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Introduction
In this contribution, we present an update on evaluation results of the benefits of AI/ML-based CSI feedback using two-sided model relative to a Rel-16 Type II (eType2) baseline.
System-level evaluation for CSI compression
In this section, we show performance improvements of ML-based CSI feedback over eType2 for full buffer and bursty traffic. We plot the mean and edge throughputs (for full buffer) and mean and edge user experiences (for bursty traffic) against the number of bits required on the UL for PMI feedback, based on UE mean requested rank. For Release 16 eType2, we have used the maximum number of non-zero coefficients (K0 for rank 1, 2K0 for rank > 1) to compute the required PMI bits on the UL. 
Table 1 shows the simulation assumptions used in the evaluation. 
[bookmark: _Ref127517774]Table 1: System Simulation Assumptions
	Parameter
	Value

	Carrier Frequency
	4 GHz

	Scenario
	Dense Urban

	Bandwidth
	20 MHz

	Sub-carrier Spacing, Sub-band size
	30 KHz, 4 RBs/Sub-band (13 SB/Bandwidth)

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8)
(dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2)
(dH,dV) = (0.5, 0.5)λ 

	Channel Estimation
	Realistic

	Interference Estimation
	Realistic

	eType2 parameter combinations
	PC 1 through 8



Figure 1 below shows the mean UE throughput vs the UL PMI overhead required for eType2 as well as for ML-based CSI feedback. The overhead gain from ML-based CSI feedback is around 50%, at a mean user throughput of around 14.3 Mbps. Figure 2 shows the cell-edge UE throughput vs the UL PMI overhead required. The overhead gain from ML-based CSI feedback is around 32% at an edge user throughput of around 2.6 Mbps.
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[bookmark: _Ref127517458]Figure 1: Mean UE throughput vs UL PMI overhead
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[bookmark: _Ref127517483]Figure 2: Edge UE throughput vs UL PMI overhead
For bursty traffic, we show the performance gains from ML-based CSI feedback at three values of resource utilization: approximately 10%, 40% and 80% in the curves below. Figure 3 and Figure 4 shows the mean and cell-edge user experience for Release 16 eType2 and ML-based CSI feedback around 10% resource utilization. Figure 5 and Figure 6 show the same for 40%, and Figure 7 and Figure 8 show the same for 80% resource utilizations. 
At 10% RU, we see a 65% improvement in UL overhead at a mean user experience of around 150 Mbps. At similar improvement in UL overhead, the edge user experience is around 80 Mbps. At 40% RU, we observe a 40% improvement in UL overhead at a mean user experience of 88 Mbps. At an edge user experience of around 38 Mbps, the gain in UL overhead is 55%. At 80% RU, we observe a 63% improvement in UL overhead at a mean user experience of around 45 Mbps, and an edge user experience of around 11 Mbps. 
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[bookmark: _Ref127517538]Figure 3: Mean User Experience vs UL PMI OH (~10%RU)
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[bookmark: _Ref127517554]Figure 4: Edge User Experience vs UL PMI OH (~10%RU)
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[bookmark: _Ref127517565]Figure 5: Mean User Experience vs UL PMI OH (~40%RU)
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[bookmark: _Ref127517575]Figure 6: Edge User Experience vs UL PMI OH (~40%RU)
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[bookmark: _Ref127517583]Figure 7: Mean User Experience vs UL PMI OH (~80%RU)
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[bookmark: _Ref127517590]Figure 8: Edge User Experience vs UL PMI OH (~80%RU)
[bookmark: _Toc127521718]AI/ML based CSI compression gives UL overhead gains of around 50% for mean throughputs (at a mean throughput around 14.3 Mbps) and 32% for cell-edge throughputs (around 2.6 Mbps).
[bookmark: _Toc127521719] For Bursty Traffic, 
· At 10% RU, we see a 65% improvement in UL overhead at a mean user experience of around 150 Mbps. At similar improvement in UL overhead, the edge user experience is around 80 Mbps. 
· At 40% RU, we observe a 40% improvement in UL overhead at a mean user experience of 88 Mbps. At an edge user experience of around 38 Mbps, the gain in UL overhead is 55%. 
· At 80% RU, we observe a 63% improvement in UL overhead at a mean user experience of around 45 Mbps, and an edge user experience of around 11 Mbps

In Table 2 below, we present the results according to the agreed format.
[bookmark: _Ref127518347][bookmark: _Hlk127303029]Table 2: Results in Agreed Format
	 
	 
	Source 1 
	 
	… 

	CSI generation part 
	AL/ML model backbone 
	Transformer 
	 
	 

	
	Pre-processing 
	 Sub-band averaging, SVD
	 
	 

	
	Post-processing 
	 
	 
	 

	
	FLOPs/M 
	 ~10
	 
	 

	
	Number of parameters/M 
	~0.1 
	 
	 

	
	[Storage /Mbytes] 
	
	 
	 

	CSI reconstruction part 
	AL/ML model backbone 
	 Transformer
	 
	 

	
	[Pre-processing] 
	 -
	 
	 

	
	[Post-processing] 
	 -
	 
	 

	
	FLOPs/M 
	 ~10
	 
	 

	
	Number of parameters/M 
	 ~0.1
	 
	 

	
	[Storage /Mbytes] 
	 
	 
	 

	Common description 
	Input type 
	Precoding vectors per SB
	 
	 

	
	Output type 
	Precoding vectors per SB
	 
	 

	
	Quantization /dequantization method 
	 Vector Quantization
	 
	 

	Dataset description 
	Train/k 
	 440
	 
	 

	
	Test/k 
	 160
	 
	 

	
	Ground-truth CSI quantization method 
	 Floating point
	 
	 

	[Other assumptions/settings agreed to be reported] 
	 
	 
	 

	Benchmark 
	SGCS 
	 
	 

	Intermediate KPI I#1 of benchmark, [layer 1] 
	CSI feedback payload X (134 bits)
	0.75 
	 
	 

	
	CSI feedback payload Y (194 bits)
	 0.78
	 
	 

	
	CSI feedback payload Z (234 bits)
	 0.80
	 
	 

	Intermediate KPI I#1 of benchmark, [layer 2] 
	CSI feedback payload X (134 bits)
	 0.63
	 
	 

	
	CSI feedback payload Y (194 bits)
	 0.66
	 
	 

	
	CSI feedback payload Z (234 bits)
	 0.68
	 
	 

	Gain for intermediate KPI I#1, [layer 1] 
	CSI feedback payload X (134 bits)
	 9.0%
	 
	 

	
	CSI feedback payload Y (194 bits)
	 5.6%
	 
	 

	
	CSI feedback payload Z (234 bits)
	 4.0%
	 
	 

	Gain for intermediate KPI#1, [layer 2] 
	CSI feedback payload X (134 bits)
	 22.5%
	 
	 

	
	CSI feedback payload Y (194 bits)
	 17.2%
	 
	 

	
	CSI feedback payload Z (234 bits)
	6.8%
	 
	 

