TSG-RAN Working Group 1 meeting \#15

Document for: Decision

The section describing generation of synchronisation codes has incorrect indexing, the same letter is used as an index of the sequence of symbols and as an index of a word in the SCH code. This CR corrects it.
Also clarifies the description of code allocation.

7 Synchronisation codes

7.1 Code Generation

The primary synchronisation code (PSC), C_{p}, is constructed as a so-called generalised hierarchical Golay sequence. The PSC is furthermore chosen to have good aperiodic auto correlation properties.
Define $\mathrm{a}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1\rangle$ The PSC is generated by repeating the sequence 'a' modulated by a Golay complementary sequence and creating a complex-valued sequence with identical real and imaginary components.
The PSC, C_{p}, is defined as $\mathrm{C}_{\mathrm{p}}=_\mathrm{y}(0), \mathrm{y}(1), \mathrm{y}(2), \ldots, \mathrm{y}(255)>$
where $y=(1+\mathrm{j}) \times<a, a, a,-a,-a, a,-a,-a, a, a, a,-a, a,-a, a, a\rangle$
and the left most index corresponds to the chip transmitted first in time.
The 12 secondary synchronization codes, $\left\{\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}\right\}$ are complex valued with identical real and imaginary components, and are constructed from the position wise multiplication of a Hadamard sequence and a sequence z, defined as

$$
\begin{aligned}
& \mathrm{z}=\langle b, b, b,-b, b, b,-b,-b, b,-b, b,-b,-b,-b,-b,-b\rangle, \text { where } \\
& \mathrm{b}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8},-x_{9},-x_{10},-x_{11},-x_{12},-x_{13},-x_{14},-x_{15},-x_{16}\right\rangle
\end{aligned}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}$ are the same as in the definition of the sequence 'a' above.
The Hadamard sequences are obtained as the rows in a matrix H_{8} constructed recursively by:

$$
\begin{gathered}
H_{0}=(1) \\
H_{k}=\left(\begin{array}{cc}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{array}\right), \quad k \geq 1
\end{gathered}
$$

The rows are numbered from the top starting with row 0 (the all ones sequence).
Denote the n :th Hadamard sequence h_{n} as a row of H_{8} numbered from the top, $\mathrm{n}=0,1,2$, ..., 255, in the sequel.
Furthermore, let $h_{m}(\underline{i l})$ and $z(\dot{i} \underline{l})$ denote the $i: l$ th symbol of the sequence h_{m} and z, respectively where $\dot{i} \underline{l}=0,1,2, \ldots, 255$ and $\dot{\underline{l}} \underline{=} 0$ corresponds to the leftmost symbol. The i:th secondary SCH code word, $\mathrm{C}_{\mathrm{i}}, \mathrm{i}=0,1,3,4,5,6,8,10,12,13,14,15$ is then defined as

$$
\mathrm{C}_{\mathrm{i}}=(1+j) \times\left\langle h_{m}(0) \times z(0), h_{m}(1) \times z(1), h_{m}(2) \times z(2), \ldots, h_{m}(255) \times z(255)>,\right.
$$

where $m=(16 \times \mathrm{i})$ and the leftmost chip in the sequence corresponds to the chip transmitted first in time.

7.2 Code Allocation

Three secondary SCH codes are QPSK modulated and transmitted in parallel with the primary synchronization code. The QPSK modulation carries the following information:

- the code group that the base station belongs to (32 code groups: 5 bits; Cases 1, 2);
- the position of the frame within an interleaving period of 20 msec (2 frames: 1 bit, Cases 1,2);
- the position of the $\underline{\mathrm{SCH}}$ slot(s) within the frame ($\underline{\mathrm{SCH}}$ slots: 1 bit, Case 2).

The modulated secondary SCH codes are also constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 2 (Case 1) and 4 (Case 2) of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 2 (Case 1) and 4 (Case 2) of any of the sequences is not equivalent to itself with any other cyclic shift less than 8 . The secondary synchronization codes are partitioned into two code sets for Case 1 and four code sets for Case 2. The set is used to provide the following information:

