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Introduction
This contribution presents ETRI’s views on the evaluation of AI/ML for CSI feedback enhancement use case for the AI/ML for NR Air Interface study [1].

	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
- Initial set of use cases includes: 
o	CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
o	Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
o	Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
…




Discussion
Evaluation methodologies
In this section, we discuss evaluation methodologies for AI/ML for CSI feedback enhancement.

Specific evaluation methodologies for AI/ML-based CSI compression sub use case

Quantization/dequantization
In RAN1 #110bis-e meeting, quantization/dequantization issues have been brought up, including whether/how to handle different quantization/dequantization methods between NW and UE [8]. 

By the limitation of uplink capacity to deliver CSI feedback from the UE, the size of the CSI feedback should be limited. To generate the limited length of CSI feedback, quantization should be performed on the UE side and dequantization should be performed on NW-side during the CSI compression procedure. The quantization/dequantization along with the AI/ML-based CSI feedback can be considered as following two types:
· Case 1: AI models perform compression and quantization simultaneously. Only a binary sequence of CSI payload is obtained by the UE-side model.
· Case 2: AI models perform compression, followed by quantization. An unquantized latent variable is additionally obtained by the UE-side model.

For Case 1, AI models simultaneously perform compression and quantization and generate CSI payloads of a binary sequence. In this case, AI models are trained along with the size of the CSI payload, i.e., quantization-aware training is allowed for AI model training. Moreover, different AI models are independently trained with different output sizes (i.e., CSI payload sizes). In this case, NW-side model can accept the binary CSI payload, and the quantization codebook is not required to be shared between UE and network-side models.

For Case 2, AI models perform quantization and quantization sequentially. In this case, the quantization function can be separated from the compression function. An unquantized latent variable can be obtained by UE-side model and the variable is quantized by the quantization block to generate CSI payload. Various CSI payload sizes can be generated by controlling the quantization block. When the quantization is performed on each latent dimension, the quantization block is scalar quantization, otherwise, i.e., when the quantization is performed on multiple latent dimensions, the quantization block is vector quantization. Codebook for quantization/dequantization can be either fixed or dynamic throughout the training. For fixed codebook, the range of input and output of quantization can be pre-determined and does not necessarily be shared between both sides. For dynamic codebook, the relationship between input and output is continuously updated throughout the training and should be shared after each re-training. The AI model can be trained either with and without aware of the quantization block. 

Proposal 1: For the evaluation of AI/ML-based CSI compression use case, companies to report the details on the quantization/dequantization including: 
· Functional separability of compression and quantization
· Configuration of quantization/dequantization block (Scalar or vector quantization, fixed or dynamic codebook)
· Quantization aware/non-aware training of the AI models

Figure 1 shows an example of an AI model with a functionally separable quantization block. In the model, a trained UE-side AI model can be applied for different CSI payload sizes using different quantization configurations. For example, when the dimension of the latent variable is L, by applying Q bits scalar quantization for each latent variable’s dimension, CSI payload size of Q*L bits can be generated and delivered to the NW-side.
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Figure 1. Supporting various CSI payload sizes using quantization

Observation 1: AI/ML models with a functionally separable quantization block can adjust CSI payload sizes by using different quantization configurations.


Multiple ranks
In RAN1 #110bis-e meeting, an issue on how to set up AI/ML models for multiple ranks situations was brought up and discussed [8]. There were 4 options regarding the type of AI/ML models for multiple ranks as:
	· Option1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference. 
· Option3 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· Option4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.



In cases of rank or layer specific models (Option 1 or 3), multiple and independent AI/ML models for specific rank or layer values should be defined and trained.

On the other hand, in cases of rank and layer common models (Option 2 and 4), a common AI/ML model is applied to multiple rank values. As shown in Figure 2, a rank-common AI/ML model (UE-side model) can be applied to generate CSI payloads of both rank-1 and rank-2 inputs. Similar to the rank-common AI/ML model, a layer-common AI/ML model can also be applied to generate CSI payloads of different ranks. The difference of the layer-common AI/ML model to the rank-common AI/ML model is that the layer-common AI/ML model repetitively operates on per-layer inputs while the rank-common AI/ML model operates on the entire input (input of multiple layers). An example of the layer-common AI/ML model (UE-side model) generating CSI payloads of rank-2 inputs is in Figure 3.
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Figure 2. Applying a rank-common AI/ML model for rank-1/2 inputs
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Figure 3. Applying a layer-common AI/ML model for rank-2 input

Proposal 2: For the evaluation of AI/ML-based CSI feedback for CSI compression, companies provide the details of the model structure for multiple ranks.

Observation 2: Rank-common or layer-common AI/ML models can process inputs with different numbers of ranks using a single model, allowing for a smaller model size.


Training collaborations of two-sided AI/ML model
In RAN1 #110bis-e, conclusions of an example procedure for training collaboration type 3 (separate training at network and UE sides) with sequential training have been made [7]. For training collaboration type 3, parallel training can also be considered. 

For parallel training of training collaboration type 3, it can be assumed that sharing datasets for training is not mandatory between the different entities. When the dataset is not shared, different entities can acquire the training dataset by their own method. If the datasets are not shared and are acquired separately, we can assume that the datasets are not identical but have similar distributions. When training of AI models with non-identical datasets, the latent spaces of different entities may not be aligned each other. To resolve such incompliance, a small amount of reference dataset for latent space alignment can be optionally shared between different entities.

In the training phase, since the training occurs in UE and NW sides parallelly, there is no distinction between ‘starting in UE side’ and ‘starting in NW side’ from the training perspective. 
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Figure 4. An example of parallel training procedure

The detailed procedure of the parallel training is presented as follows:
Step 1: The dataset for training or reference dataset for latent space alignment is optionally shared between the NW and UE sides. The dataset can be delivered either from NW to UE sides or from UE to NW sides.
Step 2: The encoder is trained at UE or UE-side server using its own dataset. At the same time, the decoder is trained at NW using its own dataset. A regulation to have geometric similarities between different training entities (e.g., isometry regulation [9]) can be applied if needed.
Step 3: Alignment of the latent space between different entities is applied if needed. 

Proposal 3: For the evaluation of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the parallel training:
· Step 1: The dataset for training or reference dataset for latent space alignment is optionally shared between the NW and UE sides. The dataset can be delivered either from NW to UE sides or from UE to NW sides.
· Step 2: The encoder is trained at UE or UE-side server using its own dataset. At the same time, the decoder is trained at NW using its own dataset. A regulation to have geometric similarities between different training entities (e.g., isometry regulation [9]) can be applied if needed.
· Step 3: Alignment of the latent space between different entities is applied if needed.


Specific evaluation methodologies for AI/ML-based CSI prediction sub use case
In last RAN #111 meeting, time domain CSI prediction is selected as sub-use case for AI/ML CSI enhancement [10]. In this section, we discuss preliminary simulation results for the CSI prediction to evaluate performance of AI/ML models.

	Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer futher till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  



CSI prediction represents that an AI/ML model inferences T number of future CSI information (RAW channel matrix or eigenvectors) based on K number of previous CSI information. The structure of CSI prediction described in the following Figure 13.
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Figure 13. The structure of CSI prediction

In the case of UE sided CSI prediction which is selected as sub-use case in the last meeting, both eigenvectors and RAW channel matrix can be considered as input of AI/ML model. Because, the UE directly measures channel matrix by receiving CSI-RS signals from gNB. In view of eigenvectors as input of AI/ML model, eigenvectors may have smaller dimensions and data size compared to raw channel matrix as input of AI/ML model. Thus, computational complexity of AI/ML model could be decreased. However, due to loss of information during making eigenvectors from RAW channel matrix, performance of AI/ML model could be degraded. At this time, it is important to check the degree of performance improvement in AI/ML model compared to the baseline. Therefore, RAW channel matrix is used as the AI/ML model input in our simulations



Evaluations on AI/ML-based CSI compression
In this section, we provide initial evaluation results on CSI compression sub use case based on LLS (link level simulations).

Evaluation assumption
For evaluation of AI/ML based CSI compression sub use case, the wireless channel data generated using the LLS for AI/ML based CSI compression sub use case. The parameters used for the LLS are provided in Table 1.

Table 1. Parameters for the LLS
	Parameter
	Value

	Carrier frequency
	2 GHz

	BWP
	48 RBs

	Subcarrier spacing
	15 kHz

	Subband/PRG size
	4 RBs

	Number of transmit antennas ()
	32

	Number of receive antennas ()
	4

	Number of layers
	1

	Delay profile
	CDL-C

	Delay spread
	30ns, 300ns

	Channel estimation
	Ideal 




Autoencoder based AI model for CSI compression
For AI/ML based CSI compression sub use case, AI model at UE (Encoder) gets a wireless channel information as the input and generates compressed feedback information as the output and AI model at gNB (Decoder) gets compressed feedback information as the input and generates the original wireless channel information as the output. 

Autoencoder architecture is deployed for the evaluation of CSI compression. The architecture of Autoencoder is in Figure 5.
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Figure 5. Architecture of the Autoencoder

We set subband eigenvectors as input of Encoder and output of Decoder in the evaluation. Number of latent variables are M and and Q bits are used to represent each latent variable, i.e. size of CSI feedback information is MQ bits.

The Encoder and Decoder in Autoencoder architecture are deployed using neural networks and design choices of the neural networks can be made with considerations of performance and complexity. In [3], CsiNet is presented for Autoencoder structure for compression and reconstruction of the wireless channel information in time delay and angular spread domain. We use neural network structure of encoder and decoder in [3] and have made several modifications for the alignment with input, latent and output formats. Figure 6 shows the modified CsiNet model for AI/ML based CSI compression. 