	… 
	 
	 
	 
	 

	Intermediate KPI I#2 of benchmark, [layer 1] 
	CSI feedback payload X 
	 
	 
	 

	
	CSI feedback payload Y 
	 
	 
	 

	
	CSI feedback payload Z 
	 
	 
	 

	Intermediate KPI I#2 of benchmark, [layer 2] 
	CSI feedback payload X 
	 
	 
	 

	
	CSI feedback payload Y 
	 
	 
	 

	
	CSI feedback payload Z 
	 
	 
	 

	Gain for intermediate KPI I#2, [layer 1] 
	CSI feedback payload X 
	 
	 
	 

	
	CSI feedback payload Y 
	 
	 
	 

	
	CSI feedback payload Z 
	 
	 
	 

	Gain for intermediate KPI#2, [layer 2] 
	CSI feedback payload X 
	 
	 
	 

	
	CSI feedback payload Y 
	 
	 
	 

	
	CSI feedback payload Z 
	 
	 
	 

	… 
	 Full Buffer Traffic
	 
	 
	 

	Gain for Mean Throughput 
	CSI feedback payload X (134 bits)
	9.4% 
	 
	 

	
	CSI feedback payload Y (194 bits)
	 7.9%
	 
	 

	
	CSI feedback payload Z (234 bits)
	 3.6%
	 
	 

	Gain for 5% Throughput 
	CSI feedback payload X (134 bits)
	 11.2%
	 
	 

	
	CSI feedback payload Y (194 bits)
	 4.0%
	 
	 

	
	CSI feedback payload Z (234 bits)
	 1.3%
	 
	 

	… 
	 Bursty Traffic (10% RU)
	 
	 
	 

	Gain for Mean UPT
	CSI feedback payload X (134 bits)
	7.0%
	
	

	
	CSI feedback payload Y (194 bits)
	7.3%
	
	

	
	CSI feedback payload Z (234 bits)
	2.1%
	
	

	Gain for 5% UPT
	CSI feedback payload X (134 bits)
	9.3%
	
	

	
	CSI feedback payload Y (194 bits)
	6.1%
	
	

	
	CSI feedback payload Z (234 bits)
	2.9%
	
	

	…
	Bursty Traffic (20% RU)
	
	
	

	Gain for Mean UPT
	CSI feedback payload X (134 bits)
	8.0%
	
	

	
	CSI feedback payload Y (194 bits)
	8.0%
	
	

	
	CSI feedback payload Z (234 bits)
	2.2%
	
	

	Gain for 5% UPT
	CSI feedback payload X (134 bits)
	9.4%
	
	

	
	CSI feedback payload Y (194 bits)
	8.0%
	
	

	
	CSI feedback payload Z (234 bits)
	3.1%
	
	

	…
	Bursty Traffic (40% RU)
	
	
	

	Gain for Mean UPT
	CSI feedback payload X (134 bits)
	11.3%
	
	

	
	CSI feedback payload Y (194 bits)
	9.7%
	
	

	
	CSI feedback payload Z (234 bits)
	3.3%
	
	

	Gain for 5% UPT
	CSI feedback payload X (134 bits)
	11.5%
	
	

	
	CSI feedback payload Y (194 bits)
	17.0%
	
	

	
	CSI feedback payload Z (234 bits)
	6.1%
	
	

	…
	Bursty Traffic (50% RU)
	
	
	

	Gain for Mean UPT
	CSI feedback payload X (134 bits)
	11.5%
	
	

	
	CSI feedback payload Y (194 bits)
	9.7%
	
	

	
	CSI feedback payload Z (234 bits)
	3.6%
	
	

	Gain for 5% UPT
	CSI feedback payload X (134 bits)
	12.5%
	
	

	
	CSI feedback payload Y (194 bits)
	17.5%
	
	

	
	CSI feedback payload Z (234 bits)
	7.2%
	
	

	…
	Bursty Traffic (70% RU)
	
	
	

	Gain for Mean UPT
	CSI feedback payload X (134 bits)
	11.0%
	
	

	
	CSI feedback payload Y (194 bits)
	10.3%
	
	

	
	CSI feedback payload Z (234 bits)
	5.6%
	
	

	Gain for 5% UPT
	CSI feedback payload X (134 bits)
	17.6%
	
	

	
	CSI feedback payload Y (194 bits)
	18.9%
	
	

	
	CSI feedback payload Z (234 bits)
	12.4%
	
	

	…
	Bursty Traffic (80% RU)
	
	
	

	Gain for Mean UPT
	CSI feedback payload X (134 bits)
	 10.3%
	 
	 

	
	CSI feedback payload Y (194 bits)
	10.6%
	
	

	
	CSI feedback payload Z (234 bits)
	7.4%
	
	

	Gain for 5% UPT
	CSI feedback payload X (134 bits)
	23.2%
	
	

	
	CSI feedback payload Y (194 bits)
	19.8%
	
	

	
	CSI feedback payload Z (234 bits)
	18.3%
	
	

	FFS others 
	
	
	
	



Impact of quantization awareness for training
The following agreement was made during RAN1#110b-e, in the Other Aspects agenda:
	Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE



The following was agreed in RAN1-111 related to the evaluation of quantization-aware training:
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.





In this section, we present our evaluation results on this aspect. The SGCS metric is shown for different variations on the training approach and quantization method. The payload size was set to 128 bits. The results are based on joint training of the UE-side and NW-side models. For case 2-2, the UE-side model includes the quantization method and the NW-side model includes the dequantization method, and they are jointly trained.
Table 3: Results on quantization-aware/non-aware training
	NN Train type
	Case
	Quantization
	SGCS

	
	
	method
	training/config
	Linear
	dB

	Jointly training 
Enc-Dec (Quant non-aware)
	1
	fixed SQ
	uniform (parameter config 1)
	0.648
	-4.54

	Jointly training 
Enc-SQ_fixed-Dec
	2-1
	fixed SQ
	uniform (parameter config 1)
	0.796
	-6.91

	Jointly training 
Enc-SQ_fixed-Dec
	2-1
	fixed SQ
	uniform (parameter config 2)
	0.738
	-5.83

	Jointly training 
Enc-SQ-Dec
	2-2
	trained SQ
	joint with Enc/Dec
	0.798
	-6.95

	Jointly training 
Enc-VQ-Dec
	2-2
	trained VQ
	joint with Enc/Dec
	0.828
	-7.65


[bookmark: _Toc127521720] Quantization non-aware training (case-1) leads to noticeable performance degradation compared with quantization aware training (case-2).
[bookmark: _Toc127521721]For quantization aware training, fixed or pre-configured quantization (case 2-1) is more sensitive to quantization’s parameters/configuration compared with trainable quantization (case 2-2). That is, quantization’s parameters/configuration in case 2-1 need to be carefully chosen to align with statistical distribution of latent vector (z), otherwise performance is degraded. 
[bookmark: _Toc127521722] Trainable quantization offers more flexibility and better performance compared to fixed quantization, e.g., trainable vector quantization can improve the performance.
[bookmark: _Toc127521940]Quantization method should be considered a part of the UE-side model and dequantization method should be considered a part of the NW-side model. The quantization method should be aligned for good performance, but there is no need for separate specification support to align the quantization method.
Impact of device variations on performance
In practice, the data corresponding to different types of devices may have different characteristics. The source of such differences could be from device construction, RF aspects, implementation differences across vendors or device models or chipsets, etc. Training data may be obtained from one type of device to develop models. If such models are used for inference on another type of device, then the discrepancy in the data distribution between training and inference can impact the performance of the model.
In this section, we present evaluation results on this aspect and discuss how the performance can be improved. 
[bookmark: _Ref127517749]Table 4: Impact of mismatch between training and inference data distribution due to device variations
	
	SGCS
(Training on device type A data)

	Device Type A
	0.839

	Device Type B
	0.810

	Device Type C
	0.627

	Device Type D
	0.798



Table 4 shows the average SGCS for 4 types of devices. Data from device type A was used for training. The value shown in the table is the SGCS when the data from the corresponding device type was used for inference. The differences modelled among the 4 cases are only related to device-specific aspects such as channel estimation, antenna imbalance, SVD implementation, etc. Other aspects such as scenario and configuration are identical across the different cases. The result shows that the performance of the two-sided model can vary considerably due to device variations. 
[bookmark: _Toc127521723]The performance of AI/ML-based CSI compression using two-sided model can vary considerably if there is a discrepancy between the training data and inference data due to device-side variations.
The above observation implies the need of new models to be developed via the data corresponding to the new devices (e.g., device types B, C, D). However, if the network-side models have already been deployed, it would be preferable if the new types of devices can be accommodated without a need to deploy new models on the network side, i.e., in a backward compatible manner.
To this end, a gradient-exchange based Type 3 training can be conducted. In this approach, NW-side entity keeps the NW-side model frozen, but opens an API for the UE-side training entity to compute the gradients. With the gradients provided via the API, the UE-side is able to train the new UE-side models for the new devices with their own corresponding data matched to that device type. This method allows simple operation at NW-side (no model training needed) and does not need data collection from new devices to the NW-side.
Table 5 shows the average SGCS for device type D after gradient-exchange based Type 3 training. The second column presents the average SGCS of testing using NN designed with data of device type 1. The third column presents the average SGCS achieved by Type 3 training (with decoder frozen as for device type 1). The fourth column presents the average SGCS achieved by training the encoder-decoder pair with mixed dataset, which acts as an upper-bound for both device type A and D. The result shows that gradient-exchange based Type 3 training can enhance the performance of device type D and its performance is comparable with device type A.
[bookmark: _Ref127438849]Table 5: SGCS of various device types under gradient-exchange based NW-first Type 3 training
	SGCS
	Training dataset: from device type A (encA-decA)
	Training dataset: from device type D but with dec frozen (encD-decA)
	Training dataset: mixed dataset from device type A and D (encA&D-decA&D)

	Inference: Device Type 1
	0.839
	-
	0.848

	Inference: Device Type 4
	0.798
	0.83
	0.842



[bookmark: _Toc127521724] Gradient-exchange based Type 3 training enables the training of encoders for new devices in a scalable and backward compatible manner without requiring updates of the NW-side models, and avoids data distribution mismatch issues.
Impact of ground truth quantization
The following agreements were made related to the evaluation of the impact of ground truth quantization for the CSI compression sub-use-case:
	Agreement
For the evaluation of the high resolution quantization of the ground-truth CSI in the CSI compression, Float32 is adopted as the baseline/upper-bound of performance comparison.

Agreement
For the evaluation of the high resolution quantization of the ground-truth CSI in the CSI compression, if R16 Type II-like method is considered, companies to report the R16 Type II parameters with specified or new/larger values to achieve higher resolution of the ground-truth CSI labels, e.g., L,, , reference amplitude, differential amplitude, phase, etc.




In this section, we present results for the ground truth quantization study comparing the SGCS metric for the rank 1 case for the dense urban scenario. For the baseline, we use the training dataset in floating point representation. We then construct another dataset where each training sample is based on the representation of the corresponding original precoding vector using R16 Type II codebook with parameter combination 8.
Table 6 shows the SGCS achieved for different CSI feedback payload size settings.
[bookmark: _Ref127518900]Table 6: SGCS for different types of training dataset quantization
	Payload size (bits)
	Avg. SGCS for ML-CSI feedback,  trained using floating point training dataset
	Avg. SGCS for ML-CSI feedback, trained using R16 Type II PC8 based training dataset

	32
	0.668
	0.672

	64
	0.735
	0.726 

	128
	0.786
	0.774

	512
	0.950
	0.940



[bookmark: _Toc127521725] The SGCS achieved with a training dataset quantized using R16 Type II PC 8 is very close to the SGCS achieved using the ideal (floating point) training dataset for the rank 1 case with dense urban scenario.
During data collection phase, the UE first receives and processes CSI-RS samples. The training process typically happens offline at a server and does not require tight latency guarantees. The data collected by the UE can therefore be delivered to the training entity over-the-top without burdening the control resources that are needed for control signalling for ongoing communications.
If a training entity on the NW-side requires data for training, the same process can be followed. Alternately, the NW-side can construct a dataset based on R16 Type II scheme. Our results show that this approach can also provide good performance similar to using the original unquantized dataset.
Considering these aspects, the need to specify new values for R16 Type II parameters to achieve higher resolution of the ground-truth CSI labels is unclear.
[bookmark: _Toc127521941] For training data collection, specifying new/larger values of R16 Type II parameters to achieve higher resolution of the ground truth CSI needs clear justification.
Model performance monitoring
It has been agreed to study various performance monitoring methods, including monitoring based on inference accuracy, system performance and data distribution (input or output).  In this section, we elaborate our views on these options.
For two-sided CSI feedback, the target CSI (or input) and final CSI are generated at UE side and NW side separately. In this way, to enable monitoring based on inference accuracy, the UE has to either run NW-side decoder or provide the target CSI (or input) to the NW-side. 
The option of UE running the NW-side model may be feasible for UEs that can handle the added complexity. 
Providing the target CSI from UE to NW-side requires additional signaling overhead and may suffer from large delays. More specifically, due to the delay in ground-truth provision, the gNB may be only able to compute SGCS(t) at time slot t+d. If the UE moves fast, the actual SGCS(t+d) at time slot t+d could drop dramatically compared to SGCS(t). Thus, to ensure accurate model monitoring, the performance metric should be computed in timely manner.   To keep the delay small, the target CSI would have to be reported frequently. However, this adds significant overhead, and may significantly reduce the benefit of overhead reduction of AI/ML-based CSI compression.
[bookmark: _Toc127521726] Model monitoring based on ground-truth provided by UE to the network requires large signalling overhead and may be sensitive to large latency.  
Input-based monitoring
Thus, monitoring based on system performance and data distribution are more interesting. System-performance-based approach (e.g., throughput, BLER) is generic for all kinds of CSI feedback including the legacy codebook-based approach, it may have no specification impact. For data-distribution-based approach, UE calculates the target CSI (or input) based on the input sample measured in inference phase, and then compares it with the counterpart of the training set.
An example of data-distribution-based (input-based) approach is elaborated as following. Training samples are partitioned into two groups, the participation can be based on clustering methods, data statistics (e.g., angle, delay spread, doppler) or the meta-information provided in data-collection phase. One can see from Figure 9 that the distribution of the distance of a sample from samples belonging to an unmatched group is biased from the distribution of the distance to samples belonging to its matched group. Therefore, it is feasible for UE to differentiate samples based on distance or probability assessment. 

[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref118486698]Figure 9: Distribution of sample distances from two groups in the training data
To show the relationship between the monitoring metric and inference performance, we first divide the testing samples to matched samples and unmatched samples where matched samples are those belong to group 1 and unmatched samples are those do not belong to group 1. Then, we further divide matched samples and unmatched samples based on the distance to group 1. Hence, there are 4 parts in the testing data: 1) matched samples and within a distance, 2) matched samples and beyond a distance, 3) unmatched and within a distance to group 1, and 4) unmatched samples and beyond a distance to group 1. 
In Figure 10, we plot the inference accuracy using the model trained by training data group 1. We can see that matched/unmatched samples within the threshold outperform those beyond the threshold. This result implies a good relationship between the distance and inference accuracy – longer distance yields lower accuracy than shorter distance. Besides, matched samples within the threshold (part 1) and unmatched samples within the threshold (part 3) achieve similar performance. This result implies that inferencing with unmatched samples yields acceptable performance if the unmatched samples are within a certain distance to the training data. The same exercise has been applied to matched/unmatched samples for group 2 and similar observations are obtained.
[image: ]
[bookmark: _Ref118486711]Figure 10: Inference accuracy of testing data based on matching with training data and the distance to the training data
[bookmark: _Toc118460610][bookmark: _Toc118460628][bookmark: _Toc118488966][bookmark: _Toc127521727] Model monitoring based on metrics derived by comparison between input samples at inference and training samples can have strong relationship with the inference accuracy. As a result, input-based monitoring appears promising.
[bookmark: _Toc127521942]Study specification impact of input-based model monitoring on the UE-side by comparing input samples at inference time to the training samples.  
Legacy-CSI based monitoring
To evaluate the accuracy of a two-sided model for CSI compression, if a UE has to report the target CSI with high resolution to the gNB, this may incur high overhead in the uplink. 
One approach to address this concern is to compare the ML-based reconstructed CSI with the CSI obtained from some other reference CSI feedback scheme in similar channel conditions. As an example, a legacy non-AI/ML CSI feedback scheme can be used as the reference scheme. During the model monitoring process, a UE may report CSI feedback using the AI/ML scheme and the reference scheme. The gNB may then reconstruct the CSI using the NW-side model and compare the resulting output CSI with the reference CSI, i.e., the version of CSI derived from the reference scheme. A large difference between the output CSI and reference CSI can be used to determine that the model accuracy is inadequate.
For the following results, we consider a rank 1 case where the output CSI type is ‘precoding vector’. Release 16 Type II CSI scheme with parameter combinations 6 and 8 are considered for the reference CSI. 
Model accuracy failure is defined to occur when the SGCS between the target CSI vector and the output CSI vector falls below a threshold of 0.5 during the monitoring. The gNB declares model accuracy failure when the SGCS between the reference CSI vector (i.e., Rel 16 Type II) and the output CSI vector falls below the same threshold during the monitoring. 
We evaluate the effectiveness of this model monitoring scheme in terms of the false alarm and missed detection rates of detecting model accuracy failure. False alarm rate is the percentage of model accuracy success cases that are incorrectly detected as failure. Missed detection rate is the percentage of model accuracy failure cases that are incorrectly detected as success. 
	
	Reference: R16 Type II, PC = 6
	Reference: R16 Type II, PC = 8

	False alarm rate
	0.77%
	0.86%

	Missed detection rate
	8.1%
	4.65%


 
The result shows that using only the Rel-16 Type II CSI feedback as a reference, the gNB can perform model monitoring with acceptable accuracy without incurring additional overhead for UE reporting the target CSI with high resolution.
[bookmark: _Toc118460611][bookmark: _Toc118460629][bookmark: _Toc118488967][bookmark: _Toc127521728] Model performance monitoring based on using a legacy CSI feedback scheme as a reference can detect model accuracy failure reliably and efficiently. 
[bookmark: _Toc127521943]For model performance monitoring, specification change for reporting the target CSI with high resolution requires clear justification as it may incur additional overhead.


Comparison of offline training scenarios
In RAN1#110, the following was agreed regarding AI/ML model training:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
Other collaboration types are not excluded.



In this section, we compare the performance of models trained under these different types of offline training. 
· Type 1 training: 
· Joint training of the two-sided model at a single side/entity (at the same time in a single training session)
[image: ]
Figure 11: Type 1 offline training

· Type 2 training: 
· Joint training of the two-sided model at network side and UE side, respectively (at the same time in a single training session)
[image: Teams

Description automatically generated]
Figure 12: Type 2 offline training

· Type 3 training: 
· Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively (in different training sessions, with collaboration outside the training process to ensure compatibility of the two-sided models)
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Description automatically generated]
Figure 13: Type 3 offline sequential training starting with UE side training


[image: A picture containing graphical user interface

Description automatically generated]
Figure 14: Type 3 offline sequential training starting with NW side training
Single UE-side model, single NW-side model
We first consider the case of training the UE-side and NW-side model of a two-sided model involving one UE vendor and one NW vendor. 
Type 2 training
Since Type 1 training is managed by a single entity, the UE-side model structure and NW-side model structure can be chosen in a matched way – for example – both models can be chosen to have a transformer structure. With Type 2 training, if the two model structures are the same, the performance is expected to be essentially the same as Type 1 training. 
However, with Type 2 training, the UE-side and NW-side model structures may not be disclosed but instead kept proprietary. This raises the question of whether it is feasible to achieve good end-to-end ML model performance of the two-sided model if the two structures are not matched – for example – if one side uses a convolutional neural network (CNN) while the other side selects a transformer-based architecture. We present results comparing these scenarios. 
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Figure 15: Type 2 offline training is feasible
	
The result shows that the distributed offline training scenario results in an SGCS value of 0.825 even though the UE-side and NW-side model structures were mismatched (transformer and CNN). The Type 1 training which uses matched structure (CNN) for both UE-side and NW-side model achieves an SGCS of 0.829.
[bookmark: _Toc118460616][bookmark: _Toc118460634][bookmark: _Toc118488969][bookmark: _Toc127521729] Type 2 offline training of the UE-side model and NW-side model is feasible even if the ML model structure of the UE-side and NW-side models are not matched.

