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[bookmark: _Toc127523420]Introduction

At RAN1 #109-e, the following were agreed:

Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.
Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.

Agreement
· UE rotation speed is reported by companies.
· Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.
Agreement
· For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
Conclusion
Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	· [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
· [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
· Other assumptions are not precluded.

Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded

Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation
· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.
Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded

Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
· Latency reduction:
· (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
· where M is the total number of beams
· Power consumption reduction: FFS on details
At RAN1 #111, more details on evaluation were agreed. And at RAN1 #110bis-e, besides others,  the following were agreed:


Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.


In this contribution, we discuss evaluation of AI based beam management.
[bookmark: _Toc127523421]Evaluation Methodology 
[bookmark: _Toc127523422]KPI
For beam management design, it seems with a few exceptions, the discussions in previous releases have not relied on simulation evaluations. Note due to the consideration of BM-case 2, the time span of the evaluation can be long, additionally with 80 MHz for channel bandwidth, the evaluation effort can be even larger. With the agreed evaluation assumptions, it should be clear that RSRP values should be a sufficient metric for discussion. It is not desirable to change the KPI in the middle of study, e.g., after a few meetings, to insist only system throughput results are accepted in the decision-making would be very unhelpful.

Usually L1-RSRP is a good metric to judge whether a selected beam is good or not. In Rel-17 intra-cell and inter-cell beam management, L1-RSRP distribution is agreed as a metric for beam management. For AI based beam management, the same metric can be used, where the L1-RSRP measured from the AI predicted beam can be used as the metric. In addition, for time and spatial domain beam prediction, another possible metric is the beam prediction accuracy, with which, it is possible to judge whether the model can be used for beam prediction or not.
Proposal 1: The KPI for AI based beam prediction could be the beam prediction accuracy and the L1-RSRP distribution for the AI predicted beam. The KPI with RSRP can be used for making decision/drawing conclusion in the whole Rel-18 study item.

[bookmark: _Toc127523423]Discussion on AI Model generalization
At RAN1 #111, the following was reached:The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side


Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
· Other scenarios/configurations(parameters and settings) are not precluded and can be reported by companies.


Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 



Agreement
For the sub use case BM-Case1 and BM-Case2, at least support Alt.1 and Alt.2 for AI/ML model training and inference for further study:
· Alt.1. AI/ML model training and inference at NW side
· Alt.2. AI/ML model training and inference at UE side
· The discussion on Alt.3 for BM-Case1 and BM-Case2 is dependent on the conclusion/agreement of Agenda item 9.2.1 of RAN1 and/or RAN2 on whether to support model transfer for UE-side AI/ML model or not
· Alt.3. AI/ML model training at NW side, AI/ML model inference at UE side

In previous meetings, there were discussions on how to evaluate training/inference alternatives agreed above. In our view, the generalized cases can be evaluated, but some of them can be particularly relevant to a training/inference alternative. 
With training/inference Alternative 1, as inference and training are both performed by the network, the network can ensure a properly chosen AI/ML model is used in the inference, hence evaluation with Generalization Performance Case 1 is indicative of its performance.
With training/inference Alternative 3, the training is conducted on the network side, and inference is conducted on the UE side. Subject to proper signaling to select a appropriate AI/ML model for inference, data mismatch between training and inference can be avoided. From that, evaluation with Generalization Performance Case 1 is indicative of Alt. 2’s performance. To reduce the frequency of model transfer and/or model switching, network may transfer an AI/ML model trained with mixed data to a UE. Note as the network is in full control of the AI/ML model used at the UE for Tx beam inference, it is network’s responsibility to ensure a proper AI/ML model is place for UE’s Tx beam inference. Hence while Generalization performance Case 3 can be considered as secondary solution for training/inference Alternative 3, and the network ensures the degradation with Case 3 is not much compared with that with Case 1.
There are several factors to consider for AI/ML model generalization:
· Analog beam design for narrow beams and wide beams
· Antenna configurations:
· In RAN1, notations with (M, N, P, Mg, Ng; Mp, Np) have been used to describe an antenna configuration: 
· M: Number of vertical antenna elements within a panel, on one polarization
· N: Number of horizontal antenna elements within a panel, on one polarization
· P: Number of polarizations
· Mg: Number of panels in a column;
· Ng: Number of panels in a row;
· Mp: Number of vertical TXRUs within a panel, on one polarization
· Np: Number of horizontal TXRUs within a panel, on one polarization
· Antenna element spacings:
· (dH, dV)=(0.5, 0.5)λ for example
· (dg,H,dg,V) = (4.0, 2.0)λ for example
· Antenna panel orientation
· Deployment scenarios:
· Umi, UMa, inH, etc.
· Carrier frequency:
· 30 GHz, 41 GHz, etc.
As discussed in [2][3], AI/ML models can be crafted as a universal parameter estimator or a cell-specific estimator targeting superior performance by embedding cell-specific information. 
Assume RSRP measurements from Set B provide points for interpolation/extrapolation for universal parameter estimator, it is plausible AI/ML inference model trained for one carrier frequency may be applicable to another. And the inference model trained with UMa data may be applicable to UMi. However, the generalization to different M/N may not be so obvious, and a key part is in the analog beam design for narrow beam and wide beams. As shown by the wide interest from companies on assistance information for BM-Case 1 and BM-Case 2, it is acknowledged that beam shape information can be quite relevant. The very term “beam shape information’ suggests the proponents may have a view the analog beam design can be described by well-defined beam shape and beam orientation. From our study, it seems with DFT beams assumed for the vertical domain and horizontal domain, the loading on each Tx beam may be not even, which was also observed by other companies, that may create the need to equalize the Tx beam loading, e.g., by combining lightly loaded Tx beams in practice. While by no means RAN1 should be tasked to consider all practical matters into consideration, factors of importance to the very foundation of the AI/ML enabled BM should not be ignored. From open literature, it can be seen also the analog beam design itself may utilize AI/ML, whether the resulted analog beams are still amenable to simple description is not clear. Further discussion among companies can help clarify the suitability of such assumptions.
We have 
Proposal 2: For AI model generalization, generalization performance regarding analog beam design including Set A design, antenna configurations including M/N, antenna spacing and deployment scenario should be considered.
At RAN1 #110bis-e, there were discussions on assistance information under the “others” agenda item for AI beam management. Companies provided their views, which are captured below in Table 1. It can be seen for inference at the UE side (UE-side model), acquiring NW-side beam shape information may be problematic, as infra vendors almost unanimously don’t support that. As to be discussed in the evaluation section, actually NW-side beam shape information is critical if a generic model is to be used. We also show AI models crafted for specific scenario/deployment in general work well without explicit beam shape information. 
We have 
Observation 1: If explicit Tx beam shape information for different datasets is not available to model trainer, it may be difficult to design AI model to generalize well over different scenarios/configurations. However, acquiring explicit Tx beam shape information at the UE side may be difficult due to concerns on disclosing proprietary information. 
Table 1 Company views on assistance information (Section 3.5, R1-2210764, RAN1 #110bis-e)
	Specific assistance information for NW-side model

