Agenda item:

Source: NTT DoCoMo, Nokia and Nortel Networks

Title: Editorial corrections in Turbo code internal interleaver section
Document for: Decision

Introduction

This document includes CRs on editorial corrections in Turbo code internal interleaver section to clarify the correct interleaving function and to align mathematical notations with preferred notations shown in TS25.201 Annex A. The interleaving algorithm itself is not changed through these corrections at all. The major corrections, which should be applied for both 25.212 and 25.222 identically, are as follows:

Section 4.2.3.2.3 Turbo code internal linterleaver

- Align the mathematical notations with preferred notations.

Section 4.2.3.2.3.1 Bits-input to rectangular matrix

- Add the explicit description about the dummy bits padding: the previous description has included the implicit padding function corresponding to the explicit pruning function. However, both functions should be described explicitly to indicate the correct bit operation. The specific value should not be specified for dummy bits since the value will not affect the interleaving function itself.
- Align the mathematical notations with preferred notations.

Section 4.2.3.2.3.2 Intra-row and inter-row permutations

- Align the mathematical notations with preferred notations.

Section 4.2.3.2.3.3 Bits-output from rectangular matrix with pruning

- Add the explicit description about the dummy bits padded in bits-input.
- Align the mathematical notations with preferred notations.

CHANGE REQUEST
Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

25.212 CR 085

Current Version: 3.3.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team

For submission to: RAN \#9
list expected approval meeting \# here

for approval	\mathbf{X}
For information	

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \mathbf{X}

UTRAN / Radio \qquad Core Network \square
(at least one should be marked with an X)
Source: NTT DoCoMo, Nokia and Nortel Networks
Date: 17-August-2000
Subject: Editorial corrections in Turbo code internal interleaver section

Work item:

Category:	F	Correction	X
	A	Corresponds to a correction in an earlier release	
(only one category	B	Addition of feature	
shall be marked	C	Functional modification of feature	
with an X)	D	Editorial modification	

Release: Phase 2 Release 96
Release 97
Release 98
Release 99
Release 00

$\begin{array}{ll}\text { Reason for } & \text { To clarify bits padding and pruning for rectangular matrix. } \\ \underline{\text { change: }} & \text { To align mathematical notations with preferred notations shown in TS25.201 Annex A. }\end{array}$

Clauses affected: $\quad 4.2 .3 .2 .3$ of TS25.212

Other
 comments:

The initial value of the shift registers of the 8 -state constituent encoders shall be all zeros when starting to encode the input bits.

Output from the Turbo coder is

$$
x_{1}, z_{1}, z_{1}^{\prime}, x_{2}, z_{2}, z_{2}^{\prime}, \ldots, x_{K}, z_{K}, z_{K}^{\prime}
$$

where $x_{1}, x_{2}, \ldots, x_{K}$ are the bits input to the Turbo coder i.e. both first 8 -state constituent encoder and Turbo code internal interleaver, and K is the number of bits, and $z_{1}, z_{2}, \ldots, z_{K}$ and $z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{K}^{\prime}$ are the bits output from first and second 8 -state constituent encoders, respectively.

The bits output from Turbo code internal interleaver are denoted by $x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \ldots, x_{K}^{\prime}$, and these bits are to be input to the second 8 -state constituent encoder.

Figure 4: Structure of rate $1 / 3$ Turbo coder (dotted lines apply for trellis termination only)

4.2.3.2.2 Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be:

$$
x_{K+1}, z_{K+1}, x_{K+2}, z_{K+2}, x_{K+3}, z_{K+3}, x_{K+1}^{\prime}, z_{K+1}^{\prime}, x_{K+2}^{\prime}, z_{K+2}^{\prime}, x_{K+3}^{\prime}, z_{K+3}^{\prime} .
$$

4.2.3.2.3 Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix with padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by $x_{1}, x_{2}, x_{3}, \ldots, x_{K}$, where K is the integer number of the bits and takes one value of $40 \leq K \leq 5114$. The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by $x_{k}=o_{i r k}$ and $K=K_{i}$.

