbits,
interleaver_state t *intl_state);

Di agonal (chain) interleaver, based on bl ock-by-bl ock
processing. An arbitrary number of bits can be interleaved,
dependi ng of the value numbits. The vector "out", which nust
have the sane length than "in", contains the interl eaved
sanpl es.

All states (nmenmory etc.) of the interleaver are stored in the
variable *intl _state. Therefore, a pointer to this variable
nmust be handled to this function. This variable initially has
to be initialized by the function init_interleaver(), which
offers also the possibility to specify the dinmensions of the
interleaver matri x.

di ag_interl eaver.c

void diag_interleaver_flush(Shortint *out,

Pur pose

Defined in:

Shortint *numbits,
interleaver_state t *intl_state);

Execution of the diagonal (chain) interleaver w thout witing
i n new sanmpl es. The number of cal cul ated output sanples is
returned via the value *numbits.

diag_interl eaver.c

voi d generate_resync_sequence(Shortint *sequence);

Pur pose

Defined in:

CGeneration of the sequence for resynchronization. The | ength
of the sequence is defined by the gl obal constant
RESYNC SEQ LENGTH. The vector sequence nust be allocated
accordingly before calling this function.

wait_for_sync.c

voi d generate_scranbling_sequence(Shortint *sequence, Shortint |ength);

Pur pose

Defined in:

Ceneration of the sequence used for scranbling. The sequence
consists of 0 and 1 elenments. The sequence is stored into the
vector *sequence and the I ength of the sequence is specified
by the variabl e | ength.

init_interleaver.c

3GPP

voi d init_baudot_t onedenod(baudot tonedenpd_state t* state);

Pur pose: Initialization of the denodul ator for Baudot Tones
Defined in: baudot functions.c

| nput/ Qut put Vari abl es:
state Pointer to the initialized state variable (nmust be
al l ocated before calling init_baudot _tonedenod()

void init_baudot tonenod(baudot tonenod state t* state);

Pur pose: Initialization of the nodul ator for Baudot Tones
Defined in: baudot functions.c

| nput / Qut put Vari abl es:
state Pointer to the initialized state variable (must be
al l ocated before calling init_baudot _tonenod()

void init_deinterleaver(interleaver_state t *intl_state,
Shortint B, Shortint D);

Pur pose: Initialization of the deinterleaver.
Defined in: init_interleaver.c

void init_ctmreceiver(rx_state t* rx_state);

Pur pose: Initialization of the CTM Recei ver.
Defined in: ctmreceiver.c

out put vari abl es:
rx_state pointer to a variable of rx_state_t containing the
initialized states of the receiver

void init_ctmtransmtter(tx _state t* tx_state);

Pur pose: Initialization of the CTM Transm tter
Defined in: ctmtransnmtter.c

i nput/out put vari abl es
tx_state pointer to a variable of tx _state_ t containing
initialized states of the transmtter

void init_interleaver(interleaver_state t *intl_state,
Shortint B, Shortint D,
Shortint numsync_linesl, Shortint numsync_Ilines2);

Pur pose: Function for initialization of diag interleaver and
di ag_dei nterl eaver, respectively. The di nensions of the
i nterl eaver must be specified:
B = (horizontal) blocklength, D= (vertical distance)
According to this specifications, this function initializes a
vari abl e of type interleaver_state t.
Additionally, this function adds two types of sync information

3GPP

Defined in:

to the bitstream The first sync info is for the denodul at or
and consists of a sequence of alternating bits so that the
tones produced by the nodul ator are not the sane all the tine.
This is essential for the denmodulator to find the transitions
bet ween adj acent bits. The bits for this denodul ator
synchroni zati on sinply precede the bitstream

The second sync info is for synchronizing the deinterl eaver
and of a msequence with excellent autocorrel ation properties.
These bits are positioned at the | ocations of the dummy bits,
whi ch are not used by the interleaver. In addition, even nore
bits for this can be spent by inserting additional sync bits,
whi ch precede the interleaver's bitstream This is indicated
by choosi ng num sync_I| i nes2>0.

init_interleaver.c

void init_tonedenod(denpd state t *denpnd_state);