Type 3 training
In this section, we present results on Type 3 (separate) training with vector quantization. 
As was concluded in RAN1#110bis-e, we have two flavors of separate training (type 3)
· UE-first type3 training: UE-Enc is trained first and UE server shares training dataset with gNB server for training the gNB-Dec
· gNB-first type3 training: gNB-Dec is trained first and gNB server shares training dataset with UE server for training the UE-Enc 
Note that VQ can be trained with UE-Enc or gNB-Dec. The following results assume that 
· For UE-first type3 training, VQ is trained with UE-Enc and UE server shares (zq, Vtarget) dataset with gNB server
· For gNB-first type3 training, VQ is trained with gNB-Enc and gNB server shares (zq, Vtarget) dataset with UE server 
1.1.1.1 UE-first separate training
We focus on offline sequential UE-first training where the UE-side training entity trains the UE-side model first and generates a training dataset which is shared with NW-side for training the NW-side model. The objective is to compress precoder vector ‘Vtarget’ to a quantized latent representation ‘zq’ which is used to generate the reconstructed precoder vector ‘Vout’. There are multiple approaches for training the UE-side model and generating the separate training dataset. In particular, we have  
· Approach 1: UE server trains the encoder without quantization and shares the dataset (z, Vtarget)
· Vector quantizer (VQ) is trained with the decoder at NW-side training entity
· Approach 2: UE server trains the encoder with quantization
· UE server shares the dataset (ze, Vtarget), where ze is the input to VQ
· VQ is trained with the decoder at NW-side training entity
· UE server shares the dataset (zq, Vtarget), where zq is the output of VQ
Table 7 illustrates the performance of Type 3 training for different approaches in training a CNN encoder and a CNN decoder with vector quantization. We observe that training UE encoder without quantization may lead to some performance loss when compared with encoder training with quantization. For approach 2, we observe that separate training based on (ze, Vtarget) or (zq, Vtarget) leads to almost same performance. 
[bookmark: _Ref118485761]Table 7: Comparison of different approaches for separate training with VQ for a single UE
	Enc
	Dec
	Separate training dataset
	NN Params
	SGCS

	
	
	
	z-dim
	Quant
	Linear
	dB

	CNN
	CNN
	(ze, Vtarget)
	64 
	VQ with total payload 128 bits
	0.7794
	-6.564

	
	
	(zq, Vtarget)
	
	
	0.7788
	-6.552

	
	
	(z, Vtarget)
	
	
	0.768
	-6.345



[bookmark: _Toc118460620][bookmark: _Toc118460638][bookmark: _Toc118488970][bookmark: _Toc127521730] Training UE encoder without quantization and generating the separate training based on this encoder may lead to some performance degradation compared to encoder training with quantization.
 
Comparing different approaches to separate training
In this section, we present results comparing different approach to separate offline training of single UE-encoder and single gNB-decoder with vector quantization (VQ). In these results, we assume that encoder is a CNN and the decoder is a transformer NN. 
An alternative type3 training is based on activation/gradient exchange (type3-alt), where either UE-Enc or gNB-Dec is trained first and then the other is trained based on activation/gradient exchange, e.g., UE-Enc training with a frozen Dec (no update of Dec weights). In particular, we have the following two flavors:
· gNB-first type3-alt training: gNB-Dec is trained first and then UE-Enc is trained with a frozen gNB-Dec
· This approach may require exchange of activation (latent vector), gradient and corresponding target for loss function computation 
· UE-first type3-alt training: UE-Enc is trained first and then gNB-Dec is trained with a frozen UE-Enc
· This approach may require exchange of activation (latent vector) and corresponding input
Note that the difference between this type3-alt and type 3 training is that instead of using supervised learning based on separate training dataset (e.g., (zq, Vtarget) dataset), the encoder or decoder is trained using the end-to-end loss between Vtarget and the output of the decoder.

[bookmark: _Ref118486207]Table 8: Comparison of type1, type3, and type3-alt training for CNN-Enc and TF-Dec
	Enc
	Dec
	Train type
	SGCS

	
	
	
	Linear
	dB

	CNN
	TF
	Type1: Joint baseline with VQ
	0.7854
	-6.684

	CNN+VQ
	TF
	Type3: UE-first with (zq, Vtarget)
	0.7898
	-6.774

	CNN
	VQ+TF
	Type3: gNB-first with (zq, Vtarget)
	0.7693
	-6.37

	CNN+VQ
	TF
	Type3-alt: UE-first (frozen Enc)
	0.7851
	-6.678

	CNN
	VQ+TF
	Type3-alt: gNB-first (frozen Dec)
	0.7914
	-6.807



Table 8 shows the SGCS performance comparison of two flavors of type3 training with type3-alt and type1 training baseline for a payload size of 128 bits. For UE-first training, we observe that type1, type3 and type3-alt approaches have almost same performance, as in all these approaches gNB-Dec is trained by minimizing loss in V-space. On the other hand, for gNB-first training, type3 training performs worse than type1 and type3-alt, as in type3 gNB-Dec is trained by minimizing the loss in the latent space.    
[bookmark: _Toc118460613][bookmark: _Toc118460631][bookmark: _Toc118488971][bookmark: _Toc127521731] UE-first type3 training with dataset or activation exchange can achieve the same performance of Type1 training.  
[bookmark: _Toc118460614][bookmark: _Toc118460632][bookmark: _Toc118488972][bookmark: _Toc127521732] gNB-first type3 training with dataset exchange performs worse compared to type1 and type3 with activation/gradient exchange (type3-alt), since type3-alt training is based on end-to-end loss minimization in contrast to latent space loss minimization which is used in type3. 

Next, we show results on the comparison between UE-first type3 training and joint training for rank >1 assuming TF-TF architecture and with a payload size of 128 bits.
	Enc
	Dec
	Train type
	Layer idx
	SGCS (type1)
	SGCS (type3)

	
	
	
	
	Linear
	dB
	Linear
	dB

	TF
	TF
	NN with VQ (128 bits)
	0
	0.8062
	-7.13
	0.8077
	-7.16

	
	
	
	1
	0.6781
	-4.92
	0.6778
	-4.92

	
	
	
	2
	0.5794
	-3.76
	0.5796
	-3.76

	
	
	
	3
	0.4993
	-3.00
	0.5004
	-3.01



[bookmark: _Toc127521733]Joint and sequential training (e.g., UE-first type3) training achieves similar SGCS performance for rank >1.
Generalization to multiple vendor scenario
We next discuss the aspect of generalization to a scenario with multiple models corresponding to different vendors. Specifically, we consider the case where a gNB interacts with multiple UE-side models. One option could be to develop a different NW-side model corresponding to each UE-side model. However, this comes with the need to switch among the models. To address this, we consider the problem of training a common NW-side model that is compatible with multiple UE-side models.
Type 2 training
In Type 2 offline training approach, the common NW-side model and UE-side models will be trained at different entities at the same time. The training entity of the NW-side model will interact with the training entities of each of the UE-side models during the training session to exchange training related information. The setup is shown for the case of 3 UE-side models in Figure 16:
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[bookmark: _Ref118486276]Figure 16: Type 2 offline training of a single NW-side model and multiple UE-side models
We evaluated the ML-model performance for the case where the UE-side model structures are chosen to be transformer-based for the first two models and CNN-based for the third model. The resulting SGCS performance for the three UE-side models when working with a common NW-side model (transformer-based) is shown below in comparison to the case where a separate NW-side model was trained corresponding to each of the UE-side models. Figure 17 shows that the performance of the models is not affected by using a common NW-side model.
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[bookmark: _Ref118486359]Figure 17: Type 2 training: effect of common NW-side model for multiple UE-side models

[bookmark: _Toc118460618][bookmark: _Toc118460636][bookmark: _Toc118488973][bookmark: _Toc127521734] It is feasible to use Type 2 offline training to train a common NW-side model together with separate UE-side models without any performance impact when compared to training a separate NW-side model for each UE-side model.