[image: ]
Figure 6. Modified CsiNet model for AI/ML based CSI compression

In order to train the AI Model, training samples are collected by the LLS. The parameters of AI Model and training are in Table 2. 

Table 2. Parameters of AI Models
	Parameter
	Value

	Total number of samples
	5e4

	Portion of validation samples
	0.1

	Batch size
	256

	Total number of epoches
	512

	Learning algorithm
	Adam

	Learning rate
	0.001




PCA based AI model for CSI compression
For AI/ML based CSI compression sub use case, another type of two-sided AI model besides Autoencoder, PCA (Principal Component Analysis) based AI Model, can also be considered for CSI compression sub-use case. The architecture of the PCA based AI model is in Figure 7.

[image: ] 
Figure 7. PCA based AI Model for CSI compression


Dimension reduction (PCA) and reconstruction (inverse PCA)
Dimension reduction is to transform high dimensional eigenvectors data into low dimensional latent variables. Low dimensional latent variables are desirable to be uncorrelated for compression of input data with partial principal components (i.e., truncation). AI/ML techniques can be applied in the dimension reduction function. PCA is a well-known ML-based linear dimension reduction technique that transforms high dimensions of original data into uncorrelated lower dimensions and is adopted for the compression of joint eigenvectors in our initial evaluation.

Reconstruction is an inverse process of the dimension reduction of the encoder, which is to reconstruct the eigenvectors from the latent variables. Since the dimension reduction is conducted by using PCA in our initial evaluation, inverse PCA is conducted to reconstruct the eigenvectors.

Training of dimension reduction block using PCA is finding the principal components using the training dataset. In this evaluation, we assume that the training of PCA is conducted by the NW side, and the principal components are shared with the UE side.

 Quantization and dequantization
Quantization is to map the latent variables (eigenvectors in lower dimensional) in a floating point to the limited length of binary variables for feedback with a limited capacity of the uplink channel. Several design choices can be made, for example, a combination of scalar quantization, symmetric bit lengths for each encoder output, and uniform quantization can be applied to a specific AI model for CSI compression. 

In our initial evaluation, we use a separate quantization block apart from the compression (PCA) part. The quantization block performs scalar quantization on each latent variable (magnitude along with each principal component). Before performing scalar quantization, the inputs to the quantization block (latent variables) are scaled to have a predetermined range (e.g., the range [0,1)) using the cumulative distribution function (CDF). Moreover, the allocated bit lengths are in non-increasing with the order of principal components since the principal components are sorted in decreasing order with their importance, i.e., contributions to the input eigenvectors.

Dequantization is an inverse process of the quantization in the encoder, which is to convert received CSI feedback information in form of a binary sequence to the latent variables in floating points.

Training for quantization/dequantization functions in our initial evaluation is obtaining scaling information (i.e., CDF) of each latent variable.

AI/ML model for restoration 
For PCA based AI model for CSI compression, restoration is performed at the last stage of the Decoder. The restoration is to remove noises of the reconstructed channel data, where the noises are induced during dimension reduction, and quantization. Many choices can be made for designing neural network (NN) for the restorations. For example, Multi-layer Perceptron (MLP), Convolutional Neural Networks (CNN), and many other NN architectures can be used for the restoration.

We use Transformer network architecture for the restoration NN in the Decoder. Transformer network is one of the neural network structures that can process variable lengths of data sequences. The restoration NN in Decoder gets reconstructed eigenvectors of subbands as an input sequence and puts restored eigenvectors of subbands as an output sequence. 

Training of the AI/ML model for restoration is in the category of quantization-aware training since the induced noise mainly depends on the CSI payload sizes. To train the neural network for restoration, training entity should preprocess the input data (eigenvectors) using dimension reduction, quantization, dequantization, and reconstruction. The output of preprocessing is reconstructed eigenvectors and this is input of the neural network for restoration. The target of the neural network for restoration is clean and full channel data input (eigenvectors). The training process is in the Figure 8.

[image: ]
Figure 8. Training the restoration neural network


Evaluation results on reconstruction performances
To see potential benefits of using AI/ML for CSI compression sub use case, we use an intermediate performance metric of SGCS (squared generalized cosine similarity) as 

, where  and  are original and reconstructed eigenvector(s) of subband  and denotes averaging over multiple samples. We use Rel-16 enhanced type 2 codebook as a reference and evaluates the performance of using the AI model for CSI compression compared to the reference scheme.

The evaluation results of the AI Model compared to eTypeII codebook in terms of SGCS with CDL-C channel model with 30ns delay spread is in Figure 9. Note that we denote the PCA-based AI model as PCA-DL in the figure.
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Figure 9. SGCS of eTypeII and AI Models (CDL-C, 30ns)

The result with CDL-C channel model with 300ns delay spread is in Figure 10.

