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Introduction
In the last four meetings, RAN1#109-e, RAN1#110, RAN1#110-bis-e and RAN1#111, there were many productive discussions on evaluation methodology and KPIs for AI/ML for beam management [1], [2], [3], [4], and, accordingly, some agreements have been made. Before proceeding further, we hereby recollect the agreements/working assumptions/conclusions made during RAN1#111. The agreements made during RAN1#109-e and RAN1#110 meetings can be found in [1], [2] and [3], respectively; Further, the agreements from those meetings are referred/stated in this document at relevant places. 
Agreements/conclusions made in RAN1#111 are as follows [4]:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side
Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
Other scenarios/configurations(parameters and settings) are not precluded and can be reported by companies.

Agreement
· For the evaluation of the overhead for BM-Case1, adoption the following metrics:
· RS overhead reduction, 
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Companies report the assumption on additional measurements

Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 

Agreement
For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, additionally considering
· Various Set B of beam(pairs)

Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.

Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.



In this document, we further discuss our views on some of the aspects of AI/ML for beam management. 
Generalizability of the AI/ML Model for Beam Management
Generalizability of an AI/ML model is a measure of its ability to adapt to new, previously unseen statistical variations of the data such that the model produces desired output by faithfully capturing the variations in the mapping between input data and the desired output of the model that results due to changes in the statistical characteristics of the input data. Such an ability of generalization is required for the AI/ML models being developed for wireless cellular networks, as the wireless environment and the cellular network conditions are dynamic in nature.  The AI/ML models proposed for the use case of beam management should be studied thoroughly with respect to their generalization ability. 
In general, evaluating the performance of an AI/ML model under possible changes in the statistical properties of the input data and different possible mappings between input data and the desired output, can help assess the generalizability of the model. Thus, evaluating generalization should be across multiple different scenarios/configurations. In the last meeting, two agreements have been made with regard to generalizability. Kindly refer to the first two agreements, stated in Section 1. 
Deciding the list of scenarios/configurations that are to be considered for evaluating the generalizability of an AI/ML model is the first step/phase in determining whether an AI/ML model generalizable. An agreement has been in the last meeting on such a list of scenarios/configurations that are to be considered.  
The second step/phase is to decide on what should be the precise procedure for evaluating whether a given AI/ML model is generalizable or not. The subsequent proposals, proposals 1 and the related discussion present our views on this aspect.   
Generalizability can be evaluated by computing all the KPIs for a proposed beam management AI/ML model under different network conditions/scenarios/parameter values that are finalized to be considered for generalizability of beam management.  In such an evaluation, we must consider the achieved gains (e.g., beam prediction accuracy, overhead reduction, latency reduction) as well as the incurred costs (e.g., the computational complexity, cost of any additional hardware needed, additional signaling overhead due to assistance information etc.) of the proposed AI/ML model.  
Generalizability of a proposed AI/ML model for beam management is evaluated by computing the agreed KPIs, inclusive of the gains achieved and the costs incurred, by the model for each of the different network conditions/scenarios/parameter values. 
Once we evaluate and tabulate all the gains and the costs of the proposed AI/ML model under each of the different network conditions/scenarios/parameter values, the question would be, how can we say whether the AI/ML model under consideration is generalizable or not based on the values of these gains and costs? 
For illustrative purposes, consider an AI/ML model and assume we evaluate its performance in two network scenarios (or, network settings, network conditions) A and B, for knowing whether it is generalizable or not. Assume that, for A and B, its gains are  (compared to the agreed baseline), respectively, and its costs are  (compared to the baseline), respectively. Note that, here we consider only two scenarios and only one kind of gain (e.g., beam prediction accuracy), and one cost (e.g., computational complexity) as an example for the purpose of illustration. In practice, we will have to consider multiple scenarios, all kinds of gains and all incurred costs.     
In the ideal case of a truly generalizable, or a universal, AI/ML model,  and . However, in practice,  and  would be different and same would be the case with  and . Based on the values of , ,  and , how to determine whether the given AI/ML model is generalizable across both the settings considered? We need to devise a method to declare whether the AI/ML model can generalize across the considered scenarios. We propose that, such a decision should be based on  and , where  denotes the absolute value of . 
For the example being considered, one way of deciding the generalizability could be as follows: 
· If   and  then the model can be declared generalizable across scenarios A and B, and it is considered as not having the ability to generalize across A and B, if   or . 
Here,  and  are the thresholds chosen for the difference in the gains and difference in the costs, respectively. Note that the value of need not be same as that of . 
The above approach results in a binary decision on whether the model is generalizable or not. A more graded approach, where we categorize generalization capability of an AI/ML model into multiple classes, might prove to be more useful in some situations. For example, the generalization ability of an AI/ML model can be considered as High/Strong/Superior, Moderate or Low/Weak/Inferior by appropriately selecting three threshold values  for the gain where , and three threshold values  for the cost where , and by employing the following decision rule:
· If   and , the generalization ability of the model is High/Strong/Superior
· If    and , the generalization ability of the model is Moderate
· If   and , the generalization ability of the model is Low/Weak/Inferior
Note that we may consider only the gains while quantifying the generalizability. Such a method would be simple to compute and might be relevant in situations where the AI/ML models that are being considered are expected to have costs that do not change considerably across the different scenarios being considered. 
[bookmark: _Hlk118104679]The above stated approaches can be extended for a more realistic situation where we have a greater number of gains and costs which are computed by evaluating the AI/ML model across many network scenarios/settings (rather than in just two scenarios as in the previous example). 
Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of the gains achieved, and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods for further study. 
[bookmark: _Hlk100228640]KPIs 
In previous meetings, there were meaningful discussions resulting in agreements related to some of the key KPIs. In the following, we present our views on two performance metrics that need to be considered for including them into the list of KPIs for AI/ML based beam management. 
Reporting Overhead