Type 3 (separate) training results for multiple UE vendors
In this section, we present results on Type 3 (separate) training in a multi-vendor setup with vector quantization. We consider a shared NW-side model which is trained based on datasets collected from multiple UE vendors. There are different ways to design the shared NW decoder. In this simulation, we assume that UE encoder is trained with a VQ block and NW trains or stores UE-specific VQ codebooks. We consider a shared NW decoder and personalization is achieved via the UE-specific VQ codebook. In particular, we consider a shared transformer-based decoder at NW-side, a transformer-based encoder at UE-vendor 1, and a CNN-based encoder at UE-vendor 2. Each UE-side encoder is trained separately. Then, each UE-side generates a training dataset which is shared with NW-side, e.g., UE-vendor 1 generates (ze, Vtarget)UE1 or (zq, Vtarget)UE1 and UE-vendor 2 generates (ze, Vtarget)UE2 or (zq, Vtarget)UE2.
Table 9 shows the performance of separate training with VQ for two UE-vendors and the corresponding joint training baseline of one UE-vendor encoder and NW decoder. Results show that separate training with a shared decoder achieves same performance as joint training baselines (i.e., Type 1 training). 
[bookmark: _Ref118486387]Table 9: Results on multi-vendor separate training with VQ
	UE-Enc
	gNB-Dec
	UE-vendor 
	NN Params
	Train type
	SGCS

	
	
	
	z-dim
	Quant
	
	Linear
	dB

	TF
	TF
	 
	64

	 VQ with total payload 128 bits
	Joint 1-to-1 baseline
	0.8062
	-7.126

	CNN
	TF
	
	
	
	
	0.7854
	-6.684

	TF
	TF common
	UE-vendor 1
	
	
	Separate 
(ze, Vtarget)
	0.8049
	-7.097

	CNN
	
	UE-vendor 2
	
	
	
	0.7881
	-6.739



[bookmark: _Toc118460621][bookmark: _Toc118460639][bookmark: _Toc118488974][bookmark: _Toc127521735] Separate training with VQ for multiple vendors achieves almost the same performance as Type 1 training.

Generalization studies
The following agreements were made in RAN1#110 related to the aspect of generalization of the ML model [2]:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



In this section, we present results and discussion on the generalization performance of ML models for the CSI compression sub-use case.
Generalization to different scenarios
In this section, we present results on our study on the generalization performance of the two-sided AI/ML model for CSI compression across indoor and outdoor scenarios. Consider the following scenarios:
· Scenario A: Dense urban layout, indoor UEs
· Scenario B: Dense urban layout, outdoor UEs
We present results for the following 3 cases that are aligned with the agreement above:
· Case 1: 
· (A à A): The AI/ML model is trained based on a training dataset from Scenario A, and then the AI/ML model performs inference on a dataset from different UEs in the same Scenario A.
· (B à B): The AI/ML model is trained based on a training dataset from Scenario B, and then the AI/ML model performs inference on a dataset from different UEs in the same Scenario B.
· Case 2: 
· (A à B): The AI/ML model is trained based on a training dataset from Scenario A, and then the AI/ML model performs inference on a dataset from UEs in a different Scenario B.
· (B à A): The AI/ML model is trained based on a training dataset from Scenario B, and then the AI/ML model performs inference on a dataset from UEs in a different Scenario A.
· Case 3: The AI/ML model is trained based on a training dataset constructed by mixing the datasets from Scenarios A and B (mixing ratio: 80% indoor, 20% outdoor).
· (A-B mix à A): the AI/ML model performs inference on a dataset from UEs in scenario A.
· (A-B mix à B): the AI/ML model performs inference on a dataset from UEs in scenario B.

The following table presents the SGCS values for each case above for rank 1 (single layer):
Table 10: Generalization across indoor and outdoor scenarios
	Case
	Train à Test
A = Dense urban indoor
B = Dense urban outdoor
	SGCS

	1
	A à A
	0.771

	
	B à B
	0.897

	2
	A à B
	0.903

	
	B à A
	0.696

	3
	A-B mix à A
	0.780

	
	A-B mix à B
	0.912



Based on the results, the ML model that is trained on a mix of datasets from both scenarios is able to generalize well across both scenarios. During inference, in each of the two scenarios considered (indoor and outdoor), the performance of this model is comparable to the performance of a model that was trained only on the same scenario used for inference. 
[bookmark: _Toc115270962][bookmark: _Toc115271061][bookmark: _Toc115271089][bookmark: _Toc115429997][bookmark: _Toc115430017][bookmark: _Toc115430043][bookmark: _Toc115430168][bookmark: _Toc115430250][bookmark: _Toc118460622][bookmark: _Toc118460640][bookmark: _Toc118488976][bookmark: _Toc127521736] Training on a dataset constructed by mixing the datasets of multiple scenarios enables the same ML model to perform well during inference in each of the scenarios.
If a model is trained on a dataset from one scenario, it may not perform well during inference on a dataset from a different scenario. For example, from the result above, the model trained on the outdoor dataset gives an SGCS of 0.696 when used for inference on indoor dataset. In comparison, the model trained on the matched indoor scenario dataset gives a better SGCS of 0.771. The reason for the degradation in performance when the dataset is not from the same scenario may be attributed to the fact that the data samples in the indoor scenario may not be typical in terms of the data distribution of the outdoor training dataset. This points to the need to study mechanisms to identify such an occurrence. 
[bookmark: _Toc115271186][bookmark: _Toc115430008][bookmark: _Toc115430179][bookmark: _Toc115430261][bookmark: _Toc115430911][bookmark: _Toc118460651][bookmark: _Toc118489206][bookmark: _Toc127521944]Study mechanisms to monitor the performance of the AI/ML model to detect whether the data observed during inference is outside the distribution of the dataset used to train the model.