[image: ]
Figure 10. SGCS of eTypeII and AI Models (CDL-C, 300ns)

Observation 3: With an Autoencoder using a previously developed neural network structure, CsiNet, there are significant improvements in terms of SGCS compared to the baseline (eTypeII) in the CSI compression sub-use case.

Observation 4: With the PCA-based AI model, there are significant improvements in terms of SGCS compared to the baseline (eTypeII) and AE-based AI model in the CSI compression sub-use case.

Initial evaluation results on generalization performances
In RAN1 #110, agreements for verifying generalization performances on various scenarios/configurations are made as follows [6].

	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



In this section, we provide some initial evaluation results on generalization performances on following various configurations:
· Various bandwidths
· Various CSI payload sizes.

Various bandwidths
We consider various bandwidths and evaluate their performances. We assume same evaluation environment as in the Section 2.2.1. To train AI/ML models for various configurations, datasets are gathered from following different configurations.

Table 3. Datasets for various bandwidths
	Datasets
	Configurations

	Dataset #1
	6 subbands (24 RBs of BW)

	Dataset #2
	12 subbands (48 RBs of BW)



Because the shapes of datasets #1 and #2 are different and to train or make inferences for the various configurations using an AI/ML model, it is required to support different sizes of input for the AI/ML model. Moreover, generating different sizes of outputs (e.g., proportional to the input size) is required. These make restrictions on neural network designs for CSI compression, e.g., MLP-based architecture can not support different sizes of input and/or output. 

Observation 5: For the operation of the AI/ML model over various bandwidths (or subband sizes), it is required that the AI/ML model supports variable sizes of input and output.

The autoencoder (AE) based AI model in section 2.2.2 is a modified Csinet and does not support variable sizes of input because the model contains several dense (fully-connected) layers whose input and output dimension is predetermined and cannot be changed after the model definition. To support a different size of test data from the training dataset using AE based AI model, we can use zero-padding during the inference when the size of the input is smaller than the size of the training data. However, this approach can only be applied for the inference of a smaller bandwidth size than the training dataset.

Observation 6: The AE-based AI/ML for CSI compression can infer a smaller bandwidth size than the training dataset using zero-padding in the inference phase.

Besides, the PCA-based AI/ML model in section 2.2.3 supports various sizes of input and output sizes using dimension reduction with the smaller size of principal components. Moreover, the restoration NN is based on Transformer network which can get and generate variable lengths of sequences. 

Observation 7: The PCA-based AI/ML for CSI compression can infer a smaller bandwidth size than the training dataset using the dimension reduction with the smaller size of principal components.

We train the PCA-based AI model in the following 2 cases:
· Case 1: Train the AI models using Dataset #1 only
· Case 2: Train the AI models using Dataset #2 only

Then, we evaluate the performances of 6 subbands (same configuration as Dataset #1) using the AI models in each case. The following table shows the evaluation result with CDL-E channel model with a delay spread of 30ns.
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Figure 11. Evaluation result of various sizes of bandwidth (CDL-E, 30ns of DS)

Observation 8: In the evaluation of AI/ML for CSI compression over various bandwidths, the AE-based AI model showed performance decreases on untrained bandwidth (Case 2) compared to the trained bandwidth (Case 1).

Observation 9: In the evaluation of AI/ML for CSI compression over various bandwidths, the PCA-based AI model showed less reduction in performance compared to the AE-based model. In addition, it is shown that the amount of performance degradation decreased as the feedback length increased.

Various CSI feedback payload sizes
We consider various CSI feedback payload sizes and repeat similar evaluations in the previous sections. For consideration of various CSI feedback payload sizes, datasets (input) of the AI/ML model can be identical. However, to support different CSI feedback payload sizes using an AI/ML model, Encoder needs to generate various sizes of CSI feedback payloads for a fixed size of input data. The decoder is also required to generate a fixed size of output data by getting various sizes of CSI feedback payload. One simple way to achieve this is by controlling quantization. For example, the AE-based AI Model can generate 86 bits of CSI feedback payload by quantizing 43 output nodes of Encoder by 2 bits for each output. By changing the quantization bit lengths of each output node of the encoder, the AI Model can generate different payload sizes.

Observation 10: The AE-based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling quantization bit lengths. 

The PCA-based AI Model can change payload sizes by simply controlling allocated bits for the quantization of latent variables. For example, allocating {8,8,4,4,3,3,1,1,0,0,0,…} bits to the latent variables to generate 32bits of CSI feedback payload and {10,9,8,6,6,5,4,4,3,3,2,2,1,1,0,0,…} bits to generate 64 bits of CSI feedback payload.

Observation 11: The PCA-based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling bit allocations (quantization).

We train the AE and PCA-based AI models in the following 2 cases:
· Case 1: Train the AI models using 32 bits of CSI feedback payload
· Case 2: Train the AI models using 128 bits of CSI feedback payload
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Figure 12. Evaluation result of various lengths of CSI payload (CDL-E, 30ns of DS)

Observation 12: In the evaluation of AI/ML for CSI compression over various CSI feedback payload sizes, the PCA-based model is more eligible to generate various lengths of CSI feedback payload than the AE-based model. 

Observation 13: In the evaluation of AI/ML for CSI compression over various CSI feedback payload sizes, using different lengths of feedback than training did not result in significant performance degradations for both AI models.


Initial evaluation results of training collaborations type 3 (parallel training)
In RAN1 #110, agreements for verifying generalization performances on various training collaborations are made as follow [6].

This sub-section provides the evaluation result of training collaboration type 3 with parallel training for CSI compression. The PCA-based AI model in section 2.2.3 is used for the evaluation of parallel training. We follow the training procedure for the training collaboration type 3 with parallel training in section 2.1.3.

By the property of PCA, the entities that have identical training data can obtain the same principal components. Although the directions of the principal components are similar when PCA is performed on non-identical input data with similar distributions, the magnitude and order of the components may differ among the entities. In the case of non-identical input data, reference input data can be used to align the order of the principal components. The encoder and decoder perform a transformation so that the principal components based on their respective input data have the closest orientation to the principal components based on the reference data, and the matrix for performing the transformation can be obtained using Procrustes analysis.

During the parallel training, UE-side trains the dimension reduction (PCA) and the quantization blocks. Training PCA block is finding the principal components using the training dataset. Training the quantization block is finding the CDF of each input dimension (latent variables) to scale and apply scalar quantization with variable bit lengths. NW-side also finds the principal components and CDFs for reconstruction with dequantization. In addition, NW-side trains the NN for restoration to compensate for the induced noise during the compression and quantizations. 

For the parallel training, the size of training samples for each entity, Ntrain is 25,000 and Nc is the size of shared training data for training with non-identical training datasets.

We train the PCA-based AI model in the following 3 cases:
· Case 1: Train the AI model using the training collaboration type 1 (NW-side)
· Case 2: Train the AI model using the training collaboration type 3 with parallel training (w/ identical training dataset)
· Case 3: Train the AI model using the training collaboration type 3 with parallel training (w/ non-identical training dataset, Nc=5e3)
· Case 4 : Train the AI model using the training collaboration type 3 with parallel training (w/ non-identical training dataset, Nc=1e3)

We evaluate the performance of the AI models in CDL-E with a 300ns delay spread. The size of the CSI feedback payload is 128.

Table 5. SGCS of PCA-based AI Models for evaluation of collaboration types 1 and 3 (Parallel)
	AI Model training
	SGCS

	Case 1 (Type 1)
	0.977

	Case 2 (Type 3, Parallel, identical)
	0.976

	Case 3 (Type 3, Parallel, non-identical, Nc=5,000)
	0.975

	Case 4 (Type 3, Parallel, non-identical, Nc=1,000)
	0.975



Observation 14: The PCA-based AI models show almost no performance degradation when parallel learning is conducted even with a small number of common reference data. 

Summary of evaluation results of AI/ML-based CSI compression

According to the initial template discussed at the last meeting, the initial evaluation results are summarized as follows.

Table 3. Evaluation results for CSI compression without model generalization/scalability, [traffic type], [Max rank value], [RU] [training type/case]
	
	
	ETRI (section 2.2.2)
	ETRI (section 2.2.3)

	CSI generation part
	AL/ML model backbone
	FCN
	PCA

	
	Pre-processing
	
	

	
	Post-processing
	
	CDF

	
	FLOPs/M
	132.15k
	35.32k

	
	Number of parameters/M
	49.29k
	924

	
	[Storage /Mbytes]
	
	

	CSI reconstruction part
	AL/ML model backbone
	CNN
	PCA and Transformer

	
	[Pre-processing]
	
	

	
	[Post-processing]
	
	

	
	FLOPs/M
	2.69M
	5.32M

	
	Number of parameters/M
	53.24k
	222k

	
	[Storage /Mbytes]
	
	

	Common description
	Input type
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quant., 2bits per output
	Scalar quant., asymmetric bit allocation

	Dataset description
	Train/k
	25K
	25K

	
	Test/k
	1K
	1K

	
	Ground-truth CSI quantization method
	Float32
	Float32

	[Other assumptions/settings agreed to be reported]
	Intermediate KPIs are based on the LLS
	Intermediate KPIs are based on the LLS 

	Benchmark 1
	eTypeII
	eTypeII

	Intermediate KPI I#1 of benchmar1, [layer 1]