To account for the other kind of overhead, which is the reporting overhead, it is required to account for the number of UCI reports and the size of each UCI report (in bits). These quantities (i.e., the no. of UCI reports and the size of such reports) need to be compared with the case of exhaustive search for arriving at a meaningful measure of the amount of reporting overhead reduction offered by the AI/ML model under consideration.   

Any other signals that need to be exchanged between UE and gNB to support the AI/ML model, such as signaling in another carrier (e.g., FR1), UE location information, spatial features of the environment etc., should also be considered accounted for.

Consider the number of UCI reports and the size of each UCI report (in bits) as a measure of the reporting overhead. The reporting overhead need to be included into the KPIs.  
Latency
Time taken for beam search, or, the latency, should be considered as one of the key KPIs as any simple scheme would also be able to find the optimal beam if given enough time for beam search. Latency, or latency reduction should quantify, 
· How much time it takes for the unconnected/initial access users to find the best beam pair 
· How much time it takes to switch beams for the connected users when the existing beam pair becomes sub-optimal due to changing channel conditions
Taking the exhaustive search as the baseline, the reduction in the latency can be defined as follows: 

where N is the number of beams in set of beams required for measurement with AI/ML inference, e.g., number of beams in measurement beam set B, and M is the total number of beams required for measurement without AI/ML inference, e.g., number of beams in prediction beam set A.
In our opinion, the above three KPIs should be considered as the key KPIs in evaluating any AI/ML method for beam management. Further, we are open to consider other KPIs as well, as per the need. 
Consider Latency Reduction as a key KPI in evaluating an AI/ML model for beam management and consider adopting the definition proposed above.
[bookmark: _Toc100923943]Baseline Performance for Spatial Beam Prediction
When we obtain the performance of AI/ML models for spatial beam prediction, it needs to be compared against a baseline. The following agreement was made during the RAN1#109-e meeting.
Agreement (from RAN1#109-e)
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.

Deciding the baseline remains an open issue, and we hereby provide our views and look forward for an active discussion in this meeting. 
While evaluating an AI/ML method for beam management, a natural choice of the baseline should be the exhaustive search where all the possible beams in the set are measured, and the best beam is selected. As the performance of exhaustive search can be computed under all possible scenarios/configurations (e.g., different beam patterns, channel conditions, UE speeds etc.) and it is a straightforward exercise without requiring any more clarifications/definitions (such as defining the measurement set B) we recommend adopting exhaustive search as the baseline for spatial beam prediction.     
Adopt “Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)" as the baseline for spatial beam prediction.  
Evaluation Results
Simulation results summary
[bookmark: _Hlk127534340]We provide a table to collect our evaluation conditions and results for AI on beam management as listed Table 1, focuses on BM-Case1, i.e., AI/ML for spatial beam prediction. The detailed simulation assumption and extensive performance result details can be found in the Section 5.2 and section 5.3.


