TSG-RAN Working Group1 meeting#15

Berlin, Germany , 21st-24th August 2000 Agenda Item: HSDPA

Source: Ericsson, Motorola and Nokia

TITLE:	
	Link Evaluation Methods for High Speed Downlink Packet Access (HSDPA)
DATE:	
	August 21st, 2000
SOURCE:	
ABSTRACT	` :
This docume	nt provides simulation assumptions related to link-level evaluation of high-speed packet
downlink pac	eket access (HSDPA) for 3GPP.

1 1 Introduction

2 In TSG-R1 meeting #14 both link and system level simulation assumptions for High Speed Downlink

3 Packet Access (HSDPA) studies were presented [1,2,3] Two contribution presenting link and system level

4 simulation assumptions applicable to different simulation platforms were agreed to be produced based on

5 [1,2,3]. This contribution presents assumptions for link level simulations

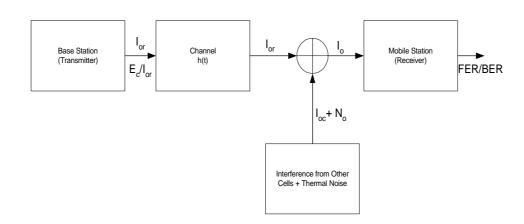
6 1.1 Study Objective and Scope

The objective of this document is to propose a set of definitions, assumptions, and a general framework for performing initial link level simulations for High Speed Downlink Packet Access (HSDPA). The objective of these link level simulations is to provide the needed input data to initial system level simulations and to evaluate the link performance of different Adaptive Modulation and Coding schemes and fast Hybrid ARQ methods.

12 **1.2 Simulation Description Overview**

13 A symbol level downlink simulator may be used to simulate the performance of higher order modulation 14 schemes and Hybrid ARQ. The general forward link simulation model is shown in Figure 1. The 15 terminology used throughout the document is as follows: I_{or} is the total transmitted power density by a

16 BTS, \hat{I}_{or} is the post-channel transmitted power density, $I_{oc} + N_o$ is the other cell interference plus noise

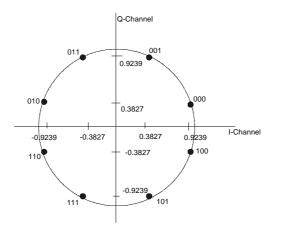

17 power density and I_o is the total received power density at the MS antenna. Note, that the ratio

18 $\hat{I}_{or}/(I_{oc} + N_o)$ is fixed in this simulation model. Since the base station has a fixed amount of power (set

19 by the BTS power amplifier size), it is the average transmitted (often called allocated) power by the BTS to

the MS that determines the user capacity of the forward link. This fraction of allocated power is called average traffic channel E_c/I_{or} and is inversely proportional to the forward link capacity.

- 22
- 23



- 24
- 25
- 26

27

Figure 1. Simulation Block Diagram.

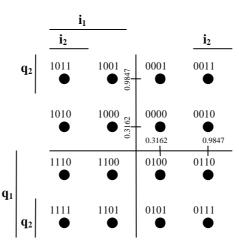

- Standard Constellations for M-ary Modulation
- 28 In case of 8-PSK modulation, every three binary symbols from the channel interleaver output shall be
- 29 mapped to a 8-PSK modulation symbol according to Figure 2.

Figure 2. Signal Constellation for 8-PSK Modulation.

3 In case of 16-QAM modulation, every four binary symbols of the block interleaver output shall be mapped

4 to a 16-QAM modulation symbol according to Figure 3.

6 7

Figure 3. Signal Constellation for 16-QAM Modulation.

8 In case of 64-QAM modulation, every six binary symbols of the block interleaver output shall be mapped $\alpha = 10^{-4} + 10^{-4}$

9 to a 64-QAM modulation symbol according to Figure 4.

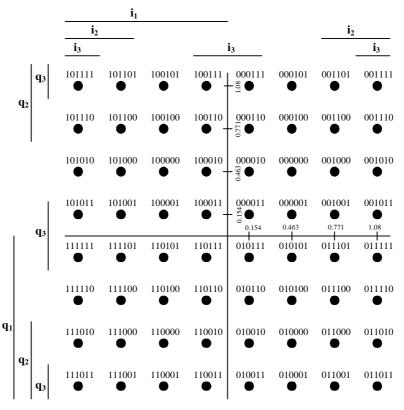


Figure 4. Signal Constellation for 64-QAM Modulation.

3

4 3 Turbo decoding

5 The *M*-ary QAM demodulator generates soft decisions as inputs to the Turbo decoder. As a baseline 6 method, the soft inputs to the decoder may be generated by an approximation to the log-likelihood ratio 7 function. First define,

8

$$\Lambda^{(i)}(z) = K_f \left[Min_{j \in S_i} \{ d_j^2 \} - Min_{j \in \overline{S_i}} \{ d_j^2 \} \right], \ i = 0, 1, 2, \cdots, \log_2 M - 1$$
(1)

9

10 where *M* is the modulation alphabet size, i.e. 8, 16, 32 or 64 and

11

$$z = A_d A_p \boldsymbol{a} \, \boldsymbol{\hat{a}} \, e^{-j(\boldsymbol{q} - \boldsymbol{\hat{q}})} x + n \,, \tag{2}$$

12 x is the transmitted QAM symbol, A_d is the traffic channel gain, A_p is the pilot channel gain, $\mathbf{a} e^{j\mathbf{q}}$ is the

13 complex fading channel gain, and
$$A_p \hat{a} e^{jq}$$
 is the fading channel estimate obtained from the pilot channel,

$$S_i = \{ \forall j : i^{th} \text{ component of } y_j \text{ is "0"} \},$$
(3)

$$\overline{S_i} = \left\{ \forall j : i^{th} \text{ component of } y_j \text{ is "1"} \right\}$$
⁽⁴⁾

and K_f is a scale factor proportional to the received signal-to-noise ratio. The parameter d_j is the Euclidean 1 2 distance of the received symbol z from the points on the QAM constellation in S or its complement. The 3 Pilot/Data gain is assumed known at the receiver. In this case the distance metric is computed as follows 4

$$d_j^2 = \left| A_p z - Q_j \boldsymbol{b} \boldsymbol{g}^2 \right|^2 \quad Q_j \in S_i \text{ or } \overline{S}_i$$
⁽⁵⁾

5

6 where $\mathbf{b} = A_d$ and $\mathbf{g} = A_p \hat{\mathbf{a}}$ is an estimate formed from the pilot channel after processing through the 7 channel estimation filter.

Performance Metrics and Simulation Parameters: 4 8

- 9 The following link performance criteria are used:
- 1. FER vs. E_c / I_{or} (for a fixed $\hat{I}_{or} / (I_{oc} + N_o)$) or 10
- FER vs. $\hat{I}_{or} / (I_{oc} + N_o)$ (for a fixed E_c / I_{or}) 11
- 12 2. Throughput vs. E_c/I_{oc}
- where throughput measured in term of bits per second : $T = R \left(\frac{1 FER_r}{\overline{N}} \right)$ in bits per second 13

where T is the throughput, R is the transmitted information bit rate and FER_r is the residual Frame Error 14

Rate beyond the maximum number of transmissions and \overline{N} is the average number of transmission 15 16 attempts.

5 **Simulation Parameters:** 17

Table 1 provides a list of link-level simulation parameters. 18 Table 1 Simulation Deremators

Table 1. Simulation Parameters					
Parameter	Value	Comments			
Carrier Frequency	2GHz				
Propagation conditions	AWGN, Flat, Pedestrian A (3 Kmph)	Additional channel cases?			
Vehicle Speed for Flat Fading	3 kmph/30 kmph/120 kmph				
CPICH relative power	10% (-10dB)				
Closed loop Power Control	OFF	Power control may be used for signalling channels associated with HSDPA transmission			
HSDPA frame Length ¹	10ms, 3.33 ms, 0.67 ms				

¹ According to system simulation assumption document [4], 3.33 msec frame will be prioritized for simulation purpose.