The following subclause specific symbols are used in subclauses 4.2.3.2.3.1 to 4.2.3.2.3.3:
$\mathrm{K} \underline{K} \quad$ Number of bits input to Turbo code internal interleaver
$R \underline{R} \quad$ Number of rows of rectangular matrix

4.2.3.2.3.1 Bits-input to rectangular matrix with padding

The bit sequence $x_{1}, x_{2}, x_{3}, \ldots, x_{K}$ input to the Turbo code internal interleaver x_{k}-is written into the rectangular matrix as follows:
(1) Determine the number of rows R-of the rectangular matrix, R, such that:

$$
R=\left\{\begin{array}{l}
5, \text { if }(40 \leq K \leq 159) \\
10, \text { if }((160 \leq K \leq 200) \text { or }(481 \leq K \leq 530)) \\
20, \text { if }(K=\text { any other value })
\end{array}\right.
$$

where t The rows of rectangular matrix are numbered $0,1,2, \ldots, R-1$ from top to bottom.
(2) Determine the number of columns E of rectangular matrix ${ }_{2} \underline{C}$, such that:
if $(481 \leq K \leq 530)$ then

$$
p=53 \text { and } C=p .
$$

else
Find minimum prime p such that

$$
(p+1)-K / R \geq-0 K \leq R \times(p+1)
$$

and determine C such that

$$
C= \begin{cases}p-1 & \text { if } K \leq R \times(p-1) \\ p & \text { if } R \times(p-1)<K \leq R \times p \\ p+1 & \text { if } R \times p<K\end{cases}
$$

if $(p-K / R \geq 0)$ then

$$
\text { if }(p-1 \quad K / R \geq 0) \text { then }
$$

$$
C=p-1
$$

else

$$
C=p
$$

end if
else

$$
C=p+1
$$

end if
end if
where t The columns of rectangular matrix are numbered $0,1,2, \ldots, C-1$ from left to right.
(3) Write the input bit sequence $x_{k} x_{1}, x_{2}, x_{3}, \ldots, x_{K}$ into the $R \times C$ rectangular matrix row by row starting with bit $\not y_{1}$ in column 0 of row 0 :

$$
\left[\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & \ldots x_{C} \\
x_{(C+1)} & x_{(C+2)} & x_{(C+3)} & \ldots x_{2 C} \\
\hline \vdots & \vdots & \vdots & \ldots & \vdots \\
x_{((R-1) C+1)} & x_{((R-1) C+2)} & x_{((R-1) C+3)} & \ldots x_{R C}
\end{array}\right]\left[\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & \ldots y_{C} \\
y_{(C+1)} & y_{(C+2)} & y_{(C+3)} & \ldots y_{2 C} \\
\vdots & \vdots & \vdots & \ldots \\
y_{((R-1) C+1)} & y_{((R-1) C+2)} & y_{((R-1) C+3)} & \ldots y_{R \times C}
\end{array}\right]
$$

$\underline{\text { where if } R} \times \underline{C}>\underline{K, \text { the dummy bits are padded such that }} y_{k}=0$ or $1 \underline{\text { for } k=K+1, K+2, \ldots, R} \underline{\times} \underline{C}$. These dummy bits are pruned away from the output of the rectangular matrix after intra-row and inter-row permutations.

4.2.3.2.3.2 Intra-row and inter-row permutations

After the bits-input to the $R \times C$ rectangular matrix, the intra-row and inter-row permutations for the $R \times C$ rectangular matrix are performed by using the following algorithm.
(1) Select a primitive root v from table 2 on the right side of the value of the prime p.

