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1. INTRODUCTION

In this note, we consider the channel impulse response models used in the evaluation of the WCDMA concepts and the
distribution of the power received by a RAKE receiver. It is proposed that the tap weights in the impulse-response model is
characterised by a Rician or a log-normal distribution (Section 2); the Rayleigh distribution is just a special case then (a Rician
distribution without a specular component). Furthermore, the Doppler spectrum should not always be the classical “Jakes”
spectrum. In Section 3, we give closed form expressions for the power received by a RAKE receiver given certain distributions
of the tap variations. Finally, in Section 4, we give an upper bound of the number of resolvable paths in a RAKE receiver,
which then represents the maximum frequency diversity gain.

2. CHANNEL IMPULSE RESPONSE MODELS

In this section, it is proposed that the channel tap variations be modelled by a Rician or a log-normal distribution; the Rayleigh
distribution is just a special case then. The point is that each tap may not always represent an “infinite” number of field
constituents. The shape of the Doppler spectrum is also considered.

Suppose that the channel impulse response is given by

(2.1) h t tn n
n

( , ) ( ) ( )τ α δτ τ= −∑ ,

where nα  denotes the tap weights and nτ  is the delay. For simplicity, we assume that the tap weights are statistically
independent.

In the evaluation of the WCDMA concept, it is assumed that the tap weights nα  are complex Gaussian processes with zero
mean. The tap envelopes are then Rayleigh distributed. The correlation properties of the taps are characterised by the classical
Doppler spectrum. One then assumes that each tap represents a large number of rays that arrive uniformly distributed in
azimuth and elevation. This so-called isotropic scattering model is often relevant for narrowband systems in which the
bandwidth W is smaller than the coherence bandwidth cB of the channel.  If, however,W increases relative to cB , we can
resolve more propagation paths, and the isotropic scattering model assumed for each tap becomes less valid.

A large number of taps can be resolved when the delay spread is large compared to the chip duration. Then the spreading
bandwidth ssB is larger than cB . The point is that the resolved taps may not represent a large number of equally distributed
rays, but rather a single or a few specular reflections (from large surfaces, for example) superposed by a number of weaker
randomised ray contributions. The tap variation is then more properly described by a Rician distribution. Furthermore, the
Doppler spectrum will not be the classical one.

Generally speaking, the isotropic scattering assumption will be less valid for any channel impulse response model when the tap
spacing decreases. The Rician distribution is probably more appropriate then, since a tap may represent a particular scattered
field constituent. The log-normal distribution sometimes appears. This is more difficult to explain from a physical standpoint.
To this end, suppose that a tap represents a single ray, the amplitude of which can be written as a product of a number of
factors such as antenna gains and reflection coefficients. Taking the logarithm, we obtain a sum. One could then hope that the
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terms are Gaussian distributed, in which case we may end up with a log normal distribution (if the number of terms is
sufficiently large). Moreover, the isotropic scattering model is doubtful when directive antennas are employed.

The Doppler spectrum for a tap will contain sharp peaks when dominant specular components are present. If the resolution is
high enough, one may assume that the Doppler spectrum contains a single peak. In this case, a Gaussian shaped profile may be
more appropriate. The angle of incidence of the dominant contribution then determines the position of the peak, and the
Doppler spread is characterised by the standard deviation. The correlation function will also be Gaussian.

For indoor channels, the time-delay spread is not sufficiently large in comparison to the spreading bandwidth of the WCDMA
system. The indoor channel will therefore behave just like a narrowband channel. Hence there is virtually no multi-path
diversity effect (cf. the RAKE receiver)

The number of taps captured by the RAKE receiver will have an impact on the fast (wideband) fading characteristics. This will
be considered in the next section.

3. WIDEBAND FADING DISTRIBUTIONS

In this section, we give closed form expressions for the power received by a RAKE receiver.

If we normalise the received signal to the local mean and drop the time dependence of the taps in (2.1), the received power can
be written as

(3.1) C H f S f df
Bss

= ∫ ( ) ( )
2

with )( fH the Fourier transform of the channel impulse response, S f( ) the spectral density of the received signal and Bss

spreading bandwidth. Suppose that S f S( ) = 0  for f Bss< / 2  and S f( ) = 0  otherwise. Substituting (2.1) into (3.1) we
obtain the inequality
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The right-hand side is simply the power obtained by a RAKE receiver that can resolve all the paths. Recall that we have
assumed that the tap weights nα  are uncorrelated. Hence, in this case, we have ssc BB << . If the converse is true, we have
flat fading, and (3.1) may be approximated by

(3.3) C H S f df H S Bss≈ =
− ∞

∞

∫( ) ( ) ( )0 02 2
0 .