(SGCS, CDL-C with 30ns DS)
	CSI feedback payload 49
	0.768
	0.768

	
	CSI feedback payload 87
	0.88
	0.88

	
	CSI feedback payload 187
	0.95
	0.95

	Gain for intermediate KPI I#1, [layer 1]
	CSI feedback payload 49
	17.4% (0.902)
	22.9% (0.944)

	
	CSI feedback payload 87
	7.2% (0.944)
	10.8% (0.975)

	
	CSI feedback payload 187
	1.4% (0.964)
	4% (0.988)

	Intermediate KPI I#2 of benchmar1, [layer 1]

(SGCS, CDL-C with 300ns DS)
	CSI feedback payload 49
	0.629
	0.629

	
	CSI feedback payload 87
	0.736
	0.736

	
	CSI feedback payload 187
	0.869
	0.869

	Gain for intermediate KPI I#2, [layer 1]
	CSI feedback payload 49
	21.1% (0.762)
	34.2% (0.844)

	
	CSI feedback payload 87
	11% (0.817)
	23.3% (0.908)

	
	CSI feedback payload 187
	2.9% (0.895)
	8.98% (0.947)

	FFS others
	
	
	



*) The FLOPs and number of parameters are derived for the AI models for a CSI payload size of 128 bits.
**) The number of actual CSI feedback payload sizes for AE-based AI models are 50, 88, and 188 bits, respectively.



Evaluations on AI/ML-based CSI prediction
In this section, we provide initial evaluation results on the CSI prediction sub use case based on a dataset derived from our SLS platform.

Evaluation assumption and dataset generation
For the evaluation of AI/ML based CSI prediction sub-use case, wireless channel datasets are generated by the SLS platform. The detailed parameters used for evaluation are described as following Table 6.

Table 6. Parameters for channel generation
	Parameter
	Value

	Scenario
	Urban Macro

	Carrier Frequency
	4GHz

	Inter-BS distance
	200m

	Channel Model
	NR Uma

	Subcarrier spacing
	15kHz

	Antennas at gNB
	32 ports

	Antennas at UE
	4 ports

	UE distribution
	100% outdoor

	UE velocity
	20 km/h



Details of generated datasets in preliminary simulation are shown in the below Table 7. We generate channel sample of 570 UEs during 500ms with CSI-RS interval 5ms. We utilize 90% of samples as training datasets and other 10% samples are used as test datasets

Table 7. Description of datasets
	Parameter
	Value

	CSI-RS periodicity
	5ms

	Simulation time
	500ms

	Number of UEs
	570

	Number of RB
	52

	Number of subblock
	13

	Number of samples
	50000

	Training/Test sets split
	90% / 10%



AI/ML model for CSI prediction
The AI/ML model for CSI prediction utilizes the CNN structure as the backbone. Especially, the residual blocks are repeatedly used. The parameters of AI/ML model and training are in Table 8. In the input dimension, K means the number of the observed channel matrix. And, in the output dimension, T means the number of the predicted channel matrix. For simplicity, we perform simulations considering only one Rx antenna. Our AI/ML model for prediction has 76.7K parameters and 16.3M FLOPs of prediction

Table 8. Parameters of AI/ML model
	Parameter
	Value

	Backbone
	CNN

	Input / Output type
	RAW channel matrix

	Input dimension
	K x 2 x 32 x 52

	Output dimension
	T x 2 x 32 x 52

	Batch size
	128

	Number of epochs
	150

	Optimizer
	Adam

	Initial learning rate
	0.001

	Loss function
	MSE



Evaluation results on CSI prediction
In this chapter, we show evaluation results on CSI prediction with sample and hold baseline which stores the nearest historical CSI. We evaluate intermediate KPIs such as NMSE. Firstly, we simulate 5 historical CSI information as the input of AI/ML model to predict 3 future CSIs. The results show that the AI/ML based prediction method outperforms the baseline. And, it can be confirmed that the performance of AI/ML model is superior in the results of distant times. In other words, the performance of the baseline rapidly degrades over time.

Table 9. Evaluation result on CSI prediction with 5 historical CSI
	
	5ms CSI
	10ms CSI
	15ms CSI

	Type
	AI/ML model
	Baseline
	AI/ML model
	Baseline
	AI/ML model
	Baseline

	NMSE [dB]
	-6.084
	0.807
	-3.764
	2.796
	-2.674
	3.509



Observation 15: AI/ML based CSI prediction improves performance compared to the baseline.

Evaluation results changing the number of historical CSI
The next results show the performance of AI/ML based CSI prediction while changing the number of CSI information used as input of AI/ML model. According to the results, if more CSI inputs are given, the performance of AI/ML prediction model increases.

Table 10. Evaluation result on AI/ML based CSI prediction with various number of historical CSI
	
	5ms CSI
	10ms CSI
	15ms CSI

	Type
	5 samples
	10 samples
	5 samples
	10 samples
	5 samples
	10 samples

	NMSE [dB]
	-6.084
	-7.835
	-3.764
	-4.801
	-2.674
	-3.712



Observation 16: AI/ML based CSI prediction improves performance as the number of historical input CSIs increase.