Table 2: Table of prime p and associated primitive root v

\underline{p}	$\underline{\text { v }}$	\underline{p}	\underline{V}	p	\underline{V}	\underline{p}	\underline{V}	p	$\underline{\underline{V}}$
$\underline{7}$	$\underline{3}$	47	5	101	$\underline{2}$	157	$\underline{5}$	$\underline{223}$	$\underline{3}$
11	$\underline{2}$	$\underline{53}$	$\underline{2}$	103	$\underline{5}$	163	$\underline{2}$	$\underline{227}$	$\underline{2}$
$\underline{13}$	$\underline{2}$	$\underline{59}$	$\underline{2}$	107	$\underline{2}$	167	$\underline{5}$	$\underline{229}$	$\underline{6}$
17	$\underline{3}$	61	$\underline{\underline{2}}$	109	$\underline{6}$	173	$\underline{\underline{2}}$	$\underline{233}$	3
$\underline{19}$	$\underline{2}$	$\underline{67}$	$\underline{2}$	$\underline{113}$	$\underline{3}$	$\underline{179}$	$\underline{2}$	$\underline{239}$	$\underline{7}$
$\underline{23}$	$\underline{5}$	71	$\underline{7}$	127	$\underline{3}$	181	$\underline{2}$	$\underline{241}$	7
$\underline{29}$	$\underline{2}$	$\underline{73}$	$\underline{5}$	131	$\underline{2}$	191	19	251	$\underline{6}$
$\underline{31}$	$\underline{3}$	$\underline{79}$	$\underline{3}$	137	$\underline{3}$	193	$\underline{5}$	$\underline{257}$	$\underline{3}$
$\underline{37}$	$\underline{2}$	$\underline{83}$	$\underline{2}$	$\underline{139}$	$\underline{2}$	197	$\underline{2}$		
41	$\underline{6}$	$\underline{89}$	$\underline{3}$	149	$\underline{2}$	199	$\underline{3}$		
43	$\underline{3}$	$\underline{97}$	5	151	$\underline{6}$	$\underline{211}$	$\underline{2}$		

(2) Construct the base sequence $s(i)\langle s(j)\rangle_{j \in\{0,1, \cdots, p-2\}}$ for intra-row permutation as:
$s(i)=\left[\begin{array}{lll}v \times s(i & 1\end{array}\right] \bmod p s(j)=(v \times s(j-1)) \bmod p, \dot{t} \dot{L}=1,2, \ldots,(p-2)=$, and $s(0)=1$.
(3) LetAssign $q_{0}=1$ be the first prime integer in $\left\{q_{f}\right\}$ the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}}$, and selectdetermine the consecutive minimum prime integers $\left.f q_{j i}\right\}$ in the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}-}(j=\overline{1,2, \ldots, R}$ 1) to be a least prime integer such that:

$$
\text { g.c.d }\left\{\left(q_{j i}, p-1\right\}\right)=1, q_{i j}>6 \text {, and } q_{i j}>q_{(i \underline{i j}-1)} \text {, for each } i=1,2, \ldots, R-1 .
$$

Here where-g.c.d. is greatest common divisor.
(4) Permute $\left\{q_{f}\right\} \underline{\text { the sequence }}\left\langle q_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}}$ to make $\left\{r_{f}\right\} \underline{\text { the sequence }}\left\langle r_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}}$ such that
$r_{T(i j)}=q_{j i}, \underline{j} \underline{i}=0,1, \ldots, R-1$,
where $T(j)(j=0,1,2, \ldots, R 1)\langle T(i)\rangle_{i \in\{0,1, \cdots, R-1\}}$ is the inter-row permutation pattern defined as the one of the following four kind of patterns, which are shown in table $3, \div P a t_{1}, P a t_{2}, P a t_{3}$ and $P a t_{4}$ depending on the number of input bits K.

$$
\{T(0), T(1), T(2), \ldots, T(R-1)\}= \begin{cases}\text { Pat }_{4} & \text { if }(40 \leq K \leq 159) \\ \text { Pat }_{3} & \text { if }(160 \leq K \leq 200) \\ \text { Pat }_{1} & \text { if }(201 \leq K \leq 480) \\ \text { Pat }_{3} & \text { if }(481 \leq K \leq 530) \\ \text { Pat }_{1} & \text { if }(531 \leq K \leq 2280) \\ \text { Pat }_{2} & \text { if }(2281 \leq K \leq 2480) \\ \text { Pat }_{1} & \text { if }(2481 \leq K \leq 3160) \\ \text { Pat }_{2} & \text { if }(3161 \leq K \leq 3210) \\ \text { Pat }_{1} & \text { if }(3211 \leq K \leq 5114)\end{cases}
$$

where $P_{a t}, P_{t t_{2}}, P_{a t}$ and P_{4}, have the following patterns respectively.
Pat $t_{4}:\{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\}$
$P a t_{2}:\{19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\}$
Pat $3:\{9,8,7,6,5,4,3,2,1,0\}$
Pat $:\{4,3,2,1,0\}$
Table 3: Inter-row permutation patterns for Turbo code internal interleaver