Ior/Ioc	Variable	
Channel Estimation	Ideal/Non-Ideal(using CPICH)	
Fast fading model	Jakes spectrum	Generated e.g. by Jakes or filtering approach
Channel coding	Turbo code (PCCC), rate 1/4, 1/2, 3/4, etc.	
Tail bits	6	
Max no. of iterations for Turbo Coder	8	
Metric for Turbo Coder	Max ²	
Input to Turbo Decoder	Soft	
Turbo Interleaver	Random	
Number of Rake fingers	Equal to number of taps in the channel model	
Hybrid ARQ	Chase combining	For initial evaluation of fast HARQ. Other schemes may also be studied.
Max number of frame transmissions for H-ARQ		Specify the value used
Information Bit Rates (Kbps)	As defined	
Number of Multicodes Simulated	As defined	
TFCI model	Random symbols, ignored in the receiver but it is assumed that the receiver gets error free reception of TFCI information	
STTD	On/Off	
Other L1 Parameters	As Specified in Release-99 Specification	

Table 2, 3, and 4 shows examples of numerology for HSDPA frames of length 0.67 ms (1 slot), 3.33 ms (5 slots), and 10 ms (15 slots) respectively for different MCS and different number of HSDPA codes. 2

 $^{^2}$ Optimum performance can be achieved with max* metric. However, this metric is sensitive to SNR scaling.

Table 2. Information bit rate for frame duration of 0.67 msec

	Chip Rate = 3.84 Mcps				SF = 32			Frame Size = 0.67 ms		
	20 codes			1 code						
MCS	Info Rate	Info bits/frame		Info Rate	Info bits/frame		Code rate	Modulation		
	(Mbps)	(bits)	(octets)	(Mbps)	(bits)	(octets)				
7	10.8000	7200	900	0.54	360	45	3/4	64		
6	7.2000	4800	600	0.36	240	30	3/4	16		
5	4.8000	3200	400	0.24	160	20	1/2	16		
4	5.4000	3600	450	0.27	180	22.5	3/4	8		
3	3.6000	2400	300	0.18	120	15	3/4	4		
2	2.4000	1600	200	0.12	80	10	1/2	4		
1	1.2000	800	100	0.06	40	5	1/4	4		

Table 3 . Information bit rate for frame duration of 3.33 msec

Chip Rate = 3.84 Mcps				SF = 32			Frame Size = 3.33 ms		
	20 codes			1 code					
MCS	Info Rate	Info bits/frame		Info Rate	Info bits/frame		Code rate	Modulation	
	(Mbps)	(bits)	(octets)	(Mbps)	(bits)	(octets)			
7	10.8000	36000	4500	0.54	1800	225	3/4	64	
6	7.2000	24000	3000	0.36	1200	150	3/4	16	
5	4.8000	16000	2000	0.24	800	100	1/2	16	
4	5.4000	18000	2250	0.27	900	112.5	3/4	8	
3	3.6000	12000	1500	0.18	600	75	3/4	4	
2	2.4000	8000	1000	0.12	400	50	1/2	4	
1	1.2000	4000	500	0.06	200	25	1/4	4	

 Table 4. Information bit rate for frame duration of 10 msec

Chip Rate = 3.84 Mcps				SF = 32			Frame Size = 10.00 ms	
MCS	20 codes			1 code				
	Info Rate	Info bits/frame		Info Rate	Info bits/frame		Code rate	Modulatic
	(Mbps)	(bits)	(octets)	(Mbps)	(bits)	(octets)		
7	10.8000	1E+05	13500	0.54	5400	675	3/4	64
6	7.2000	72000	9000	0.36	3600	450	3/4	16
5	4.8000	48000	6000	0.24	2400	300	1/2	16
4	5.4000	54000	6750	0.27	2700	337.5	3/4	8
3	3.6000	36000	4500	0.18	1800	225	3/4	4
2	2.4000	24000	3000	0.12	1200	150	1/2	4

1 REFERENCES

- 2 [1] 3
- Motorola. Link Evaluation Methods for High Speed Downlink Packet Access (HSDPA). TSG-R1 document, TSGR#14(00)0910, 4-7th, July, 2000, Oulu, Finland, 6 pp. Motorola. Evaluation Methods for High Speed Downlink Packet Access (HSDPA). TSG-R1 document, TSGR#14(00)0909, 4-7th, July, 2000, Oulu, Finland, 15 pp. 4 5 6 7 [2]
- Nokia. High Speed Downlink Packet Access simulation assumptions. TSG-R1 document, TSGR#14(00)0881, 4-7th, July, 2000, Oulu, Finland, 9 pp. [3]
- 8 Nokia, Ericsson, Motorola, Common HSDPA system simulation [4] assumptions, 9 TSGR#15(00)XXXX, August, 2000, Berlin, Germany.