Evaluation results using eigenvectors as input of model
The next results show the performance of AI/ML based CSI prediction using eigenvectors as input of AI/ML model instead of RAW channel matrix. As shown in the results, AI/ML based prediction method outperforms the baseline. However, the degree of improvement of AI/ML model as input of eigenvectors is slightly reduced compared to the AI/ML model as input of the RAW channel matrix.

Table 11. Evaluation result on CSI prediction using eigenvectors as input
	
	5ms CSI
	10ms CSI
	15ms CSI

	Type
	AI/ML model
	Baseline
	AI/ML model
	Baseline
	AI/ML model
	Baseline

	NMSE [dB]
	-4.871
	-3.642
	-3.271
	-1.745
	-2.424
	-0.699



Observation 17: AI/ML based CSI prediction as input of eigenvectors improves performance compared to the baseline. However, performance improvement is slightly reduced compared to the AI/ML model as input of RAW channel matrix.

Proposal 4: Further study the impact on different types of input on AI/ML based CSI prediction

Summary of evaluation results of AI/ML-based CSI prediction 
In this chapter, according to the initial template discussed at the last meeting, the initial simulation results described in the previous sections are summarized as follows.

Table 12. Evaluation results for CSI prediction without model generalization/scalability, [traffic type], [Max rank value], [RU]
	
	
	ETRI (Section 2.3.3)
	ETRI (Section 2.3.5)

	AI/ML model description
	AL/ML model backbone
	CNN
	CNN

	
	[Pre-processing]
	Min-Max 
	Min-Max 

	
	[Post-processing]
	Min-Max
	Min-Max

	
	FLOPs/M
	16.3M
	4.1M

	
	Parameters/M
	76.7K
	76.6K

	
	[Storage /Mbytes]
	-
	-

	
	Input type
	RAW channel matrix
	Eigenvector

	
	Output type
	RAW channel matrix
	Eigenvector

	Assumption
	UE speed
	20 Km/h
	20 Km/h

	
	CSI feedback periodicity
	5ms
	5ms

	
	Observation window 
(number/distance)
	5 samples
	5 samples

	
	Prediction window 
(number/distance)
	3 samples
	3 samples

	
	Whether/how to adopt spatial consistency
	-
	-

	Dataset size
	Train/k
	45K
	45K

	
	Test/k
	5K
	5K

	Benchmark 1
	Baseline 
	Baseline 

	Intermediate KPI I#1 of Benchmark 1
(NMSE[dB] @ 5ms)
	0.807
	-3.642

	Gain for intermediate KPI#1 over Benchmark 1
	-6.084
(Gain 6.891)
	-4.871
(Gain 1.229)

	Intermediate KPI I#2 of Benchmark 1
(NMSE[dB] @ 10ms)
	2.796
	-1.745

	Gain for intermediate KPI#2 over Benchmark 1
	-3.764
(Gain 6.56)
	-3.271
(Gain 1.526)

	Intermediate KPI I#3 of Benchmark 1
(NMSE[dB] @ 15ms)
	3.509
	-0.699

	Gain for intermediate KPI#3 over Benchmark 1
	-2.674
(Gain 6.183)
	-2.424
(Gain 1.725)



Preliminary evaluation results on generalization performances
In the last RAN1 meeting, FL summarized potential issues related to the generalization of CSI prediction as follows [11].

	· CSI prediction:
· Benchmark of CSI prediction (Issue#4-1): In the next meeting, companies can check if the non-AI/ML benchmark is compatible with R18 MIMO assumptions/agreements. In addition, if the level x based AI/ML solution is to be reported, companies can consider how to model the benefit of level y AI/ML solution, e.g., as an example raised by Moderator, by borrowing generalization cases.
· Generalization (Issue#4-3): Companies could report the generalization results following the agreed generalization scenarios/configurations for CSI feedback enhancements which are generic to both sub use cases. In addition, CSI prediction specific scenario/configuration cases can be raised by companies, e.g., generalization over UE speeds.



Generalization performance over different UE speeds
In this chapter, we provide some initial evaluation results on generalization performances over various UE speeds. The AI/ML model is trained using a training dataset of a certain UE speed and this model is tested to the dataset of different speeds. According to the simulation results, changes in the speed of UE significantly degrade the performance of AI/ML model.

Table 13. Evaluation result on CSI prediction with various UE speeds
	NMSE [dB]
	Testing (UE speed)

	Training (UE speed)
	30km/h
	20km/h
	10km/h

	30km/h
	-3.358
	1.939
	-0.401

	20km/h
	2.151
	-6.084
	-2.902

	10km/h
	7.183
	2.630
	-10.497



To overcome this performance degradation, we trained AI/ML model with a mixed dataset which equally combined different UE speeds (10km/h, 20km/h and 30km/h). The results show that the performance degradation is alleviated compared to the result of AI/ML model trained on a certain speed.