$\frac{\text { Number of input bits }}{K}$	Number of rows R	Inter-row permutation patterns $\leq T(0), T(1), \ldots, T(R-1)\rangle$
$(40 \leq K \leq 159)$	5	$\leq 4,3,2,1,0\rangle$
$(160 \leq K \leq 200)$ or ($481 \leq K \leq 530)$	10	$\langle 9,8,7,6,5,4,3,2,1,0\rangle$
(2281 $\leq \underline{K} \leq \underline{2480) ~ o r ~(3161 ~} \leq \underline{K} \underline{\underline{3210})}$	$\underline{20}$	$\leq 19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\rangle$
$K=$ any other value	$\underline{20}$	$\leq 19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11>$

(5) Perform the $\underset{\sim}{i}-$-th $(\underset{j}{i}=0,1,2, \ldots, R-1)$ intra-row permutation as:
if $(C=p)$ then
$U_{f}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right) U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right), \quad i \dot{i}=0,1,2, \ldots,(p-2),-$, and $U_{j i}(p-1)=0$,
where $U_{j i}(i j)$ is the imputoriginal bit position of $i j$-th eutput after the permutationpermuted bit of $\dot{\psi i}$-th row.
end if
if $(C=p+1)$ then
$U_{f}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right) U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right), \quad i \dot{i}=0,1,2, \ldots,(p-2) . ; U_{j i}(p-1)=0$, and $U_{\dot{j i}}(p)=p$,
where $U_{j i}(\dot{i j})$ is the inputoriginal bit position of $\dot{i j}$-th eutput after the permutationpermuted bit of $\dot{j} i$-th row, and
if ($K=C \times-R \underline{\times} \underline{C}$) then
Exchange $U_{R-1}(p)$ with $U_{R-1}(0)$.
end if
end if
if $(C=p-1)$ then

$$
U_{f}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right)-1 U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right)-1, \quad i \dot{i} j=0,1,2, \ldots,(p-2),
$$

where $U_{j i}(\dot{j})$ is the input-original bit position of $\dot{t j}$-th eutput after the permutationpermuted bit of $\dot{j i}$-th row.
end if
(6) Perform the inter-row permutation based on the pattern $T(j)(j=0,1,2, \ldots, R \quad 1)\langle T(i)\rangle_{i \in\{0,1, \cdots, R-1\}}$,
where $T(\underset{j \underline{i})}{ })$ is the original row position of the $\underset{j \underline{i}}{ }$-th permuted row.

Fable 2: Table of prime p and associated primitive root v

p	V	p	\checkmark	p	\checkmark	p	V	p	V
7	3	47	5	101	2	157	5	223	3
11	2	53	2	103	5	163	z	227	2
13	2	59	2	107	2	167	5	229	6
17	3	61	2	109	6	173	2	233	3
19	2	67	2	113	3	179	2	239	7
23	5	71	7	127	3	181	2	241	7
29	2	73	5	131	2	191	19	251	6
31	3	79	3	137	3	193	5	257	3
37	2	83	2	139	2	197	2		
41	6	89	3	149	2	199	3		
43	3	97	5	151	6	211	2		

4.2.3.2.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by y_{k}^{\prime} :

$$
\left[\begin{array}{ccccc}
y_{1}^{\prime} & y_{(R+1)}^{\prime} & y_{(2 R+1)}^{\prime} & \ldots y_{((C-1) R+1)}^{\prime} \\
y_{2}^{\prime} & y_{(R+2)}^{\prime} & y_{(2 R+2)}^{\prime} & \ldots y_{((C-1) R+2)}^{\prime} \\
\hline \vdots & \vdots & \vdots & \ldots & \vdots \\
y_{R}^{\prime} & y_{2 R}^{\prime} & y_{3 R}^{\prime} & \cdots & y_{C R}^{\prime}
\end{array}\right]\left[\begin{array}{ccccc}
y_{1}^{\prime} & y_{(R+1)}^{\prime} & y_{(2 R+1)}^{\prime} & \ldots y_{((C-1) R+1)}^{\prime} \\
y_{2}^{\prime} & y_{(R+2)}^{\prime} & y_{(2 R+2)}^{\prime} & \ldots y_{((C-1) R+2)}^{\prime} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
y_{R}^{\prime} & y_{2 R}^{\prime} & y_{3 R}^{\prime} & \ldots & y_{C \times R}^{\prime}
\end{array}\right]
$$