[bookmark: _Ref126746802]Table 1 Evaluation results without model generalization for Tx-Rx beam pair prediction
	Parameters
	Lenovo (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	128

	
	Number of beam pairs in Set B
	32

	
	Baseline scheme
	Best beam within Set A via exhaustive beam pair search (i.e., Option 1)

	AI/ML model
input/output
	Model input
	L1-RSRPs of all beam pairs in Set B 

	
	Model output
	Probabilities of beam pairs in Set A

	Data Size
	Training
	40,000 samples

	
	Testing
	10,000 samples

	AI/ML model
	Short model description
	5-layer DNN {32,128,256,256,128}

	
	Model complexity
	135,936 parameters

	
	Computational complexity
	135,168 MACs

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top1/1
	71.85%

	
	
	Top2/1
	91.58%

	
	
	Top4/1
	98.08%

	
	
	1dB margin
	92.25%

	
	
	2dB margin
	97.33%

	
	L1-RSRP Diff
	Average L1-RSRP diff
	0.24dB

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	RS overhead Reduction KPI:
1-N/M=1-32/128=75%

	
	
	UPT
	Baseline:  27.597Mbit/s
AI-based BM: 27.370Mbit/s


[bookmark: _Ref126839050][bookmark: _Ref127533418]Simulation Assumptions
In the section, we further describe simulation assumptions for spatial beam prediction evaluation.
Set B selection 
In our simulations, Set B is a subset of Set A with all beam pairs of a BS-UE link, which can be obtained through various patterns, either even-spaced or uneven-spaced pattern as 
· Set B with an even-spaced pattern is a subset selected from Set A at a regular interval, e.g., [0, 4, 8, …, 124]. 
· Set B with an uneven-spaced pattern is generated through selecting beam randomly from Set A. 
No matter which type of Set B pattern, it is fixed across training and inference in our simulations.
AI model structure
In the evaluation of AI for spatial beam prediction, we adopt Deep Neural Network (DNN) model with 5 layers {32, 128, 256, 256, 128}, and use L1-RSRP measurements of beam pairs in Set B as the input to the DNN model, with probabilities of all beam pairs in Set A as the output. The beam indices (including the Tx beam ID and the Rx beam ID) with K highest probabilities are selected as the Top-K beam pairs. 
Non-AI based BM approaches to be compared with AI-based spatial beam prediction
To better illustrate the performance of AI-based spatial beam prediction, we consider two typical non-AI based beam management approaches as below:
· Baseline (exhaustive beam sweeping): Select the best Tx-Rx beam pair within Set A based on all measurements of Set A. Obviously, this is the upper bound of spatial beam prediction performance.
· Non-AI BM: A UE randomly select a Rx beam for P2 and with the chosen UE Rx beam, best Tx beam is selected based on measurements of all gNB Tx beams. In P3, the gNB repeats the UE reported best Tx beam and UE sweeps all the RX beams to find the best RX beam. The selected Tx-Rx beam pair consists of the best Tx beam on P2 and the best Rx beam in P3.
Note that the RS resource overheads for above BM schemes are different: given Rx beams and  Tx beams, Baseline (exhaustive beam sweeping) scheme has largest RS resource overhead, i.e., , and achieves the upper bound of performance. Non-AI BM requires  RS resources to find the best Rx beam during P3 BM procedure, and it needs RS resources to find the best Tx beam during P2 BM procedure, making the resource overhead for BM using Non-AI BM equal to . 
System level simulation assumptions for data generation and performance evaluation
In our simulations, we consider Dense Urban scenario for data generation and performance evaluation. The detailed system level simulation assumptions are summarized in Table 2. 1000 UEs are dropped in each sector per site to generate beam measurement data for AI model training, while 10 UEs per sector are used for AI model inference evaluation. gNB Tx beam codebook consists of 16 horizontal beams and 2 vertical beams, and UE Rx beam codebook consists of 4 horizontal beams and 1 vertical beams. 
[bookmark: _Ref126769348]Table 2 System level simulation assumption for data generation and performance evaluation
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz, SCS: 120 kHz

	Deployment scenario 
	Dense Urban. 
200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	System BW
	80MHz

	BS Tx power
	40dBm

	UE distribution
	10 UEs per sector/cell for model inference evaluation.
1000 UEs per sector/cell for model training.
80% indoor UE and 20% outdoor UE.