	Assistance information
	Support
	Not support

	UE location
	Sony, MediaTek
	HW/HiSI, Apple

	UE moving direction
	Sony
	HW/HiSi

	Expected Rx beam ID/angle, 
	vivo
	

	Beam pair ID
	vivo, CMCC, MediaTek
	

	Rx beam angle
	Vivo, NEC
	Apple

	Rx beam ID 
	Xiaomi, vivo, NEC, Fujitsu, CATT, DCM, CMCC
	Qualcomm, Apple

	Maximum number of Rx beams 
	Samsung
	Apple, Qualcomm

	Specific assistance information for UE-side model 

	Assistance information
	Support
	Not support

	NW-side beam shape information (3dB beamwidth, beam boresight directions, beam shape, Tx beam angle, etc.)
	Qualcomm, Panasonic, IDCC, vivo, MTK, LGE, 
	Nokia, Ericsson, ZTE, Spreadtrum, HW/HiSi, Samsung

	Expected Tx beam ID/angle
	vivo
	Samsung

	Beam pair ID
	vivo,CMCC, MediaTek
	

	Tx beam ID (and it can be indicated by RS ID implicitly)
	Xiaomi, NEC, Ericsson, Fujitsu, CATT,CMCC, Nokia, IDCC, MediaTek
	



From the agreement at RAN1 110:
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

There are 3 alternatives to study:
· Set-B-alt-1: Set B is fixed in both number of beams and the beam constellations (analog beam design)
· Set-B-alt-2: The number of beams in Set B is fixed, but the beam constellations can be changed with time.
· Set-B-alt-3: Both the number of beams and beam constellations in Set B can change.
In the study reported below, we focus on Set-B-alt-1, which should the most favorable choice for generalization performance.
[bookmark: _Toc127523424]Simulation results
[bookmark: _Toc127523425]Scenarios and configurations for generalization study
[bookmark: _Toc127523426]Analog beam design
To study different options in analog beam design at the network and their impact to AI/ML model generalization, we first collect channel responses between 64 antenna elements at the base station and 16 antenna elements at the UE. For each UE panel, the channel response is characterized by As UE Rx beam selection is a UE implementation choice, we mainly focus the discussion on Tx beam selection. 

We construct the wideband covariance matrix at , further the submatrices from two polarizations are summed, SVD is performed is over the resulted matrix, and the optimal RX beam is assumed to be found from the singular vector corresponding to the largest singular value. Such a practice is consistent with agreement reached in RAN1 #110bis-e as the number of Rx beams other than 4 and 8 can be used. With the identified Rx beam, then Rx beamforming is performed on the channel responses to result in an  tensor, where   

For each channel realization, then a procedure similar to Type II codebook’s W1 search is applied to the  tensor to find the best Tx beam from   beams with { }.  By aggregating all the best Tx beams across drops, we have found using 8 vertical beams is an overkill, as many of them are not loaded with any UEs. Due to that, we just keep only vertical beams with sizeable number of UEs. It is obvious what vertical beams should be kept will depend on factors like  cell size, base station height, down-tilt, etc.  For horizontal beams, we also reduce the number of beams from 16 to 8 to simplify the study. In the end, we use  Tx beams (set A) in our study.
We assume CSI-RS resources are used for the P2 procedure for AI enabled beam management. 
How Tx beam angles are mapped to CSI-RS resources are discussed in the sub-section “Set A design”. In the current study, Set B is assumed to be a subset of Set A, which is discussed in the sub-section “Set B design”.

In data generation, we drop on average 10 UEs per cell in a network with 21 cells, hence 210 UEs are obtained for each drop. With 500 drops with different random seeds, we collect data for around 100,000 UEs. 

To study the impact of antenna spacings to model generation, we generate two options in antenna element spacing, each with data for around 100,000 UEs:
· Option 1 is with 
· Option 2 is with 
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For different infra vendors, the analog beam design can be different, e.g., in the arrangement of CSI-RS resources. And also, for macro cells and pico cells in the same market, even gNBs are from the same infra vendors, the analog beam design can be different, e.g., for different antenna modules.  For set A design, we consider two options in arranging CSI-RS resources according to the vertical beam angle/horizontal bema angles. In the first option, CSI-RS resources are arranged in a column first fashion as shown below.

Figure 2 Column first arrangement of CSI-RS resources
[image: Table
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Figure 3 Row first arrangement of CSI-RS resources
[image: ]
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With a given Set A, Set B beams are chosen to sample Set A uniformly. With 16 beams in Set A, we consider two options in Set B design as shown below. The second option can be treated as a column-wise cyclically shifted version of the first option.