Table 14. Evaluation result on CSI prediction with various UE speeds using the mixed dataset
	NMSE [dB]
	Testing (UE speed)

	Training (UE speed)
	30km/h
	20km/h
	10km/h

	Mixed datasets
	0.529
	-0.555
	-4.647



Observation 18: For AI/ML based CSI prediction, the performance reduction occurs significantly depending on changes of UE speeds.

Observation 19: Mixed datasets of different UE speeds can mitigate performance degradation compared to datasets of single UE speed.

Proposal 5: Further evaluate the AI/ML based CSI prediction over various UE speeds to overcome performance degradation in untrained UE speed.


Conclusion
In this contribution, ETRI’s views on the evaluation on AI/ML for CSI feedback enhancement were shown and the following proposals and observations were made:

Proposal 1: For the evaluation of AI/ML-based CSI compression use case, companies to report the details on the quantization/dequantization including: 
· Functional separability of compression and quantization
· Configuration of quantization/dequantization block (Scalar or vector quantization, fixed or dynamic codebook)
· Quantization aware/non-aware training of the AI models

Proposal 2: For the evaluation of AI/ML-based CSI feedback for CSI compression, companies provide the details of the model structure for multiple ranks.

Proposal 3: For the evaluation of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the parallel training:
· Step 1: The dataset for training or reference dataset for latent space alignment is optionally shared between the NW and UE sides. The dataset can be delivered either from NW to UE sides or from UE to NW sides.
· Step 2: The encoder is trained at UE or UE-side server using its own dataset. At the same time, the decoder is trained at NW using its own dataset. A regulation to have geometric similarities between different training entities (e.g., isometry regulation [9]) can be applied if needed.
· Step 3: Alignment of the latent space between different entities is applied if needed.

Proposal 4: Further study the impact on different types of input on AI/ML based CSI prediction

Proposal 5: Further evaluate the AI/ML based CSI prediction over various UE speeds to overcome performance degradation in untrained UE speed.


Observation 1: AI/ML models with a functionally separable quantization block can adjust CSI payload sizes by using different quantization configurations.

Observation 2: Rank-common or layer-common AI/ML models can process inputs with different numbers of ranks using a single model, allowing for a smaller model size.

Observation 3: With an Autoencoder using a previously developed neural network structure, CsiNet, there are significant improvements in terms of SGCS compared to the baseline (eTypeII) in the CSI compression sub-use case.

Observation 4: With the PCA-based AI model, there are significant improvements in terms of SGCS compared to the baseline (eTypeII) and AE-based AI model in the CSI compression sub-use case.

Observation 5: For the operation of the AI/ML model over various bandwidths (or subband sizes), it is required that the AI/ML model supports variable sizes of input and output.

Observation 6: The AE-based AI/ML for CSI compression can infer a smaller bandwidth size than the training dataset using zero-padding in the inference phase.

Observation 7: The PCA-based AI/ML for CSI compression can infer a smaller bandwidth size than the training dataset using the dimension reduction with the smaller size of principal components.

Observation 8: In the evaluation of AI/ML for CSI compression over various bandwidths, the AE-based AI model showed performance decreases on untrained bandwidth (Case 2) compared to the trained bandwidth (Case 1).
Observation 9: In the evaluation of AI/ML for CSI compression over various bandwidths, the PCA-based AI model showed less reduction in performance compared to the AE-based model. In addition, it is shown that the amount of performance degradation decreased as the feedback length increased.

Observation 10: The AE-based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling quantization bit lengths. 

Observation 11: The PCA-based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling bit allocations (quantization).

Observation 12: In the evaluation of AI/ML for CSI compression over various CSI feedback payload sizes, the PCA-based model is more eligible to generate various lengths of CSI feedback payload than the AE-based model. 

Observation 13: In the evaluation of AI/ML for CSI compression over various CSI feedback payload sizes, using different lengths of feedback than training did not result in significant performance degradations for both AI models.

Observation 14: The PCA-based AI models show almost no performance degradation when parallel learning is conducted even with a small number of common reference data. 

Observation 15: AI/ML based CSI prediction improves performance compared to the baseline.

Observation 16: AI/ML based CSI prediction improves performance as the number of historical input CSIs increase.

Observation 17: AI/ML based CSI prediction as input of eigenvectors improves performance compared to the baseline. However, performance improvement is slightly reduced compared to the AI/ML model as input of RAW channel matrix.

Observation 18: For AI/ML based CSI prediction, the performance reduction occurs significantly depending on changes of UE speeds.

Observation 19: Mixed datasets of different UE speeds can mitigate performance degradation compared to datasets of single UE speed.
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