	BS Antenna Configuration
	(M, N, P, Mg, Ng ; Mp Np) = (4, 8, 2, 1, 1; 2,2), (dV, dH) = (0.5, 0.5) λ 

	UE Antenna Configuration
	(M, N, P, Mg, Ng ;Mp Np)= (2,4,2,1,2; 1,1)

	Traffic Model
	Full buffer

	BF scheme 
	· gNB 32 Tx beamforming scheme: 
· 16 DFT beams in azimuth and 2 DFT beams in elevation  
· UE 4 Rx beamforming scheme: 
· 4 DFT beams in azimuth and 1 DFT beams in elevation


KPIs  
The KPIs related to spatial beam prediction performance used in this document includes:
Beam prediction accuracy:
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· X dB margin (%): the percentage of “L1-RSRP difference of top-1 predicted beam and top-1 genie-aided beam is less than X dB”
L1-RSRP difference: L1-RSRP difference of top-1 predicted beam and top-1 genie-aided beam
System performance KPIs: 
· UPT (User-perceived Throughput)
· RS overhead: the number of beam pairs (with reference signal (SSB and/or CSI-RS)) required for measurement.
· RS overhead reduction (%) = 1-N/M; RS overhead = N
· where N is the number of beam pairs (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beam pairs to be predicted 
[bookmark: _Ref126839056]Detailed performance results
In this section, we show performance results in detail with different conditions for spatial beam prediction. 
 Performance of beam prediction and L1-RSRP
In our simulations, we have determined beam prediction performance and L1-RSRP performance of AI-based BM approach for BM-Case1. 
Firstly, we consider performance with different Set B selection, including different Set B patterns and different sizes of Set B. The results are shown in Table 3 and Table 4.
[bookmark: _Ref126769364]Table 3 Performance of AI-based BM for spatial beam prediction with different Set B pattern
	Set B pattern with 32 of size
	Average L1-RSRP diff. (dB)
	Beam prediction accuracy

	
	
	Top1/1
	Top2/1
	Top4/1
	1dB margin
	2dB margin

	Even-spaced
	0.75
	51.74%
	81.44%
	95.29%
	76.50%
	88.82%

	Uneven-spaced
	0.24
	71.85%
	91.58%
	98.08%
	92.25%
	97.33%


[bookmark: _Ref126769368]Table 4 Performance of AI-based BM for spatial beam prediction with different size of Set B
	Size of Set B with un-even spaced pattern
	Average L1-RSRP diff (dB)
	Beam prediction accuracy

	
	
	Top1/1
	Top2/1
	Top4/1
	1dB margin
	2dB margin

	8
	2.07
	37.48%
	63.92%
	81.63%
	59.42%
	72.93%

	16
	1.08
	51.98%
	77.55%
	91.81%
	74.68%
	85.52%

	32
	0.24
	71.85%
	91.58%
	98.08%
	92.25%
	97.33%


The results of Table 3 show that AI-based BM with different Set B pattern have different performance that the uneven-spaced Set B pattern achieves better performance than even-spaced pattern. Based on the results of Table 4, it can be observed that beam prediction accuracy and L1-RSRP difference from AI-based BM for spatial beam prediction increases as the size of Set B, i.e., size of AI model input, increases. 
L1-RSRP of top-1 predicted beam of AI-based BM is very close to that of baseline with difference of 0.24dB. AI-based BM can achieve up to 98.08% beam prediction accuracy considering KPI of Top4/1 beam prediction accuracy. Up to 92.25% and 97.33% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. 
Observation 1: The beam prediction accuracy performance of AI-based BM is relevant with the Set B pattern selection.
Observation 2: L1-RSRP of top-1 predicted beam from AI-based BM is very close to baseline with difference of 0.24dB.
Observation 3: AI-based BM can achieve up to 98.08% Top4/1 beam prediction accuracy.
Observation 4: Up to 92.25% and 97.33% beam prediction accuracy can be obtained with 1dB margin and 2dB margin of top-1 predicted beam L1-RSRP difference.
[bookmark: _Hlk127459800][image: ]Further, Figure 1 shows the CDFs of L1-RSRP of predicted beam using different BM approaches using different BM approaches, which shows that the L1-RSRP performance of predicted beam of AI-based BM is better than that of non-AI based BM, and is very close to that of the baseline, i.e., upper bound of performance.[bookmark: _Ref127530978]Figure 1 Performance of L1-RSRP of predicted beam using different BM