Figure 4 Options for Set B with 16 beams
[image: Graphical user interface, application, bar chart

Description automatically generated with medium confidence]

With 8beams in Set A, we consider four options in Set B design as shown below. The second/third/fourth option can be treated as a column-wise cyclically shifted version of the first option.  



Figure 5, Options for Set B with 8 beams
[image: Chart
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With 4 beams in Set A, we consider four options in Set B design as shown below. The second/third/fourth option can be treated as a column-wise cyclically shifted version of the first option.  

Figure 6, Options for Set B with 4 beams
[image: A picture containing graphical user interface
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As explained above, while we have generated data with  Tx beams, for the results reported here Set A is limited to 32 Tx beams as shown below. Further we assume set B is a subset of set A, and 3 set B sizes are investigated. If the MIMO channel between network and UE is known, then finding the optimal Tx beam and Rx beam is easy. Of course, a brute-force method to recover the MIMO channel would need too many observations (beam measurements), we are interested to see with the universal approximation theorem whether we can recover key information in the MIMO channel (e.g., the domain beam direction), thus we experiment with 4 beams for set B.
In total, 3 examples are as shown below:
· 16 fixed beams in set B
· 8 fixed beams in set B
· 4 fixed beams in set B

[image: Table
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Figure 1 Set A and Set B composition

[bookmark: _Toc127523430]Training datasets and test datasets
From discussion above, factors included in dataset construction include
· Set A design (Column first vs Row first)
· Set B design (Column shift = 0 and 1 for Set A at 16 beams, and Column shift = 0, 1, 2 and 3 for Set A at 4/8 beams)
· Antenna element spacing (() vs ()


Then for the case with 16 beams in set B, 8 datasets are constructed as shown below, for the case with 8 beams in Set B, 16 datasets are constructed, for the case with 4 beams in Set B, 16 datasets are constructed.
Table 7 Datasets with 16 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-16-1a
	Column First
	Column shift = 0
	

	Dataset-16-1b
	Column First
	Column shift = 1
	

	Dataset-16-1c
	Column First
	Column shift = 0
	

	Dataset-16-1d
	Column First
	Column shift = 1
	

	Dataset-16-2a
	Row First
	Column shift = 0
	

	Dataset-16-2b
	Row First
	Column shift = 1
	

	Dataset-16-2c
	Row First
	Column shift = 0
	

	Dataset-16-2d
	Row First
	Column shift = 1
	



Table 8 Datasets with 8 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-8-1a
	Column First
	Column shift = 0
	

	Dataset-8-1b
	Column First
	Column shift = 1
	

	Dataset-8-1c
	Column First
	Column shift = 0
	

	Dataset-8-1d
	Column First
	Column shift = 1
	

	Dataset-8-1e
	Column First
	Column shift = 2
	

	Dataset-8-1f
	Column First
	Column shift = 3
	

	Dataset-8-1g
	Column First
	Column shift = 2
	

	Dataset-8-1h
	Column First
	Column shift = 3
	

	Dataset-8-2a
	Row First
	Column shift = 0
	

	Dataset-8-2b
	Row First
	Column shift = 1
	

	Dataset-8-2c
	Row First
	Column shift = 0
	

	Dataset-8-2d
	Row First
	Column shift = 1
	

	Dataset-8-2e
	Row First
	Column shift = 2
	

	Dataset-8-2f
	Row First
	Column shift = 3
	

	Dataset-8-2g
	Row First
	Column shift = 2
	

	Dataset-8-2h
	Row First
	Column shift = 3
	



Table 9, Datasets with 4 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-4-1a
	Column First
	Column shift = 0
	

	Dataset-4-1b
	Column First
	Column shift = 1
	

	Dataset-4-1c
	Column First
	Column shift = 0
	

	Dataset-4-1d
	Column First
	Column shift = 1
	

	Dataset-4-1e
	Column First
	Column shift = 2
	

	Dataset-4-1f
	Column First
	Column shift = 3
	

	Dataset-4-1g
	Column First
	Column shift = 2
	

	Dataset-4-1h
	Column First
	Column shift = 3
	

	Dataset-4-2a
	Row First
	Column shift = 0
	

	Dataset-4-2b
	Row First
	Column shift = 1
	

	Dataset-4-2c
	Row First
	Column shift = 0
	

	Dataset-4-2d
	Row First
	Column shift = 1
	

	Dataset-4-2e
	Row First
	Column shift = 2
	

	Dataset-4-2f
	Row First
	Column shift = 3
	

	Dataset-4-2g
	Row First
	Column shift = 2
	

	Dataset-4-2h
	Row First
	Column shift = 3
	






With the working assumption reached at RAN1 #110bis-e, three cases were agreed in the evaluation of generalization performance:

[bookmark: _Toc127523431]Training dataset composition
· Generalization Performance Case-1 (GP-Case-1): 
· 8 AI models for Set B at 16 beams are trained for each dataset listed in Table xxx in our study. Each AI model is tested with portion of data in each dataset the AI model is trained for. And there are 8 test results.
· For example, an AI model is trained with Dataset-16-1a, and the trained AI model is tested with portion of data from Dataset-16-1a.
· Training with Dataset-16-1a  test with Dataset-16-1a
· …
· Training with Dataset-16-1d  test with Dataset-16-1d
· 16 AI models for Set B at 8 beams are trained for each dataset listed in Table xxx in our study. Each AI model is tested with portion of data in each dataset the AI model is trained for. And there are 16 test results.
· Training with Dataset-8-1a  test with Dataset-8-1a
· …
· Training with Dataset-8-2h  test with Dataset-8-2h
· 
· 16 AI models for Set B at 4 beams are trained for each dataset listed in Table xxx in our study. Each AI model is tested with portion of data in each dataset the AI model is trained for. And there are 16 test results.
· Training with Dataset-4-1a  test with Dataset-4-1a
· …
· Training with Dataset-4-2h  test with Dataset-4-2h