The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intra-row and inter-row permuted $R \times C$ rectangular matrix starting with bit y_{1}^{\prime} in row 0 of column 0 and ending with bit $y^{\prime}{ }_{C R}$ in row R -1 of column $C-1$. The output is pruned by deleting dummy bits that were not presentpadded into the input bit sequenceof the rectangular matrix before intra-row and inter row permutations, i.e. bits y_{k}^{\prime} that corresponds to bits $\not y_{k}$ with $k>K$ are removed from the output. The bits output from Turbo code internal interleaver are denoted by $x_{1}^{\prime}, x^{\prime}, \ldots$, $x^{\prime}{ }_{K}$, where x_{1}^{\prime} corresponds to the bit y_{k}^{\prime} with smallest index k after pruning, x_{2}^{\prime} to the bit y_{k}^{\prime} with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is:

$$
R \times C-K
$$

CHANGE REQUEST
Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

25.222 CR 041

Current Version: 3.3.0
GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
$\uparrow C R$ number as allocated by MCC support team

For submission to: RAN \#9
list expected approval meeting \# here

for approval	\mathbf{X}
For information	

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \mathbf{X}

UTRAN / Radio \qquad Core Network \square
(at least one should be marked with an X)
Source: NTT DoCoMo, Nokia and Nortel Networks
Date: 17-August-2000
Subject: Editorial corrections in Turbo code internal interleaver section

Work item:

Category:	F	Correction
	A	Corresponds to a correction in an earlier release
	X	
(only one category	B	Addition of feature
shall be marked	C	Functional modification of feature
with an X)	D	

Release: Phase 2 Release 96
Release 97
Release 98
Release 99
Release 00

$\begin{array}{ll}\text { Reason for } & \text { To clarify bits padding and pruning for rectangular matrix. } \\ \underline{\text { change: }} & \text { To align mathematical notations with preferred notations shown in TS25.201 Annex A. }\end{array}$

Clauses affected: $\quad 4.2 .3 .2 .3$ of TS25.222

Other
 comments:

where $x_{1}, x_{2}, \ldots, x_{K}$ are the bits input to the Turbo coder i.e. both first 8 -state constituent encoder and Turbo code internal interleaver, and K is the number of bits, and $z_{1}, z_{2}, \ldots, z_{K}$ and $z^{\prime}, z^{\prime}, \ldots, z_{K}^{\prime}$ are the bits output from first and second 8 -state constituent encoders, respectively.

The bits output from Turbo code internal interleaver are denoted by $x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \ldots, x^{\prime}$, and these bits are to be input to the second 8 -state constituent encoder.

Figure 3: Structure of rate $1 / 3$ Turbo coder (dotted lines apply for trellis termination only)

4.2.3.2.2 Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be:

$$
x_{K+1}, z_{K+1}, x_{K+2}, z_{K+2}, x_{K+3}, z_{K+3}, x_{K+1}^{\prime}, z_{K+1}^{\prime}, x_{K+2}^{\prime}, z_{K+2}^{\prime}, x_{K+3}^{\prime}, z_{K+3}^{\prime} .
$$

4.2.3.2.3 Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix with padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by $x_{1}, x_{2}, x_{3}, \ldots, x_{K}$, where K is the integer number of the bits and takes one value of $40 \leq K \leq 5114$. The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by $x_{k}=o_{i r k}$ and $K=K_{i}$.