Based on results shown in the figure above, we have the following observations:
Observation 5: AI-based BM is better than that of non-AI based BM and very close to that of the baseline.
System performance 
We’ve evaluated system performance of different BM approaches for spatial beam prediction. The evaluation results are summarized in Table 5, which includes observed throughput and overhead. 
[bookmark: _Ref126769269]Table 5 System performance of different BM schemes for spatial beam prediction
	BM approaches
	Throughput
	Overhead

	
	Average UPT (Mbit/s)
	Average UPT loss compared with baseline
	RS overhead
	RS overhead reduction

	Baseline (upper bound)
	27.597
	0.0%
	128
	0%

	Non-AI based BM
	27.138
	1.66%
	36
	71.88%

	AI-based BM
	27.370
	0.82%
	32
	75%


Based on the results presented in the table above, non-AI based BM achieves 71.88% RS overhead reduction compared to baseline with 1.66% UPT loss. AI-based BM can achieve 75% RS overhead reduction with 0.82% UPT loss. In other words, AI-based BM can achieve 0.85% average UPT gain compared to non-AI based BM with similar or same RS overhead.
Observation 6: AI-based BM can achieve 75% RS overhead reduction while system performance loss is marginal, i.e., 0.82% UPT loss. 
Generalization Performance 
According to the agreement made in the past RAN1 meeting, we’ve evaluated the spatial beam prediction performance of our AI model with different scenarios/configurations. In our simulations, we train an AI model for spatial beam prediction in a scenario/configuration, which is referred to as Training case. Then, we evaluate beam predication performance of the AI model in one or more different scenarios/configurations which are called Inference cases. The detailed description of these scenarios/configurations is as follows:
Training case: Under UMa deployment scenario with ISD of 200m, the AI model is trained with Set B of 32 beam pairs, i.e., 8Tx  4Rx, and Set A of 128 beam pairs, i.e., 32Tx  4Rx. 
Inference cases:
· Inference case1 (baseline): The scenario/configuration of this case is same as the Training case, and is used as a baseline. The detailed parameters can be found in Table 2.
· Inference case2 (ISD 200m vs. 500m): Compared to the Training case, this case only changes the ISD from 200m to 500m while keeping other configurations the same.
· Inference case3 (UMa vs. UMi): Compared to the Training case, this case only changes the deployment scenario from UMa to UMi.
· Inference case4 (Beam set sizes): Different from the assumptions used for data collection, in this case, Set B has 16 beam pairs, i.e., 4Tx  4Rx, and Set A has 64 beam pairs, i.e., 16Tx  4Rx. In this case, a simple pre-processing and post-processing are applied to handle the input size and output size of AI model. For pre-processing, the input of AI model are expended through duplicating beam pair measurements of Set B, e.g., {RSRP1, RSRP1, RSRP2, RSRP2,…,RSRP128, RSRP128}. For post-processing, the output probabilities of 128 beam pairs of AI model are mapped to predict the 64 beam pairs.
[bookmark: _Ref126760920]Table 6 generalization performance of AI model for spatial beam prediction
	Inference case
	Average L1-RSRP diff. (dB)
	Beam prediction accuracy

	
	
	Top1/1
	Top2/1
	Top4/1
	1dB margin
	2dB margin

	Inference case1
	0.24
	71.85%
	91.58%
	98.08%
	92.25%
	97.33%

	Inference case2
	0.30
	70.19%
	89.65%
	97.16%
	90.8%
	96.28%

	Inference case3
	0.24
	71.76%
	91.59%
	97.90%
	92.37%
	97.36%

	[bookmark: _Hlk126762615]Inference case4
	0.73
	66.41%
	86.43%
	96.54%
	77.82%
	86.62%