· Generalization Performance Case-2 (GP-Case-2):
· 8 AI models for Set B at 16 beams are trained for each dataset listed in Table xxx in our study. Each AI model is tested with portion of data in each dataset the AI model is not trained with. And there are  test results.
· For example, an AI model is trained with Dataset-16-1a, and the trained AI model is tested with portion of data from Dataset-16-2d.
· Training with Dataset-16-1a  test with Dataset-16-1b
· …
· Training with Dataset-16-1a  test with Dataset-16-1d
· …
· 
· 16 AI models for Set B at 8 beams are trained for each dataset listed in Table xxx in our study. Each AI model is tested with portion of data in each dataset the AI model is not trained with. And there are  test results.
· 16 AI models for Set B at 4 beams are trained for each dataset listed in Table xxx in our study. Each AI model is tested with portion of data in each dataset the AI model is not trained with. And there are  test results.
· Generalization Performance Case-3 (GP-Case-3): we consider 3 ways to combine datasets:  
· Dataset Combination 1: 
· All datasets for a given Set B number are included in the combination, i.e. different Set A designs, different Set B designs and different antenna element spacings are covered.
· For Set B at 16 beams, 8 datasets are combined to train a single AI model, which is tested on each of the 8 datasets:
· Training with all datasets with 16 set B beams  test with dataset-16-1a
· …
· Training with all datasets with 16 set B beams  test with dataset-16-2d
· For Set B at 8 beams, 16 datasets are combined to train a single AI model, which is tested on each of the 16 datasets:
· Training with all datasets with 8 set B beams  test with dataset-8-1a
· …
· Training with all datasets with 8 set B beams  test with dataset-8-2h
· 
· For Set B at 4 beams, 16datasets are combined to train a single AI model, which is tested on each of the 16 datasets. 
· Training with all datasets with 4 set B beams  test with dataset-4-1a
· …
· Training with all datasets with 4 set B beams  test with dataset-4-2h
· 
· 
· Dataset Combination 2: 
· All datasets with the same Set B design at (column shift = 0) are included in the combination, i.e. different Set A designs (rowFirst and ColumnFirst),   and different antenna element spacings  with Set B design at (Column shift =0) are covered.
· For Set B at 16 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Training dataset = {Dataset-16-1a, Dataset-16-1c , Dataset-16-2a, Dataset-16-2c} 
·  test dataset from Dataset-16-1a, Dataset-16-1c , Dataset-16-2a, Dataset-16-2c.
· For Set B at 8 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Training dataset = {Dataset-8-1a, Dataset-8-1c , Dataset-8-2a, Dataset-8-2c} 
·  test dataset from Dataset-8-1a, Dataset-8-1c , Dataset-8-2a, Dataset-8-2c.
· 
· For Set B at 4 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Training dataset = {Dataset-4-1a, Dataset-4-1c , Dataset-4-2a, Dataset-4-2c} 
·  test dataset from Dataset-4-1a, Dataset-4-1c , Dataset-4-2a, Dataset-4-2c.

· Dataet Combination 3: 
· All datasets with the same Set A design (rowFirst or ColumnFirst) are included in the combination, i.e different antenna element spacings, different Set B designs are covered.
· For Set B at 16 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Experiment 1:
· Training dataset = {Dataset-16-1a, Dataset-16-1b, Dataset-16-1c, Dataset-16-1d}
· Test dataset from Dataset-16-1a, Dataset-16-1b, Dataset-16-1c, Dataset-16-1d.
· Experiment 2:
· Training dataset = { Dataset-16-2a, Dataset-16-2b, Dataset-16-2c, Dataset-16-2d}
· Test dataset from Dataset-16-2a, Dataset-16-2b, Dataset-16-2c, Dataset-16-2d.
· 
· For Set B at 8 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Experiment 1:
· Training dataset {Dataset-8-1a, …, Dataset-8-1h}
· Test dataset from Dataset-8-1a, …, Dataset-8-1h.
· Experiment 2:
· Training dataset {Dataset-8-2a, …, Dataset-8-2h}
· Test dataset from Dataset-8-2a, …, Dataset-8-2h.
· 
· For Set B at 4 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Experiment 1:
· Training dataset {Dataset-4-1a, …, Dataset-4-1h}
· Test dataset from Dataset-4-1a, …, Dataset-4-1h.
· Experiment 2:
· Training dataset {Dataset-4-2a, …, Dataset-8-2h}
· Test dataset from Dataset-4-2a, …, Dataset-4-2h.


For fine tuning, our view is while it may bring benefits such as adopting an AI model to a particular scenario/configuration, its feasibility should be investigated. With generic compute platforms such as those with GPUs, fine-tuning may be readily supported. For AI model deployed on the UE side, the hardware/firmware to implement an AI model can be highly optimized with little capacity for extra-work not directly required for inference. With that, whether backwards propagation as required in fine-tuning is supported or not is a question. Thus we need to be careful with the feasibility of Case 2A.

We have 

Observation 2: the feasibility to support fine-tuning of a deployed AI model on the UE side needs study.

[bookmark: _Toc127523432]Model description
We use four dense layers and one dropout layer, softmax activation is used for the last dense layer (output layer). For the input layer, As for AI model input, each sample is , where  is the set B size. For each beam in set B, the RSRP (dBm) is explicitly entered, and beam index is implicitly entered. Depending the number of beams in set B, there can be 4 inputs, 8 inputs or 16 inputs. 

With 4 inputs (set B with 4 beams), the complexity is given by 
Total params: 49,888
Trainable params: 49,888
Non-trainable params: 0

With 8 inputs (set B with 8 beams), the complexity is given by 
Total params: 50,144
Trainable params: 50,144
Non-trainable params: 0

With 16 inputs (set B with 16 beams), the complexity is given by 
Total params: 50,656
Trainable params: 50,656
Non-trainable params: 0
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For spatial domain beam prediction with measurement for limited number of beams, a classification network is used with fully connected layers. The input is the normalized L1-RSRP for set B beams.
As shown in Figure 2, UE does not need to measure the all the beams, but it only needs to measure a subset of beams at the initial stage and with the help of machine learning, a new beam search space (BSS) can be identified for next step measurement. The final beam selection can be performance based on the measurement result from the BSS.
Tables below provide the results for beam prediction accuracy. The simulation is based data set generation procedure as given above. All the data are generated from a system level simulator. Regarding Rx beam, the optimal Rx beam is used.  65% of the data is used for training and 10% for validation and 15% for test. The machine learning is based on multiple fully connected layers. It can be observed that it is possible to use AI to predict the Tx beams to reduce the beam management overhead. The simulation assumptions compliant with the agreements from RAN1 109-e/110 are captured in the Appendix section. 
For comparison, in the conventional approach, measurements from set B are used to identify the strongest set B beam, then 3 neighbors of the strongest set B beam are measured additionally, and it is checked whether the optimal set A beam is one of them. When number of the BSS is 1, then the optimal set A beam is checked against the strongest set B beam only.

We report top-1, top-2, top-3, top-4 beam prediction accuracy in the evaluation.  We also report top-1 1 dB margin accuracy as it reveals how well AI based BM performs compared with the conventional BM method. 
For each evaluation, a limited samples are included below. Please refer to the attached excel file for the full reported evaluations.

In each table below (which may be truncated due to space limit) and all tables reported in the excel file, 

For each evaluation, the training data set composition is captured. 

For Generalization performance case 1(GP Case 1), the training data set and the test data set are the same. For each test, the test dataset is marked. 

For generalization performance case 2(GP Case 2), the training data set and the test data set are different (c.f. the section on training dataset composition in this contribution). However, we also include the evaluation results in generalization former case 1 in the same table to allow review on GP-Case 1 and G-Case 2 side by side. 

For Generalization performance case 3 (GP Case 3), a mixture of datasets is used for AI model training, and inference is performed on each component dataset. 
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In general, for GP-Case-1, AI enabled BM outperforms the conventional approach. Just a few examples are   provided below. For full evaluation results, please refer to the attached excel file.
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	Training data set composition: {Dataset-4-1a}

	
	
	

	Test dataset
	Dataset-4-1a
	Dataset-4-1a

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.687
	0.209

	top-2 beam accuracy
	0.855
	0.308

	top-3 beam accuracy
	0.915
	0.403

	top-4 beam accuracy
	0.949
	0.549

	top-1 1 dB margin accuracy
	0.793
	0.303

	
	
	

	
	
	

	Training data set composition: {Dataset-4-1b}

	
	
	

	Test dataset
	Dataset-4-1b
	Dataset-4-1b

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.680
	0.201

	top-2 beam accuracy
	0.848
	0.305

	top-3 beam accuracy
	0.912
	0.416

	top-4 beam accuracy
	0.948
	0.581

	top-1 1 dB margin accuracy
	0.786
	0.288
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	Training data set composition: {Dataset-8-1a}

	
	
	

	Test dataset
	Dataset-8-1a
	Dataset-8-1a

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.814
	0.236

	top-2 beam accuracy
	0.953
	0.344

	top-3 beam accuracy
	0.983
	0.448

	top-4 beam accuracy
	0.993
	0.553

	top-1 1 dB margin accuracy
	0.891
	0.335

	
	
	

	
	
	

	Training data set composition: {Dataset-8-1b}

	
	
	

	Test dataset
	Dataset-8-1b
	Dataset-8-1b

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.808
	0.240

	top-2 beam accuracy
	0.953
	0.364

	top-3 beam accuracy
	0.984
	0.486

	top-4 beam accuracy
	0.993
	0.614

	top-1 1 dB margin accuracy
	0.884
	0.337
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	Training data set composition: {Dataset-16-1a}

	
	
	

	Test dataset
	Dataset-16-1a
	Dataset-16-1a

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.931
	0.397

	top-2 beam accuracy
	0.991
	0.455

	top-3 beam accuracy
	0.998
	0.521

	top-4 beam accuracy
	0.999
	0.726

	top-1 1 dB margin accuracy
	0.990
	0.534

	
	
	

	
	
	

	Training data set composition: {Dataset-16-1b}

	
	
	

	Test dataset
	Dataset-16-1b
	Dataset-16-1b

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.929
	0.378

	top-2 beam accuracy
	0.990
	0.440

	top-3 beam accuracy
	0.996
	0.503

	top-4 beam accuracy
	0.999
	0.717

	top-1 1 dB margin accuracy
	0.988
	0.508
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Table 5 Summary of GP Case 1

	GP Case 1
	
	
	
	
	
	

	
	
	
	
	
	
	

	 
	 setB with 4 beams
	 setB with 8 beams
	 setB with 16 beams

	Prediction method
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	top-1 beam accuracy
	63.3% ~ 68.7%,  mean=66.0%
	11.5% ~ 20.9%,  mean=16.8%
	80.5% ~ 83.4%,  mean=82.2%
	18.6% ~ 24.2%,  mean=22.7%
	92.3% ~ 93.1%,  mean=92.8%
	36.0% ~ 39.7%,  mean=37.6%

	top-2 beam accuracy
	81.2% ~ 85.5%,  mean=83.5%
	17.3% ~ 31.2%,  mean=24.6%
	95.0% ~ 95.9%,  mean=95.4%
	28.1% ~ 36.4%,  mean=32.8%
	98.8% ~ 99.2%,  mean=99.0%
	40.7% ~ 45.5%,  mean=43.3%

	top-3 beam accuracy
	88.8% ~ 91.5%,  mean=90.4%
	22.3% ~ 42.0%,  mean=33.6%
	98.2% ~ 98.5%,  mean=98.3%
	36.7% ~ 48.6%,  mean=44.1%
	99.5% ~ 99.8%,  mean=99.7%
	46.8% ~ 52.1%,  mean=49.7%

	top-4 beam accuracy
	92.7% ~ 94.9%,  mean=94.0%
	37.9% ~ 58.1%,  mean=50.0%
	99.1% ~ 99.3%,  mean=99.3%
	49.8% ~ 61.4%,  mean=57.4%
	99.8% ~ 99.9%,  mean=99.9%
	71.7% ~ 74.3%,  mean=72.9%

	top-1 1 dB margin accuracy
	72.2% ~ 79.5%,  mean=75.9%
	16.2% ~ 30.3%,  mean=23.9%
	88.4% ~ 91.1%,  mean=89.8%
	24.7% ~ 34.1%,  mean=31.5%
	98.3% ~ 99.0%,  mean=98.6%
	46.8% ~ 54.3%,  mean=50.2%
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	Training data set composition: {Dataset-4-1a}
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-4-1a
	Dataset-4-1a
	Dataset-4-1b
	Dataset-4-1b
	Dataset-4-1c
	Dataset-4-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.687
	0.209
	0.134
	0.201
	0.218
	0.183

	top-2 beam accuracy
	0.855
	0.308
	0.257
	0.305
	0.357
	0.277

	top-3 beam accuracy
	0.915
	0.403
	0.347
	0.416
	0.444
	0.389

	top-4 beam accuracy
	0.949
	0.549
	0.438
	0.581
	0.522
	0.556

	top-1 1 dB margin accuracy
	0.793
	0.297
	0.207
GP-Case 1 


	0.283
	0.309
	0.266




	Training data set composition: {Dataset-4-2a}
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-4-1a
	Dataset-4-1a
	Dataset-4-1b
	Dataset-4-1b
	Dataset-4-1c
	Dataset-4-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.013
	0.209
	0.020
	0.201
	0.030
	0.183

	top-2 beam accuracy
	0.032
	0.308
	0.053
	0.305
	0.046
	0.277

	top-3 beam accuracy
	0.059
	0.403
	0.085
	0.416
	0.069
	0.389

	top-4 beam accuracy
	0.082
	0.549
	0.113
	0.581
	0.086
	0.556

	top-1 1 dB margin accuracy
	0.022
	0.297
	0.029
	0.283
	0.045
	0.266
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	Training data set composition: {Dataset-8-1a}
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-8-1a
	Dataset-8-1a
	Dataset-8-1b
	Dataset-8-1b
	Dataset-8-1c
	Dataset-8-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.814
	0.236
	0.212
	0.240
	0.076
	0.223

	top-2 beam accuracy
	0.953
	0.344
	0.469
	0.364
	0.258
	0.324

	top-3 beam accuracy
	0.983
	0.448
	0.633
	0.486
	0.371
	0.447

	top-4 beam accuracy
	0.993
	0.553
	0.737
	0.614
	0.517
	0.574

	top-1 1 dB margin accuracy
	0.891
	0.338
	0.269
GP-Case 1 


	0.341
	0.169
	0.326



	Training data set composition: {Dataset-8-2f}
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-8-1a
	Dataset-8-1a
	Dataset-8-1b
	Dataset-8-1b
	Dataset-8-1c
	Dataset-8-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.062
	0.236
	0.066
	0.240
	0.034
	0.223

	top-2 beam accuracy
	0.140
	0.344
	0.122
	0.364
	0.095
	0.324

	top-3 beam accuracy
	0.215
	0.448
	0.187
	0.486
	0.156
	0.447

	top-4 beam accuracy
	0.282
	0.553
	0.256
	0.614
	0.215
	0.574

	top-1 1 dB margin accuracy
	0.111
	0.338
	0.114
	0.341
	0.049
	0.326
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	Training data set composition: {Dataset-16-1a}
	
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-16-1a
	Dataset-16-1a
	Dataset-16-1b
	Dataset-16-1b
	Dataset-16-1c
	Dataset-16-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.931
	0.397
	0.135
	0.378
	0.769
	0.372

	top-2 beam accuracy
	0.991
	0.455
	0.481
	0.440
	0.932
	0.430

	top-3 beam accuracy
	0.998
	0.521
	0.607
	0.503
	0.967
	0.497

	top-4 beam accuracy
	0.999
	0.726
GP-Case 1 


	0.673
	0.717
	0.984
	0.743

	top-1 1 dB margin accuracy
	0.990
	0.543
	0.240
	0.517
	0.891
	0.491




	Training data set composition: {Dataset-16-2d}
	
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-16-1a
	Dataset-16-1a
	Dataset-16-1b
	Dataset-16-1b
	Dataset-16-1c
	Dataset-16-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.120
	0.397
	0.120
	0.378
	0.052
	0.372

	top-2 beam accuracy
	0.177
	0.455
	0.178
	0.440
	0.123
	0.430

	top-3 beam accuracy
	0.257
	0.521
	0.229
	0.503
	0.199
	0.497

	top-4 beam accuracy
	0.316
	0.726
	0.292
	0.717
	0.279
	0.743

	top-1 1 dB margin accuracy
	0.179
	0.543
	0.182
	0.517
	0.073
	0.491



[bookmark: _Toc127523443]Summary
With mismatch between the dataset for model training and test dataset for model inference, the AI model performance can degrade severely, and it can be even worse than the conventional method. Note with even 16 beams in set B, the top-1 beam accuracy for AI can be low, e.g., with a training dataset following the ColumnFirst setA design, and a test dataset following RowFirst setA design, the performance is poor (3.8% for top1 beam accuracy). While all the considered mismatching factors lead to poor beam prediction performance, in terms of severity it is observed 

Set A design {ColumnFirst vs RowFirst} > Set B design {Column Shift =0, 1, etc.} > antenna element spacing

However it does not mean the mismatching factor of antenna element spacing is not important: comparing GP Case 1 and Case 2 evaluation, with other factors being identical, the top-1 beam accuracy degrades from above 90% to around 75% just due to mismatched antenna element spacing. 

