Agenda item:

Source:PhilipsTitle:Corrections to TS25.212Document for:Decision

Introduction

The attached CR makes some minor corrections to TS25.212:

- 1. The subscript "i" is removed after "CFN" in section 4.2.14, as the CFN relates to the radio frame and not to the transport channel.
- 2. Unspecification-like language "let's define" is removed in 3 places.

or for SMG, use the format P-99-xxx Please see embedded help file at the bottom of this CHANGE REQUEST page for instructions on how to fill in this form correctly. 25.212 CR 087 Current Version: 3.3.0 GSM (AA.BB) or 3G (AA.BBB) specification number ↑ \uparrow CR number as allocated by MCC support team For submission to: RAN #9 for approval strategic (for SMG list expected approval meeting # here use only) for information non-strategic Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc ME X UTRAN / Radio X Proposed change affects: (U)SIM Core Network (at least one should be marked with an X) Source: Philips Date: 2000-09-08 Subject: Corrections Work item: Correction Х Release: Phase 2 Category: F А Corresponds to a correction in an earlier release Release 96 (only one category B Addition of feature Release 97 shall be marked Functional modification of feature С Release 98 with an X) Editorial modification D Release 99 Х Release 00 Erroneous subscript "i" needs removing from CFN in section 4.2.14; Reason for Unsuitable language "let's define" needs removing. change: **Clauses affected:** 4.2.14, 4.3.3, 4.3.4 Other specs Other 3G core specifications \rightarrow List of CRs: affected: Other GSM core \rightarrow List of CRs: specifications MS test specifications \rightarrow List of CRs: BSS test specifications → List of CRs: **O&M** specifications \rightarrow List of CRs: Other comments:

Document R1-00-1042

e.g. for 3GPP use the format TP-99xxx

<----- double-click here for help and instructions on how to create a CR.

4.2.14 Multiplexing of different transport channels into one CCTrCH, and mapping of one CCTrCH onto physical channels

The following rules shall apply to the different transport channels which are part of the same CCTrCH:

 Transport channels multiplexed into one CCTrCh shall have co-ordinated timings. When the TFCS of a CCTrCH is changed because one or more transport channels are added to the CCTrCH or reconfigured within the CCTrCH, or removed from the CCTrCH, the change may only be made at the start of a radio frame with CFN fulfilling the relation

CFN mod $F_{max} = 0$,

where F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels which are multiplexed into the same CCTrCH, including any transport channels *i* which are added, reconfigured or have been removed, and CFN denotes the connection frame number of the first radio frame of the changed CCTrCH.

After addition or reconfiguration of a transport channel *i* within a CCTrCH, the TTI of transport channel *i* may only start in radio frames with CFN fulfilling the relation:

 $CFN_i \mod F_i = 0.$

- 2) Only transport channels with the same active set can be mapped onto the same CCTrCH.
- 3) Different CCTrCHs cannot be mapped onto the same PhCH.
- 4) One CCTrCH shall be mapped onto one or several PhCHs. These physical channels shall all have the same SF.
- 5) Dedicated Transport channels and common transport channels cannot be multiplexed into the same CCTrCH.
- 6) For the common transport channels, only the FACH and PCH may belong to the same CCTrCH.

There are hence two types of CCTrCH:

- 1) CCTrCH of dedicated type, corresponding to the result of coding and multiplexing of one or several DCHs.
- 2) CCTrCH of common type, corresponding to the result of the coding and multiplexing of a common channel, RACH in the uplink, DSCH ,BCH, or FACH/PCH for the downlink.

4.2.14.1 Allowed CCTrCH combinations for one UE

4.2.14.1.1 Allowed CCTrCH combinations on the uplink

A maximum of one CCTrCH is allowed for one UE on the uplink. It can be either:

- 1) one CCTrCH of dedicated type;
- 2) one CCTrCH of common type.

4.2.14.1.2 Allowed CCTrCH combinations on the downlink

The following CCTrCH combinations for one UE are allowed:

- x CCTrCH of dedicated type + y CCTrCH of common typeThe allowed combination of CCTrCHs of dedicated and common type are given from UE radio access capabilities. There can be a maximum on one CCTrCH of common type for DSCH and a maximum of one CCTrCH of common type for FACH. With one CCTrCH of common type for DSCH, there shall be at least one CCTrCH of dedicated type.
- NOTE 1: There is only one DPCCH in the uplink, hence one TPC bits flow on the uplink to control possibly the different DPDCHs on the downlink, part of the same or several CCTrCHs.

4.3.3 Coding of Transport-Format-Combination Indicator (TFCI)

The TFCI is encoded using a (32, 10) sub-code of the second order Reed-Muller code. The coding procedure is as shown in figure 9.

Figure 9: Channel coding of TFCI information bits

If the TFCI consist of less than 10 bits, it is padded with zeros to 10 bits, by setting the most significant bits to zero. The length of the TFCI code word is 32 bits.