Pur pose

Defined | n:

Initialization of one instance of the Tone Denpdul ator. The
argunent nust contain a pointer to a variable of type
denod_state t, which contains all the nenory of the tone
denodul at or. Each instance of tonedenod nust have its own
vari abl e.

t onedenod. c

void init_wait_for_sync(wait_for_sync_state t *ptr_wait_state

Pur pose

Defined | n:

| nput Vari abl es:
B

D

num Sync_l i ne2

Qut put Vari abl es:
ptr_wait_state

interleaver_state t intl_state);

Initialization of the synchronization detector. The di nmensions
of the corresponding interleaver at the TX side nust be
specified by the variables B, D, and numsync_I|ines2.
wait_for_sync.c

(horizontal) bl ocklength

(vertical) interlace factor

nunber of interleaver lines with additional sync
bits (see description of init_interleaver())

pointer to the state variable of the sync detector

int main(int argc,

Pur pose
Defined in:

const char** argv)

mai n function of the signal adaptation Mdule
adaptation_swi tch.c

Bool nutingRequired(Shortint actuall ndex,

Pur pose

Defined in:

Shortint *mute_positions,
Shortint Iength_nute_positions);

Det ermi nes whether the actual bit has to be nmuted, i.e.

whet her it is contained in the vector nute_positions.
init_interleaver.c

3GPP

voi d m sequence(Shortint *sequence, Shortint |ength);

Pur pose: Cal cul at es one period of an m sequence (binary pseudo noise).
The sequence is stored in the vector sequence, which nust have
a of (2”r)-1, where r is an integer nunber between 2 and 10.
Therefore, with this release of m sequence, sequences of
length 3, 7, 15, 31, 63, 127, 255, 511, or 1023 can be

generated. The resulting sequence is bipolar, i.e. it has
val ues -1 and +1.
Defined in: m sequence. ¢

voi d pol ynom al s(Shortint rate, Shortint k
Shortint* polya, Shortint* polyb,
Shortint* polyc, Shortint* polyd);

Pur pose: Returns the polynom als for the convol uti onal encoder and the
Viterbi decoder for various rates and constraint |engths. The
foll owi ng paraneters are supported:
rate = {2, 3, or 4}

k = {3, 4, 5, 6, 7, 8, 9}
Defined in: conv_poly.c
| nput Vari abl es:
rate Rate of the convolutional encoder (2, 3, or 4)
k Constraint length (length of the inpul se response

of the encoder)

Qut put Vari abl es:

poly a Vector with polynom als #1
poly b Vector with polynom als #2
poly_c Vector with polynomials #3 (only if rate > 2)
poly_d Vector with polynomials #4 (only if rate > 3)

void reinit_deinterleaver(interleaver_state t *intl _state);

Pur pose: Re-Initialization of the deinterl eaver
Defined in: init_interleaver.c

void reinit_interleaver(interleaver_state t *intl_state);

Pur pose: Re-initialization of the deinterl eaver
Defined in: init_interleaver.c

void reinit_wait_for_sync(wait _for_sync_state t *ptr_wait_state);

Pur pose: Reinitialization of synchronization detector. This function is
used in case that a burst has been finished and the
transmtter has switched into idle node. After calling
reinit_wait for_sync(), the function wait_for_sync() inhibits
the transni ssion of the denmodul ated bits to the deinterl eaver,
until the next synchronization sequence can be detected.

Defined In: wait_for_sync.c

3GPP

void shift _deinterleaver(Shortint shift,

Pur pose

Defined in:

Shortint *insert _bits,
interleaver_state t *ptr_state);

Shift of the deinterleaver buffer by <shift> sanples.
shift>0 -> shift to the right

shift<0 -> shift to the left

The elements from<insert_bits> are inserted into the
resulting space. The vector <insert_bits> nmust have at | east
abs(shift) el enents.

di ag_dei nterl eaver.c

Shortint sin_fip(Shortint phase_val ue);

Pur pose

Defined in:

Fi xed Point sine function, returns the follow ng val ue:
sin_fip(phase_val ue)