The following subclause specific symbols are used in subclauses 4.2.3.2.3.1 to 4.2.3.2.3.3:

4.2.3.2.3.1 Bits-input to rectangular matrix with padding

The bit sequence $x_{1}, x_{2}, x_{3}, \ldots, x_{K}$ input to the Turbo code internal interleaver x_{k}-is written into the rectangular matrix as follows:
(1) Determine the number of rows R-of the rectangular matrix, R, such that:

$$
R=\left\{\begin{array}{l}
5, \text { if }(40 \leq K \leq 159) \\
10, \text { if }((160 \leq K \leq 200) \text { or }(481 \leq K \leq 530)) \\
20, \text { if }(K=\text { any other value })
\end{array}\right.
$$

where t The rows of rectangular matrix are numbered $0,1,2, \ldots, R-1$ from top to bottom.
(2) Determine the number of columns C of rectangular matrix ${ }_{2} \underline{C}$, such that:
if $(481 \leq K \leq 530)$ then

$$
p=53 \text { and } C=p .
$$

else
Find minimum prime p such that

$$
(p+1) \quad K / R \geq \theta K \leq R \times(p+1)
$$

and determine C such that

$$
C= \begin{cases}p-1 & \text { if } K \leq R \times(p-1) \\ p & \text { if } R \times(p-1)<K \leq R \times p . \\ p+1 & \text { if } R \times p<K\end{cases}
$$

if $(p-K / R \geq 0)$ then

$$
\text { if }(p-1 \quad K / R \geq 0) \text { then }
$$

$$
C=p-1 .
$$

else

$$
C=p
$$

end if
else

$$
C=p+1
$$

end if
end if
where t The columns of rectangular matrix are numbered $0,1,2, \ldots, C-1$ from left to right.
(3) Write the input bit sequence $x_{k} x_{1}, x_{2}, x_{3}, \ldots, x_{K}$ into the $R \times C$ rectangular matrix row by row starting with bit $x y_{1}$ in column 0 of row 0 :

$$
\left[\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{C} \\
x_{(C+1)} & x_{(C+2)} & x_{(C+3)} & \ldots x_{2 C} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
x_{((R-1) C+1)} & x_{((R-1) C+2)} & x_{((R-1) C+3)} & \ldots x_{R C}
\end{array}\right]\left[\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & \ldots \\
y_{C} \\
y_{(C+1)} & y_{(C+2)} & y_{(C+3)} & \ldots \\
\vdots & \vdots & \vdots & \ldots \\
\vdots & & \\
y_{((R-1) C+1)} & y_{((R-1) C+2)} & y_{((R-1) C+3)} & \ldots y_{R \times C}
\end{array}\right]
$$

$\underline{\text { where if } R} \underline{\times} \underline{C}>\underline{K}$, the dummy bits are padded such that $y_{k}=0$ or 1 for $k=K+1, K+2, \ldots, R \underline{\times} \underline{C}$. These dummy bits are pruned away from the output of the rectangular matrix after intra-row and inter-row permutations.

4.2.3.2.3.2 Intra-row and inter-row permutations

After the bits-input to the $R \times C$ rectangular matrix, the intra-row and inter-row permutations for the $R \times C$ rectangular matrix are performed by using the following algorithm.
(1) Select a primitive root v from table 2 on the right side of the value of the prime p.

Table 2: Table of prime p and associated primitive root v

\underline{p}	\underline{V}	p	\underline{V}	p	\underline{V}	\underline{p}	\underline{V}	\underline{p}	\underline{v}
$\underline{7}$	$\underline{3}$	47	5	101	$\underline{2}$	157	$\underline{5}$	$\underline{223}$	$\underline{3}$
11	$\underline{\underline{2}}$	53	2	103	5	163	2	227	$\underline{2}$
$\underline{13}$	$\underline{2}$	$\underline{59}$	$\underline{2}$	107	$\underline{2}$	167	$\underline{5}$	$\underline{229}$	$\underline{6}$
17	$\underline{3}$	61	$\underline{\underline{2}}$	109	$\underline{6}$	173	$\underline{2}$	$\underline{233}$	$\underline{3}$
19	2	67	$\underline{2}$	113	3	179	$\underline{2}$	$\underline{239}$	7
$\underline{23}$	$\underline{5}$	71	7	127	$\underline{3}$	181	$\underline{2}$	$\underline{241}$	7
$\underline{29}$	$\underline{2}$	$\underline{73}$	$\underline{5}$	131	$\underline{2}$	191	19	$\underline{251}$	$\underline{6}$
31	$\underline{3}$	$\underline{79}$	3	137	$\underline{3}$	193	$\underline{5}$	$\underline{257}$	$\underline{3}$
37	$\underline{\underline{2}}$	83	$\underline{2}$	139	2	197	$\underline{2}$		
41	$\underline{6}$	89	$\underline{3}$	149	$\underline{2}$	199	$\underline{3}$		
43	3	97	5	151	6	211	2		