	GP Case 2
	
	
	
	
	
	

	
	
	
	
	
	
	

	 
	 setB with 4 beams
	 setB with 8 beams
	 setB with 16 beams

	Prediction method
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	top-1 beam accuracy
	0.2% ~ 48.9%,  mean=8.5%
	11.5% ~ 20.9%,  mean=16.8%
	1.2% ~ 67.9%,  mean=14.6%
	18.6% ~ 24.2%,  mean=22.7%
	3.8% ~ 76.9%,  mean=21.3%
	36.0% ~ 39.7%,  mean=37.6%

	top-2 beam accuracy
	0.6% ~ 69.6%,  mean=14.8%
	17.3% ~ 31.2%,  mean=24.6%
	4.9% ~ 87.6%,  mean=26.5%
	28.1% ~ 36.4%,  mean=32.8%
	9.0% ~ 93.2%,  mean=34.3%
	40.7% ~ 45.5%,  mean=43.3%

	top-3 beam accuracy
	1.2% ~ 80.6%,  mean=20.4%
	22.3% ~ 42.0%,  mean=33.6%
	8.9% ~ 93.3%,  mean=35.0%
	36.7% ~ 48.6%,  mean=44.1%
	14.3% ~ 96.8%,  mean=42.7%
	46.8% ~ 52.1%,  mean=49.7%

	top-4 beam accuracy
	1.8% ~ 87.4%,  mean=25.4%
	37.9% ~ 58.1%,  mean=50.0%
	11.4% ~ 96.3%,  mean=42.4%
	49.8% ~ 61.4%,  mean=57.4%
	18.7% ~ 98.4%,  mean=49.7%
	71.7% ~ 74.3%,  mean=72.9%

	top-1 1 dB margin accuracy
	0.4% ~ 64.3%,  mean=11.9%
	16.2% ~ 29.7%,  mean=23.8%
	1.8% ~ 80.9%,  mean=19.5%
	24.7% ~ 34.1%,  mean=31.6%
	5.8% ~ 90.0%,  mean=28.2%
	46.8% ~ 54.3%,  mean=50.5%




[bookmark: _Toc127523444]Results for Generalization Performance Case-3
[bookmark: _Toc127523445]Dataset combination 1
[bookmark: _Toc127523446]Set B with 4 beams
	Training data set composition:
 {Dataset-4-1a, Dataset-4-1b, Dataset-4-1c, Dataset-4-1d, Dataset-4-1e, Dataset-4-1f, Dataset-4-1g, Dataset-4-1h, Dataset-4-2a, Dataset-4-2b, Dataset-4-2c, Dataset-4-2d, Dataset-4-2e, Dataset-4-2f, Dataset-4-2g, Dataset-4-2h}

	
	
	
	
	
	
	

	Test dataset
	Dataset-4-1a
	Dataset-4-1a
	Dataset-4-1b
	Dataset-4-1b
	Dataset-4-1c
	Dataset-4-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.379
	0.209
	0.365
	0.201
	0.438
	0.183

	top-2 beam accuracy
	0.556
	0.308
	0.547
	0.305
	0.620
	0.277

	top-3 beam accuracy
	0.661
	0.403
	0.666
	0.416
	0.727
	0.389

	top-4 beam accuracy
	0.737
	0.549
	0.743
	0.581
	0.786
	0.556

	top-1 1 dB margin accuracy
	0.459
	0.298
	0.448
	0.284
	0.543
	0.266



[bookmark: _Toc127523447]Set B with 8 beams
	Training data set composition: {Dataset-8-1a, Dataset-8-1b, Dataset-8-1c, Dataset-8-1d, Dataset-8-1e, Dataset-8-1f, Dataset-8-1g, Dataset-8-1h, Dataset-8-2a, Dataset-8-2b, Dataset-8-2c, Dataset-8-2d, Dataset-8-2e, Dataset-8-2f, Dataset-8-2g, Dataset-8-2h}

	
	
	
	
	
	
	

	Test dataset
	Dataset-8-1a
	Dataset-8-1a
	Dataset-8-1b
	Dataset-8-1b
	Dataset-8-1c
	Dataset-8-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.698
	0.236
	0.705
	0.240
	0.707
	0.223

	top-2 beam accuracy
	0.861
	0.344
	0.879
	0.364
	0.860
	0.324

	top-3 beam accuracy
	0.917
	0.448
	0.930
	0.486
	0.912
	0.447

	top-4 beam accuracy
	0.947
	0.553
	0.955
	0.614
	0.941
	0.574

	top-1 1 dB margin accuracy
	0.784
	0.340
	0.788
	0.343
	0.795
	0.328



[bookmark: _Toc127523448]Set B with 16 beams
	Training data set composition: {Dataset-16-1a, Dataset-16-1b, Dataset-16-1c, Dataset-16-1d, Dataset-16-2a, Dataset-16-2b, Dataset-16-2c, Dataset-16-2d}

	
	
	
	
	
	
	

	Test dataset
	Dataset-16-1a
	Dataset-16-1a
	Dataset-16-1b
	Dataset-16-1b
	Dataset-16-1c
	Dataset-16-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.912
	0.397
	0.907
	0.378
	0.901
	0.372

	top-2 beam accuracy
	0.982
	0.455
	0.982
	0.440
	0.979
	0.430

	top-3 beam accuracy
	0.993
	0.521
	0.993
	0.503
	0.991
	0.497

	top-4 beam accuracy
	0.997
	0.726
	0.997
	0.717
	0.996
	0.743

	top-1 1 dB margin accuracy
	0.979
	0.543
	0.978
	0.518
	0.972
	0.491







[bookmark: _Toc127523449]Summary 

	GP Case 3 dataset combination 1
	
	
	