= round(32767*si n(2*pi *50/ 8000* phase_val ue))
phase_val ue nust be within the range [0...159]. This function
can be used for cal culating sine waveforms of frequencies that
are integer-nultiples of 50 Hz
sin_fip.c

voi d tonedenod(Shortint *bits_out,
Shortint *rx_tone_vec,
Shortint num.in_sanples,
Shortint *ptr_sanpling_correction
denod_state_ t *denopd_state);

Pur pose

Defined in:

i nput vari abl es:
bits_out

num i n_sanpl es

out put vari abl es:

bits_out

Tone Denodul ator for the CTM using one out of four tones for
coding two bits in parallel within a frame of 40 sanples (5
ns) .

The function has to be called for every frame of 40 sanpl es of
the recei ved tone sequence. However, in order to track a
non-ideal of the transmitter's and the receiver's clock
frequenci es, one frame m ght be shorter (only 39 sanples) or

| onger (41 sanples). The length of the following franme is

i ndi cated by the variable *sanmpling _correction, which is

cal cul ated and returned by this function

t onedenod. ¢

contains the 39, 40 or 41 actual sanples of the
recei ved tones; the bits are soft bits, i.e. they
are in the range between -1.0 and 1.0, where the
magni t ude serves as reliability information
nunber of valid sanples in bits_out

contains the two actual decoded soft bits

sanpl i ng_correction is either -1, 0, or 1 and indicates whether the

denod_state

next frame shall contain 39, 40, or 41 sanples.
contains all the nenory of tonedenbpd. Mist be
initialized using the function init_tonedenod()

3GPP

voi d tonenod(Shorti nt *t ones_out,

Shorti nt *bits_in,
Shorti nt num sanpl es_t ones_out,
Shorti nt numbits_in,

nod_state_t *nopd_state);

Pur pose: Modul ator for the CTM The input vector bits_in nust contain
the bits that have to be transnmtted. The length of bits in
must be even because always two bits are coded in parallel
Bits are either unipolar (i.e. {0, 1}) or bipolar (i.e. {-1
+1)}. The length of the output vector tones_out nust be 20
tinmes longer than the Iength of bits in, since each pair of
two bits is coded within a frane of 40 audi o sanpl es.

Defined In: t onenod. ¢

voi d transfor MUCS2UTF(UShort i nt ucsCode,

fifo_state t* ptr_octet _fifo_state);

Pur pose: Transformation from UCS code into UTF-8. UTF-8 is a sequence
consisting of 1, 2, 3, or 5 octets (bytes). See ISO|EC
10646-1 Annex G
This routine only handles UCS codes in the range O...OxFF
since that is all that is required for the denonstration of
Baudot support.

Defined In: ucs_functions.c

| nput Vari abl es:
ucsCode

Qut put Vari abl es:

UCS code i ndex

ptr_octet fifo_state pointer to the output fifo state buffer for the

UTF- 8 octets.

Bool transfornJTF2UCS(UShorti nt *ptr_ucsCode,

Pur pose

Defined In:

fifo state t* ptr_octet fifo_state)
Transformation from UTF-8 into UCS code.
This routine only handl es UTF-8 sequences consi sting of one or
two octets (corresponding to UCS codes in the range 0...O0xFF)
since that is all that is required for the denonstration of
Baudot support.

ucs_functions.c

| nput / Qut put Vari abl es:
ptr_octet fifo_state pointer to the input fifo state buffer for the

Qut put Vari abl es:
*ptr_ucsCode

Ret urn Val ue:
true,
f al se,

UTF- 8 octets.

UCS code i ndex

i f conversion was successful
if the input fifo buffer didn't contain enough
octets for a conversion into UCS code. The out put

3GPP

vari abl e *ptr_ucsCode doesn’t contain a value in
thi s case.

void viterbi _exec(Shortint* inputword, Shortint |ength_input,
Shortint* out, Shortint* numvalid out bits,
viterbi t* viterbi_state);

Pur pose: Execution of the Viterbi decoder

Defined in: viterbi.c

| nput Vari abl es:

i nputword Vector with gross bits

I engt h_i nput Nurmber of valid gross bits in vector inputword.
| engt h_i nput nust be an integer multiple of
CHC RATE.