Generalization to variable configurations
In this section, we present results on generalization ability of AI models to support variable payload, subband and antenna configurations. In NR, the number of subbands can be ranging from 1 to 19, and the subbands can be contiguous or non-contiguous. Also, in Type I, Type II and eType II codebooks, there are 13 antenna configurations with respect to number of antenna (CSI-RS) ports and the layout (N1 array in first dimension, N2 array in second dimension). In legacy PMI reporting, these variable configurations are supported by generating respective spatial compression matrix and frequency compression matrix (or by reporting PMI subband-by-subband in Type I/II codebook). In AI-based CSI feedback, the most straightforward way is to train specific AI model using dataset generated based on the specific configuration. In this sense, a huge amount of model needs to be trained and stored in server or device, and frequent switching among models maybe required per configuration and/or triggering. Thus, it is meaningful to study generalization ability of AI models to support variable configurations.
Training with mixed dataset
To achieve a good generalization ability, in the training phase, we mixed the dataset generated under variable configurations and fed them into the AI model, so that AI model would see sufficient variations in the training.
Exercise 1: Variable subband configurations with same payload
In this example, we consider a transformer-based AI model, and 2 training options. 
· NN0: The first option is only training the AI model using data sample with full subband configuration. This NN is considered as a baseline. 
· NN1: The second option is training the AI model using random subband patterns in addition to the full subband case. Arbitrary patterns are considered, e.g., randomly select N3 subbands from total 12 subbands where N3 ranging between 3 and 11. 
As shown in Figure 18, 3 cases are considered in testing, full-subband configuration (SB 0-11), second half of the total subband (SB 6-11), and random patterns. One can see that NN1 achieves robust performance across all testing cases. For the full subband configuration testing, NN2 even outperforms the specifically trained NN0. This implies that training mixed datasets could benefit each other.
[image: ]
[bookmark: _Ref115430531]Figure 18: Results of Exercise 1
Exercise 2: Variable subband configurations with variable payload
In this example, we also consider a transformer-based AI model, and 4 training options. 
· NN0: The first option is only training the AI model using data sample with full subband configuration. This NN is considered as a baseline. 
· NN1: The second option is trained with the same data set as NN0. The difference is that two payload configurations are considered (i.e., encoder output dimension = 32 and 64) and are trained at the same time.
· NN2: The third option is training using contiguous patterns. The number of subbands are randomly generated between 3 and 12. In this case, if Nsb > 6, we consider encoder output dimension = 64, while 32 is considerd if Nsb <=6.
· NN3: The fourth option is similar to the third option except that arbitrary subband pattern is considered in the training. Still two payload configurations are applied per number of subbands.
Results of 5 testing cases are presented in Figure 19, i.e., full-subband configuration, contiguous subband configurations with Nsb > 6 and Nsb <= 6, arbitrary patterns with Nsb > 6 and Nsb <= 6. For full-subband case, one can see that NN1 (dimension=64) outperforms the baseline NN0 (dimension=64) because of the concurrent training of two payloads (dimension=64 and dimension = 32). The performance can be further improved by introducing contiguous patterns (NN2) and random patterns (NN3).
Besides, training using arbitrary pattern (NN3) yields good results for all cases. Training with contiguous pattern (NN2) yields good results for all contiguous case. Moreover, smaller subband configuration (Nsb <= 6) yields similar performance as the larger subband configuration (Nsb > 6) saving half payload.
[image: Chart
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[bookmark: _Ref115430552]Figure 19: Testing results of Exercise 2
[bookmark: _Toc115270963][bookmark: _Toc115271062][bookmark: _Toc115271090][bookmark: _Toc115429998][bookmark: _Toc115430018][bookmark: _Toc115430044][bookmark: _Toc115430169][bookmark: _Toc115430251][bookmark: _Toc118460623][bookmark: _Toc118460641][bookmark: _Toc118488977][bookmark: _Toc127521737] Training with mixed variable subband configurations achieve robust performance across all possible subband configurations including arbitrary number of subbands and arbitrary subband patterns.
[bookmark: _Toc115270964][bookmark: _Toc115271063][bookmark: _Toc115271091][bookmark: _Toc115429999][bookmark: _Toc115430019][bookmark: _Toc115430045][bookmark: _Toc115430170][bookmark: _Toc115430252][bookmark: _Toc118460624][bookmark: _Toc118460642][bookmark: _Toc118488978][bookmark: _Toc127521738] Training with mixed variable subband configurations outperforms specific training with specific subband configuration.
[bookmark: _Toc115270965][bookmark: _Toc115271064][bookmark: _Toc115271092][bookmark: _Toc115430000][bookmark: _Toc115430020][bookmark: _Toc115430046][bookmark: _Toc115430171][bookmark: _Toc115430253][bookmark: _Toc118460625][bookmark: _Toc118460643][bookmark: _Toc118488979][bookmark: _Toc127521739] Smaller number of subbands can achieve comparable results to the larger number of subbands with half of reporting payload.
Exercise 3: Variable gNB antenna configurations
In this example, we consider a transformer-based AI model, and 2 training options. 
· NN0: The first option is training specialized AI model using data sample with 2x8, 4x4 and 2x4 antenna configuration specifically. This set of NNs are considered as a baseline. 
· NN1: The second option is training a common AI model using mixed data set of 2x8, 4x4 and 2x4 antenna configurations. 
Results of 2 testing case are presented in Figure 20.  Similar observation can be drawn as Exercise 1 that training with mixed datasets benefit each other and outperforms the specific training case (NN0).
[image: ]
[bookmark: _Ref115430592]Figure 20: Testing results of Exercise 3
[bookmark: _Toc115270966][bookmark: _Toc115271065][bookmark: _Toc115271093][bookmark: _Toc115430001][bookmark: _Toc115430021][bookmark: _Toc115430047][bookmark: _Toc115430172][bookmark: _Toc115430254][bookmark: _Toc118460626][bookmark: _Toc118460644][bookmark: _Toc118488980][bookmark: _Toc127521740]Training with mixed antenna configuration achieves robust performance across all antenna configurations in the training. 
[bookmark: _Toc115270967][bookmark: _Toc115271066][bookmark: _Toc115271094][bookmark: _Toc115430002][bookmark: _Toc115430022][bookmark: _Toc115430048][bookmark: _Toc115430173][bookmark: _Toc115430255][bookmark: _Toc118460627][bookmark: _Toc118460645][bookmark: _Toc118488981][bookmark: _Toc127521741]Training with mixed antenna configuration outperforms specific training with specific antenna configuration.
[bookmark: _Toc115271187][bookmark: _Toc115430009][bookmark: _Toc115430180][bookmark: _Toc115430262][bookmark: _Toc115430912][bookmark: _Toc118460652][bookmark: _Toc118489207][bookmark: _Toc127521945]For the evaluation of generalization of AI model to variable configurations, consider the following in data set generation:
· For subband generalization, generate N>=1 random patterns (either contiguous or non-contiguous) for each data sample in the training set. The full subband pattern can be used in addition.
· For antenna configuration generalization, mix data sample generated based on M antenna configuration with equal proportion.
· Same configuration in the testing set and training set