(2) Construct the base sequence $s(i)\langle s(j)\rangle_{j \in\{0,1, \cdots, p-2\}}$ for intra-row permutation as:

$$
s(i)=[v * s(i-1)] \bmod p s(j)=(v \times s(j-1)) \bmod p, i \dot{L}=1,2, \ldots,(p-2)-, \text { and } s(0)=1
$$

(3) LetAssign $q_{0}=1$ be the first prime integer in $\left\{q_{f}\right\}$ the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}}$, and selectdetermine the eonsecutive minimum prime integers $\left\{q_{j i}\right\}$ in the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}-}(j=1,2, \ldots, R-1)$ to be a least prime integer such that:

$$
\text { g.c.d } \left.f\left(q_{i \underline{i j}}, p-1\right\}\right)=1, q_{i \underline{i j}}>6 \text {, and } q_{i \underline{i j}}>q_{(i \underline{i j}-1)} \text {, for each } i=1,2, \ldots, R-1 .
$$

Here where-g.c.d. is greatest common divisor.
(4) Permute $\left\{q_{f}\right\}$ the sequence $\left\langle q_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}}$ to make $\left\{r_{f}\right\}$ the sequence $\left\langle r_{i}\right\rangle_{i \in\{0,1, \cdots, R-1\}}$ such that $r_{T(i j)}=q_{j i}, \dot{f} \underline{i}=0,1, \ldots, R-1$,
where $T(j)(j=0,1,2, \ldots, R 1)\langle T(i)\rangle_{i \in\{0,1, \cdots, R-1\}}$ is the inter-row permutation pattern defined as the one of the following four kind of patterns, which are shown in table 3, $\div P_{a t_{1},} P_{a t_{2},} P_{a t_{3}}$ and $P a t_{4}$ depending on the number of input bits K.
$\{T(0), T(1), T(2), \ldots, T(R-1)\}=\left\{\begin{array}{ll}\text { Pat }_{4} & \text { if }(40 \leq K \leq 159) \\ \text { Pat }_{3} & \text { if }(160 \leq K \leq 200) \\ \text { Pat }_{1} & \text { if }(201 \leq K \leq 480) \\ \text { Pat }_{3} & \text { if }(481 \leq K \leq 530) \\ P_{1} & \text { if }(531 \leq K \leq 2280) \\ P a t_{2} & \text { if }(2281 \leq K \leq 2480) \\ \text { Pat }_{1} & \text { if }(2481 \leq K \leq 3160) \\ \text { Pat }_{2} & \text { if }(3161 \leq K \leq 3210) \\ \text { Pat }_{1} & \text { if }(3211 \leq K \leq 5114)\end{array}\right.$,
where $\mathrm{Pat}_{1}, P \mathrm{Pat}_{2},-\mathrm{Pat}_{3}$ and Pat_{4} have the following patterns respectively.
Pat $t_{4}:\{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\}$
Pat $: ~\{19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\}$
Pat $z_{3}:\{9,8,7,6,5,4,3,2,1,0\}$
Pat $:\{4,3,2,1,0\}$
Table 3: Inter-row permutation patterns for Turbo code internal interleaver

Number of input bits K	Number of rows R	Inter-row permutation patterns $\langle T(0), T(1), \ldots, T(R-1)\rangle$
$(40 \leq K \leq 159)$	5	<4, 3, 2, 1, 0>
$(160 \leq \underline{K} \leq \underline{200)}$ or ($481 \leq K \leq 530)$	10	$\leq 9,8,7,6,5,4,3,2,1,0\rangle$
$\underline{(2281} \leq \underline{K} \leq \underline{2480)}$ or ($3161 \leq \underline{K} \underline{\underline{3210}}$	$\underline{20}$	$\leq 19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10>$
$K=$ any other value	$\underline{\underline{20}}$	$\leq 19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11 \geq$