Qut put vari abl es:

out Vector with the decoded net bits. The net bits are
either 0 or 1.

*numvalid out bits Nunber of valid bits in vector out.

| nput / out put vari abl es:
*viterbi state state variable of the decoder

void viterbi init(viterbi _t* viterbi_state);

Pur pose: Initialization of the Viterbi decoder
Defined in: viterbi.c

Qut put Vari abl es:
*viterbi _state Initialized state variable of the decoder

void viterbi _reinit(viterbi _t* viterbi _state);

Pur pose: Re-Initialization of the Viterbi decoder. This function should
be used for re-setting a Viterbi decoder that has al ready been
initialized. In contrast to init_viterbi(), this reinit
function does not cal culate the values of all nenbers of
viterbi _state that do not change during the execution of the
Viterbi algorithm

Defined in: viterbi.c

Qut put Vari abl es:
*viterbi _state Initialized state variable of the decoder

Bool wait_for_sync(Shortint *out_bits,
Shortint *in_bits,
Shortint numin_bits,
Shortint numreceived_idle_synbols,
Shortint *ptr_numvalid_out_bits,
Shortint *ptr_wait_interval
Shortint *ptr_resync_detected,
Bool *ptr_early_nuting_required,
wait _for_sync_state t *ptr_wait_state);

3GPP

Pur pose

Defined | n:

| nput Vari abl es:
in_bits

numin_bits

Qut put Vari abl es:

This function shall be inserted between the denodul at or and
the deinterl eaver. The function searches the synchronization
bitstream and cuts all received heading bits. As long as no
sync is found, this function returns
*ptr_numvalid out bits=0 so that the main program is able to
skip the deinterleaver as long as no valid bits are avail abl e.
If the sync info is found, the conplete internal shift
register is copied to out_bits so that wait_for_sync can be
transparent and causes no delay for future calls.
*ptr_wait_interval returns a value of 0 after such a

synchroni zation indicating that this was a regul ar
synchroni zat i on.

Regularly, the initial preanble of each burst is used as sync
info. In addition, the resynchroni zati on sequences, which
occur periodically during a running burst, are used as "back-
up" synchronization in order to avoid loosing all characters
of a burst, if the preanble was not detected.

If the receiver is already synchroni zed on a running burst and
t he resynchroni zati on sequence is detected,
*ptr_resync_detected returns a non-negative value in the range
O...num.in_bits-1 indicating at which bit the
resynchroni zati on sequence has been detected. If no
resynchroni zati on has been detected, *ptr_resync_detected is -
1. If the receiver is NOT synchronized and the
resynchroni zati on sequence is detected, the resynchronization
sequence is used as initial synchronization

*ptr_wait_interval returns a value of 32 in this case due to
the different alignnents of the synchronizations based on the
preanmbl e or the resynchroni zati on sequence, respectively.

In order to carry all bits, the minimumlength of out _bits
nust be
in bits.size()-1 + ptr_wait_state->shift _reg_|l ength

wait_for_sync.c

Vector with bits fromthe denodul ator. The vector's
l ength can be arbitrarily chosen, i.e. according to
the bl ock I ength of the signal processing of the
mai n program

I ength of vector in_bits

num recei ved_i dl e_synbol s Nurmber if idle synmbols received coherently

out _bits Vector with bits for the deinterleaver. The nunber
of the valid bits is indicated by
*ptr_numyvalid out bits.

*ptr_numyvalid_out_bits returns the nunber of valid output bits

*ptr_wait_interva

returns either 0 or 32

*ptr_resync_det ect ed returns a value -1, 0,...num.in_bits
*ptr_early nmuting required returns whether the original audio signal nust not

be forwarded. This is to guarantee that only the
first CTMdevice will detect the preanble or resync
sequence, if several CTM devices are cascaded
subsequent | y.

| nput/ Qut put Vari abl es:
ptr wait _state state infornmation. This variable nust be initialized with

init_wait_for_sync().

3GPP

Annex A (informative):
Change history

Change history

Date TSG # TSG Doc. [CR |Rev [Subject/Comment

Old

New

3GPP

	SP-000570.doc