The code words of the (32,10) sub-code of second order Reed-Muller code are linear combination of 10 basis sequences. The basis sequences are as in the following table 7.

i	M i,0	M i,1	M i,2	M i,3	M i,4	M i,5	M _{i,6}	M i,7	M i,8	M i,9
0	1	0	0	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1	0	0	0
2	1	1	0	0	0	1	0	0	0	1
3	0	0	1	0	0	1	1	0	1	1
4	1	0	1	0	0	1	0	0	0	1
5	0	1	1	0	0	1	0	0	1	0
6	1	1	1	0	0	1	0	1	0	0
7	0	0	0	1	0	1	0	1	1	0
8	1	0	0	1	0	1	1	1	1	0
9	0	1	0	1	0	1	1	0	1	1
10	1	1	0	1	0	1	0	0	1	1
11	0	0	1	1	0	1	0	1	1	0
12	1	0	1	1	0	1	0	1	0	1
13	0	1	1	1	0	1	1	0	0	1
14	1	1	1	1	0	1	1	1	1	1
15	1	0	0	0	1	1	1	1	0	0
16	0	1	0	0	1	1	1	1	0	1
17	1	1	0	0	1	1	1	0	1	0
18	0	0	1	0	1	1	0	1	1	1
19	1	0	1	0	1	1	0	1	0	1
20	0	1	1	0	1	1	0	0	1	1
21	1	1	1	0	1	1	0	1	1	1
22	0	0	0	1	1	1	0	1	0	0
23	1	0	0	1	1	1	1	1	0	1
24	0	1	0	1	1	1	1	0	1	0
25	1	1	0	1	1	1	1	0	0	1
26	0	0	1	1	1	1	0	0	1	0
27	1	0	1	1	1	1	1	1	0	0
28	0	1	1	1	1	1	1	1	1	0
29	1	1	1	1	1	1	1	1	1	1
30	0	0	0	0	0	1	0	0	0	0
31	0	0	0	0	1	1	1	0	0	0

Table 7: Basis sequences for (32,10) TFCI code

Let's define t<u>T</u>he TFCI information bits $as a_0$, a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 (where a_0 is LSB and a_9 is MSB). The TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the CCTrCH in the associated DPCH radio frame.

The output code word bits b_i are given by:

$$b_i = \sum_{n=0}^{9} (a_n \times M_{i,n}) \mod 2$$

where i = 0, ..., 31.

The output bits are denoted by b_k , k = 0, 1, 2, ..., 31.

In downlink, when the SF < 128 the encoded TFCI code words are repeated yielding 8 encoded TFCI bits per slot in normal mode and 16 encoded TFCI bits per slot in compressed mode. Mapping of repeated bits to slots is explained in subclause 4.3.5.

4.3.4 Operation of Transport-Format-Combination Indicator (TFCI) in Split Mode

If one of the DCH is associated with a DSCH, the TFCI code word may be split in such a way that the code word relevant for TFCI activity indication is not transmitted from every cell. The use of such a functionality shall be indicated by higher layer signalling.

The TFCI is encoded using a (16, 5) bi-orthogonal (or first order Reed-Muller) code. The coding procedure is as shown in figure 10.

Figure 10: Channel coding of split mode TFCI information bits

The code words of the (16,5) bi-orthogonal code are linear combinations of 5 basis sequences as defined in table 8.

i	M i,0	M i,1	M i,2	M i,3	M i,4
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1

Table 8: Basis sequences for (16,5) TFCI code

Let's define a <u>The</u> first set of TFCI information bits as $(a_{1,0}, a_{1,1}, a_{1,2}, a_{1,3}, a_{1,4}, (where a_{1,0} is LSB and a_{1,4} is MSB). This set of TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the DCH CCTrCH in the associated DPCH radio frame.$

Let's define a The second set of TFCI information bits as $(a_{2,0}, a_{2,1}, a_{2,2}, a_{2,3}, a_{2,4}, (where a_{2,0} is LSB and a_{2,4} is MSB)$. This set of TFCI information bits shall correspond to the TFC index (expressed in unsigned binary form) defined by the RRC layer to reference the TFC of the associated DSCH CCTrCH in the corresponding PDSCH radio frame.

The output code word bits b_k are given by:

$$b_{2i} = \sum_{n=0}^{4} (a_{1,n} \times M_{i,n}) \mod 2;$$
 $b_{2i+1} = \sum_{n=0}^{4} (a_{2,n} \times M_{i,n}) \mod 2$

where i = 0, ..., 15.

The output bits are denoted by b_k , k = 0, 1, 2, ..., 31.

4.3.5 Mapping of TFCI words

4.3.5.1 Mapping of TFCI word in normal mode

The bits of the code word are directly mapped to the slots of the radio frame. Within a slot the bit with lower index is transmitted before the bit with higher index. The coded bits b_k , are mapped to the transmitted TFCI bits d_k , according to the following formula:

 $d_k = b_{k \mod 32}$

For uplink physical channels regardless of the SF and downlink physical channels, if SF \ge 128, k = 0, 1, 2, ..., 29. Note that this means that bits b_{30} and b_{31} are not transmitted.

For downlink physical channels whose SF < 128, k = 0, 1, 2, ..., 119. Note that this means that bits b_0 to b_{23} are transmitted four times and bits b_{24} to b_{31} are transmitted three times.

4.3.5.2 Mapping of TFCI word in compressed mode

The mapping of the TFCI bits in compressed mode is different for uplink, downlink with $SF \ge 128$ and downlink with SF < 128.

4.3.5.2.1 Uplink compressed mode

For uplink compressed mode, the slot format is changed so that no TFCI coded bits are lost. The different slot formats in compressed mode do not match the exact number of TFCI coded bits for all possible TGLs. Repetition of the TFCI bits is therefore used.

Denote the number of bits available in the TFCI fields of one compressed radio frame by D and the number of bits in the TFCI field in a slot by N_{TFCI}. The parameter E is used to determine the number of the first TFCI bit to be repeated.

 $E = N_{\text{first}} N_{\text{TFCI}}$, if the start of the transmission gap is allocated to the current frame. E = 0, if the start of the transmission gap is allocated to the previous frame and the end of the transmission gap is allocated to the current frame.

The TFCI coded bits b_k are mapped to the bits in the TFCI fields d_k . The following relations define the mapping for each compressed frame.

 $d_k = b_k$

where k = 0, 1, 2, ..., min (31, D-1).

If D > 32, the remaining positions are filled by repetition (in reversed order):

 $d_{D-k-1} = b_{(E+k) \mod 32}$

where k = 0, ..., D-33.