Evaluation Methodology
While many aspects of the evaluation methodology have been agreed in RAN1#109-e, RAN1#110, RAN1#110bis-e, and RAN1#111 for CSI compression using a two-sided model, a few aspects remain. In this section, we discuss our views on these aspects.
CSI feedback overhead computation
The evaluation methodology table agreed in RAN1#109-e includes the following item about CSI feedback overhead:
“Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.”
The resources required to transmit the CSI feedback payload may depend on the rank indicated by the UE and the CSI feedback scheme and parameters. The actual CSI feedback overhead may be determined by the resource allocation done by the gNB for UCI transmission from the UE. Considering this, there can be two options to calculate the CSI feedback payload size in the evaluation:
· Option 1: Calculate the payload size assuming the maximum possible rank. This corresponds to a gNB that may allocate resources assuming the worst-case scenario of the maximum possible rank.
· Option 2: Calculate the payload size assuming the rank indicated by the UE. This corresponds to a gNB that accurately estimates the rank indicator and allocates resources accordingly.
Option 1 may be a simpler approach but may result in an over-estimation of the resource overhead for CSI feedback if the reported rank indicator is typically lower than the maximum possible rank. Option 2 better captures the overhead required, taking into account the typical channel rank experienced by UEs. For the evaluation of CSI feedback schemes in terms of the tradeoff between performance and feedback overhead, option 2 may be preferable.
[bookmark: _Toc115271182][bookmark: _Toc115430004][bookmark: _Toc115430175][bookmark: _Toc115430257][bookmark: _Toc115430907][bookmark: _Toc118460649][bookmark: _Toc118489209][bookmark: _Toc127521946]For the evaluation of the AI/ML based CSI compression sub use case, the CSI feedback overhead should be computed based on the rank indicated by the UE.

Conclusions
In this document, we have discussed various evaluation results for the AI/ML-based CSI feedback enhancement use case. We made the following observations:
Observation 1:	AI/ML based CSI compression gives UL overhead gains of around 50% for mean throughputs (at a mean throughput around 14.3 Mbps) and 32% for cell-edge throughputs (around 2.6 Mbps).
Observation 2:	For Bursty Traffic,
· At 10% RU, we see a 65% improvement in UL overhead at a mean user experience of around 150 Mbps. At similar improvement in UL overhead, the edge user experience is around 80 Mbps. 
· At 40% RU, we observe a 40% improvement in UL overhead at a mean user experience of 88 Mbps. At an edge user experience of around 38 Mbps, the gain in UL overhead is 55%. 
· At 80% RU, we observe a 63% improvement in UL overhead at a mean user experience of around 45 Mbps, and an edge user experience of around 11 Mbps
Observation 3:	Quantization non-aware training (case-1) leads to noticeable performance degradation compared with quantization aware training (case-2).
Observation 4:	For quantization aware training, fixed or pre-configured quantization (case 2-1) is more sensitive to quantization’s parameters/configuration compared with trainable quantization (case 2-2). That is, quantization’s parameters/configuration in case 2-1 need to be carefully chosen to align with statistical distribution of latent vector (z), otherwise performance is degraded.
Observation 5:	Trainable quantization offers more flexibility and better performance compared to fixed quantization, e.g., trainable vector quantization can improve the performance.
Observation 6:	The performance of AI/ML-based CSI compression using two-sided model can vary considerably if there is a discrepancy between the training data and inference data due to device-side variations.
Observation 7:	Gradient-exchange based Type 3 training enables the training of encoders for new devices in a scalable and backward compatible manner without requiring updates of the NW-side models, and avoids data distribution mismatch issues.
Observation 8:	The SGCS achieved with a training dataset quantized using R16 Type II PC 8 is very close to the SGCS achieved using the ideal (floating point) training dataset for the rank 1 case with dense urban scenario.
Observation 9:	Model monitoring based on ground-truth provided by UE to the network requires large signalling overhead and may be sensitive to large latency.
Observation 10:	Model monitoring based on metrics derived by comparison between input samples at inference and training samples can have strong relationship with the inference accuracy. As a result, input-based monitoring appears promising.
Observation 11:	Model performance monitoring based on using a legacy CSI feedback scheme as a reference can detect model accuracy failure reliably and efficiently.
Observation 12:	Type 2 offline training of the UE-side model and NW-side model is feasible even if the ML model structure of the UE-side and NW-side models are not matched.
Observation 13:	Training UE encoder without quantization and generating the separate training based on this encoder may lead to some performance degradation compared to encoder training with quantization.
Observation 14:	UE-first type3 training with dataset or activation exchange can achieve the same performance of Type1 training.
Observation 15:	gNB-first type3 training with dataset exchange performs worse compared to type1 and type3 with activation/gradient exchange (type3-alt), since type3-alt training is based on end-to-end loss minimization in contrast to latent space loss minimization which is used in type3.
Observation 16:	Joint and sequential training (e.g., UE-first type3) training achieves similar SGCS performance for rank >1.
Observation 17:	It is feasible to use Type 2 offline training to train a common NW-side model together with separate UE-side models without any performance impact when compared to training a separate NW-side model for each UE-side model.
Observation 18:	Separate training with VQ for multiple vendors achieves almost the same performance as Type 1 training.
Observation 19:	Training on a dataset constructed by mixing the datasets of multiple scenarios enables the same ML model to perform well during inference in each of the scenarios.
Observation 20:	Training with mixed variable subband configurations achieve robust performance across all possible subband configurations including arbitrary number of subbands and arbitrary subband patterns.
Observation 21:	Training with mixed variable subband configurations outperforms specific training with specific subband configuration.
Observation 22:	Smaller number of subbands can achieve comparable results to the larger number of subbands with half of reporting payload.
Observation 23:	Training with mixed antenna configuration achieves robust performance across all antenna configurations in the training.
Observation 24:	Training with mixed antenna configuration outperforms specific training with specific antenna configuration.

We have the following proposals:
Proposal 1:	Quantization method should be considered a part of the UE-side model and dequantization method should be considered a part of the NW-side model. The quantization method should be aligned for good performance, but there is no need for separate specification support to align the quantization method.
Proposal 2:	For training data collection, specifying new/larger values of R16 Type II parameters to achieve higher resolution of the ground truth CSI needs clear justification.
Proposal 3:	Study specification impact of input-based model monitoring on the UE-side by comparing input samples at inference time to the training samples.
Proposal 4:	For model performance monitoring, specification change for reporting the target CSI with high resolution requires clear justification as it may incur additional overhead.
Proposal 5:	Study mechanisms to monitor the performance of the AI/ML model to detect whether the data observed during inference is outside the distribution of the dataset used to train the model.
Proposal 6:	For the evaluation of generalization of AI model to variable configurations, consider the following in data set generation:
· For subband generalization, generate N>=1 random patterns (either contiguous or non-contiguous) for each data sample in the training set. The full subband pattern can be used in addition.
· For antenna configuration generalization, mix data sample generated based on M antenna configuration with equal proportion.
· Same configuration in the testing set and training set
Proposal 7:	For the evaluation of the AI/ML based CSI compression sub use case, the CSI feedback overhead should be computed based on the rank indicated by the UE.
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