Note that the ”narrowband power” is lower than that obtained by the RAKE receiver:

(3.4) ∑∑ ≤=
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If the tap weights are complex Gaussian distributed with zero mean, then it is easy to obtain the distribution of the power
obtained by a RAKE receiver. Let

(3.5) U S Bss n
n

l
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α

denote the received power by a RAKE receiver with l  taps. It is then well known (from the theory of maximum-ratio
combining) that
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If the taps are Rician distributed, the situation is more complicated. We then assume that nα  are characterised by the specular

parameter 0>nµ , which describes the steady component, and a random fading variation with a mean-square value 2 2
nσ .

However, a closed form expression for the power can only be obtained when σσ =n . In this case, all the taps have the same
fading variation. The distribution is then given by
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where 1−lI  denotes a modified Bessel function of the ( 1−l )th order and ∑=
l lT

22 µµ .

Here we have assumed that the RAKE receiver can resolve l  paths. In the next section, we shall obtain an upper bound for the
largest number of resolvable paths given a certain delay spread and a spreading bandwidth.

4. MAXIMUM NUMBER OF TAPS

Suppose that the channel is characterised by a coherence bandwidth ρBBc = , within which the signal components are

correlated. The coherence bandwidth is associated with a coherence level ρ ; usually one picks 5.0=ρ . If ρBBss >> , we

may obtain a frequency diversity of the order css BBL /≈  using a RAKE receiver. Essentially, this means that the chip time
must be sufficiently short in relation to the length of the channel impulse response. This will rarely be the case in smaller cells
if we use the 4.096 MHz chip rate as a starting point.

A common approximation is

(4.1) ( ) 14 −≈ rmsB τρ ,

where rmsτ  denotes the time-delay spread. Hence the number of taps of the RAKE receiver is crms TL /4τ≈ . For WSSUS
(Wide Sense Stationary Uncorrelated Scattering) we may obtain an upper bound on the number of taps. For, it can be shown
that [1]

(4.2) 1))(arccos( −≥ rmsB πτρρ ,

and equality is obtained if and only if the power-delay profile can be described by two discrete components (delta functions) of
equal magnitude. Hence, if the number of taps is   1/ += ρBBL ss , it follows that

(4.3)   1))arccos(( 1 +≤ −ρπτ crms TL ,

where cT  is the chip time.

To get an idea of the number of taps dictated by (4.3), let us consider the following measured data obtained at a square, which
may represent a small outdoor micro cell. The carrier frequency was 5.8 GHz. However, the results would not have been
significantly different at 2 GHz. The measurements were made in a square with the transmitter and receiver antennas located 3
m and 1.2 m above ground, respectively. Six different transmitter locations were chosen; three each in LOS (line-of-sight) and
OLOS (obstructed LOS, where the direct path is just about obstructed). The square is approximately 150 times 135 m, and the
transmitter-receiver locations ranged from 66 to 106 m. The surrounding buildings have a height of 15-20 m.
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The cumulative density function (CDF) of the instantaneous delay spread in LOS and OLOS is shown in Figure 1 [2]. Note
that the delay-spread value in (4.3) is obtained from a mean power delay profile (a local mean) rather than a single profile.
However, the CDFs in Figure 1 will be adequate to get an overall estimate of the number of taps. Thus, we observe from
Figure 1 that the median value of the instantaneous delay spreads was 124 ns in LOS and 146 ns in OLOS. Using these values
in (4.3) with 244=cT ns and 5.0=ρ , we obtain 2≤L . Note that this value is an upper bound.

Finally, we see that (4.3) implies that the delay spread must be larger than 80 ns, essentially, in order to get more than one
finger when the chip rate is 4.096 MHz. Hence, for most indoor channels, there is no diversity effect unless the chip rate is
increased.

Figure 1. CDF of the instantaneous delay spread obtained at a square.
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