	
	

	
	
	
	
	
	
	

	 
	 setB with 4 beams
	 setB with 8 beams
	 setB with 16 beams

	Prediction method
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	top-1 beam accuracy
	19.5% ~ 46.5%,  mean=36.1%
	11.5% ~ 20.9%,  mean=16.8%
	65.6% ~ 73.6%,  mean=69.8%
	18.6% ~ 24.2%,  mean=22.7%
	90.0% ~ 91.2%,  mean=90.5%
	36.0% ~ 39.7%,  mean=37.6%

	top-2 beam accuracy
	41.8% ~ 65.4%,  mean=54.3%
	17.3% ~ 31.2%,  mean=24.6%
	83.7% ~ 88.0%,  mean=86.1%
	28.1% ~ 36.4%,  mean=32.8%
	97.8% ~ 98.2%,  mean=98.0%
	40.7% ~ 45.5%,  mean=43.3%

	top-3 beam accuracy
	55.3% ~ 75.1%,  mean=65.3%
	22.3% ~ 42.0%,  mean=33.6%
	90.1% ~ 93.2%,  mean=91.7%
	36.7% ~ 48.6%,  mean=44.1%
	99.0% ~ 99.3%,  mean=99.2%
	46.8% ~ 52.1%,  mean=49.7%

	top-4 beam accuracy
	63.4% ~ 80.7%,  mean=72.8%
	37.9% ~ 58.1%,  mean=50.0%
	93.4% ~ 95.8%,  mean=94.6%
	49.8% ~ 61.4%,  mean=57.4%
	99.6% ~ 99.7%,  mean=99.6%
	71.7% ~ 74.3%,  mean=72.9%

	top-1 1 dB margin accuracy
	24.4% ~ 57.5%,  mean=44.2%
	16.2% ~ 29.8%,  mean=23.8%
	73.7% ~ 81.7%,  mean=77.8%
	24.7% ~ 34.3%,  mean=31.6%
	96.8% ~ 97.9%,  mean=97.3%
	46.8% ~ 54.3%,  mean=50.5%

	
	
	
	
	
	
	

	
	
	
	
	
	
	



Table 7 Performance evaluation with GP Case-3.

Observation 3:
· For generalization performance Case -1, trained AI models perform well, provide better beam prediction accuracy than the conventional approach.
· For generalization performance Case -2, trained AI models can perform much worse than that for GP Case-1, they may lead to even worse beam prediction accuracy than the conventional approach.
· For generalization performance Case-3, trained AI models can perform worse than that for GP Case-1, even though are in general better than that for GP case-2. the AI performance with set B beam at 8 beams with GP Case-3 is roughly the same as the AI performance with set B at 4 beams with GP Case-1.
It should be noted that as there can be many design combinations which cannot be adequately captured in the model training (e.g., infra vendors are reluctant to share beam angle information, field networks optimization for specific cells), GP Case-2 is more likely to be encountered rather than GP Case-3. 
We have:
Proposal 3: As generalization performance can be poor for AI models trained without Tx beam shape information, study NW-trained cell-specific AI models for AI enabled beam management.
[bookmark: _Toc127523450]Conclusion
In this contribution, we provide our evaluation on AI model generalization performance for beam management. We have

Proposal 1: The KPI for AI based beam prediction could be the beam prediction accuracy and the L1-RSRP distribution for the AI predicted beam. The KPI with RSRP can be used for making decision/drawing conclusion in the whole Rel-18 study item.

Proposal 2: For AI model generalization, generalization performance regarding analog beam design including Set A design, antenna configurations including M/N, and antenna spacing and deployment scenario should be considered.

Observation 1: If explicit Tx beam shape information for different datasets is not available to model trainer, it may be difficult to design AI model to generalize well over different scenarios/configurations. However, acquiring explicit Tx beam shape information at the UE side may be difficult due to concerns on disclosing proprietary information. 

Observation 2: the feasibility to support fine-tuning of a deployed AI model on the UE side needs study.

Observation 3:
· For generalization performance Case -1, trained AI models perform well, provide better beam prediction accuracy than the conventional approach.
· For generalization performance Case -2, trained AI models can perform much worse than that for GP Case-1, they may lead to even worse beam prediction accuracy than the conventional approach.
· For generalization performance Case-3, trained AI models can perform much worse than that for GP Case-1, even though are in general better than that for GP case-2. the AI performance with set B beam at 8 beams with GP Case-3 is roughly the same as the AI performance with set B at 4 beams with GP Case-1.


Proposal 3: As generalization performance can be poor for AI models trained without Tx beam shape information, consider NW-trained cell-specific AI models for AI enabled beam management.
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[bookmark: _Toc127523452]Appendix – Simulation assumption
Table A-1: Simulation Assumptions 
	Parameter
	Value

	Scenario
	Dense Urban Macro

	Number of cells
	7

	Number of sectors per cell
	3

	Number of UEs
	200,000

	Carrier frequency
	FR2: 30 GHz

	Subcarrier spacing
	FR2: 120kHz

	Bandwidth
	FR2: 80MHz

	gNB antenna configuration
	FR2: (M, N, P, Mp, Np, Mg, Ng) = (4, 8, 2, 1, 1, 1, 1)

	UE antenna configuration
	FR2: (M, N, P, Mp, Np, Mg, Ng) = (1, 4, 2, 1, 1, 1, 2)

	UE distribution
	Uniformly distributed

	UE orientation
	Random

	Slow fading model
	38.901

	Fast fading model
	38.901 with spatial consistency

	Tx beam pattern
	4 by 16 (vertical by horizontal)




image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image1.emf
d1UE


Microsoft_Visio_Drawing1.vsdx
d1
UE