(5) Perform the $\dot{j} \underline{i}$-th $(\underline{j} \underline{i}=0,1,2, \ldots, R-1)$ intra-row permutation as:
if $(C=p)$ then
$U_{f}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right) U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right), \quad i \dot{i}=0,1,2, \ldots,(p-2){ }_{-,}$, and $U_{j i j}(p-1)=0$,
where $U_{j i}(i j)$ is the imputoriginal bit position of $i j$-th output after the permatationpermuted bit of $i \underline{j i}$-th row.
end if
if $(C=p+1)$ then
$U_{f}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right) U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right), \quad i \dot{i}=0,1,2, \ldots,(p-2) . ; U_{j i}(p-1)=0$, and $U_{j i}(p)=p$,
where $U_{j i}(i j)$ is the inputoriginal bit position of $i j$-th eutput after the permutationpermuted bit of $\dot{j} i$-th row, and
if ($K=C \times-R \times \underline{C}$) then
Exchange $U_{R-1}(p)$ with $U_{R-1}(0)$.
end if
end if
if $(C=p-1)$ then

$$
U_{f}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right)-1 U_{i}(j)=s\left(\left(j \times r_{i}\right) \bmod (p-1)\right)-1, \quad i j=0,1,2, \ldots,(p-2),
$$

where $U_{j i j}(i j)$ is the input original bit position of $i \underline{i j}$-th output after the permutationpermuted bit of $\dot{j \underline{i}}$-th row.
end if
(6) Perform the inter-row permutation based on the pattern $T(j)(j=0,1,2, \ldots, R-1)\langle T(i)\rangle_{i \in\{0,1, \cdots, R-1\}}$,
where $T(\underset{j i}{i})$ is the original row position of the $\dot{j \underline{i}}$-th permuted row.

Table 2: Table of prime p and associated primitive root v

p	V	p	V	p	*	p	V	p	V
7	3	47	5	101	z	157	5	223	3
11	2	53	2	103	5	163	z	227	2
13	2	59	2	107	z	167	5	229	6
17	3	61	2	109	6	173	z	233	3
19	2	67	2	113	3	179	2	239	7
23	5	71	7	127	3	181	2	241	7
29	2	73	5	131	z	191	19	251	6
31	3	79	3	137	3	193	5	257	3
37	2	83	2	139	z	197	z		
41	6	89	3	149	z	199	3		
43	3	97	5	151	6	211	2		

4.2.3.2.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by y_{k}^{\prime} :

$$
\left[\begin{array}{ccclc}
y_{1}^{\prime} & y_{(R+1)}^{\prime} & y_{(2 R+1)}^{\prime} & \ldots y_{((C-1) R+1)}^{\prime} \\
y_{2}^{\prime} & y_{(R+2)}^{\prime} & y_{(2 R+2)}^{\prime} & \ldots y_{((C-1) R+2)}^{\prime} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
y_{R}^{\prime} & y_{2 R}^{\prime} & y_{3 R}^{\prime} & \ldots & y_{C R}^{\prime}
\end{array}\right]\left[\begin{array}{ccccc}
y_{1}^{\prime} & y_{(R+1)}^{\prime} & y_{(2 R+1)}^{\prime} & \ldots y_{((C-1) R+1)}^{\prime} \\
y_{2}^{\prime} & y_{(R+2)}^{\prime} & y_{(2 R+2)}^{\prime} & \ldots y_{((C-1) R+2)}^{\prime} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
y_{R}^{\prime} & y_{2 R}^{\prime} & y_{3 R}^{\prime} & \ldots & y_{C \times R}^{\prime}
\end{array}\right]
$$

The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intra-row and inter-row permuted $R \times C$ rectangular matrix starting with bit y_{1}^{\prime} in row 0 of column 0 and ending with bit $y_{C R}^{\prime}$ in row R -1 of column $C-1$. The output is pruned by deleting dummy bits that were not presentpadded into the input bit sequenceof the rectangular matrix before intra-row and inter row permutations, i.e. bits y_{k}^{\prime} that corresponds to bits $x y_{k}$ with $k>K$ are removed from the output. The bits output from Turbo code internal interleaver are denoted by $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$, $x^{\prime}{ }_{K}$, where x_{1}^{\prime} corresponds to the bit y_{k}^{\prime} with smallest index k after pruning, x_{2}^{\prime} to the bit y_{k}^{\prime} with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is:

$$
R \times C-K
$$