Table 6 shows the generalization performance of AI model for spatial beam prediction. With various deployment scenarios or ISDs, the AI model can still achieve good beam prediction performance. When only changing the ISD to 500m (inference case2), the AI model achieves 0.3dB of average L1-RSRP difference and up to 97.16% of Top4/1 beam prediction accuracy. When only changing the scenario to UMi (inference case3), the AI model achieves 0.24dB of average L1-RSRP difference and up to 97.90% of Top4/1 beam prediction accuracy. When reducing sizes of Set A and Set B for testing (inference case4), beam prediction accuracy and average L1-RSRP difference are affected marginally, i.e., the Top1/1 beam prediction accuracy from 71.85% to 66.41% and the average L1-RSRP difference from 0.24 to 0.73. The performance reduction due to the changing Set A and Set B is more marginal when AI model outputs more predicted beams, i.e., the Top4/1 beam prediction accuracy reduced from 98.08% to 96.54%.
[bookmark: OLE_LINK1]Observation 7: The AI model for spatial beam prediction can achieve stable and good performance in different deployment scenarios or different ISDs, e.g., training under UMa scenario and testing under UMi scenario, training with ISD1 and testing with ISD2 with the agreed simulation assumptions.
Observation 8: The beam prediction accuracy and average L1-RSRP difference are affected marginally when the size of Set A and Set B during testing is less than that for the training.
Conclusion
[bookmark: _Hlk100923477][bookmark: _Toc100924111][bookmark: _Toc100924138][bookmark: _Toc100924174]We have presented our views on some aspects of AI/ML for beam management, especially, on generalizability and the KPIs to be considered for evaluating an AI/ML model for beam management. We have the following proposals:
1. Generalizability of a proposed AI/ML model for beam management is evaluated by computing the agreed KPIs, inclusive of the gains achieved and the costs incurred, by the model for each of the different network conditions/scenarios/parameter values.
1. Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of the gains achieved, and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods for further study.
1. Consider the number of UCI reports and the size of each UCI report (in bits) as a measure of the reporting overhead. The reporting overhead need to be included into the KPIs.
1. Consider Latency Reduction as also a key KPI in evaluating an AI/ML model for beam management and consider adopting the definition,

1. Adopt “Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)" as the baseline for spatial beam prediction.
On the evaluation results, we have the following observations:
Observation 1: The beam prediction accuracy performance of AI-based BM is relevant with the Set B pattern selection.
Observation 2: L1-RSRP of top-1 predicted beam from AI-based BM is very close to baseline with difference of 0.24dB.
Observation 3: AI-based BM can achieve up to 98.08% Top4/1 beam prediction accuracy.
Observation 4: Up to 92.25% and 97.33% beam prediction accuracy can be obtained with 1dB margin and 2dB margin of top-1 predicted beam L1-RSRP difference.
Observation 5: AI-based BM is better than that of non-AI based BM and very close to that of the baseline.
Observation 6: AI-based BM can achieve 75% RS overhead reduction while system performance loss is marginal, i.e., 0.82% UPT loss. 
Observation 7: The AI model for spatial beam prediction can achieve stable and good performance in different deployment scenarios or different ISDs, e.g., training under UMa scenario and testing under UMi scenario, training with ISD1 and testing with ISD2 with the agreed simulation assumptions.
Observation 8: The beam prediction accuracy and average L1-RSRP difference are affected marginally when the size of Set A and Set B during testing is less than that for the training.
References
RAN1 Chair’s Notes, RAN1#109-e, May 9-20, 2022
RAN1 Chair’s Notes, RAN1#110, Aug. 22-26, 2022
RAN1 Chair’s Notes, RAN1#110-bis-e, Oct. 10-20, 2022
[4] RAN1 Chair’s Notes, RAN1#111, Nov. 14-18, 2022
[5] R1-2212905, Moderator (Samsung), Feature lead summary #5 evaluation of AI/ML for beam management, RAN1#111, Nov. 14-18, 2022 	

4
image1.png

image2.svg
                                                   -120  -110  -100  -90  -80  -70  -60  -50  L1_RSRP of selected beam pair(dBm)                           0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  CDF  CDFs of L1_RSRP of predicted beam using different BM        Baseline    Non-AI based BM    AI-based BM                    -95  -90  -85        0.25  0.3  0.35  0.4    


