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Introduction
[bookmark: _Hlk101176897]AI/ML-based CSI feedback enhancement is one of the use cases in this study item. In the RAN WG1 109-e meeting [1], spatial-frequency domain CSI compression using two-sided AI/ML model (depicted in Figure 1) is selected as one representative sub-use case.
Agreement 
For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.
[image: ]
Figure 1: The two-sided AI/ML model.
In the previous RAN WG1 111 meeting [2], time-domain CSI prediction using UE sided model is also selected as a representative sub-use case for CSI enhancement.
Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer further till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  
In previous RAN WG1 111 meeting, progresses were made from the aspects of evaluation cases and reporting information for quantization, Type 3 training and generation/scalability in CSI compression, and the baseline for ground-truth CSI quantization [2]. In this contribution, we show our news on the selection of the intermediate KPI, type 3 training, quantization, generalization/scalability for CSI compression, and CSI prediction, and provide our evaluation results.
Intermediate KPIs for CSI compression
In the RAN WG1 110bis-e meeting, the intermediate KPI for the case of rank>1 was discussed, and the following agreement was made [3]. As an FFS, a down-selection should be made between two proposed candidate formulae of the squared generalized cosine similarity (SGCS). 
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, at least Method 3 is adopted, FFS whether additionally adopt a down-selected metric between Method 1 and Method 2.
· Method 1: Average over all layers
· Method 2: Weighted average over all layers 

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
· Method 3: SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer)
It is noticed from the agreement that the layers are weighted equally in Method 1, however, they are weighted according to their corresponding eigenvalues in Method 2. From our point of view, Method 2 is preferred. 
Before presenting the reasons for our choice, we show some simulation results for the difference between the GCS computed by Method 1 and Method 2. We note that the same discussion applies to the case of SGCS.
Simulation results
We perform link-level simulations (LLS). In particular, CDL channels are studied. We denote CDL-C-- as a CDL-C channel with delay spread  and Doppler shift  in this contribution.
Figure 2 present the performance of CSI compression using two-sided AI/ML models for the cases when the rank of the channel matrix is 2, 3, 4, respectively. There two GCSs, obtained from Method 1 and Method 2, are computed as KPIs. We have the following observation for the GCS computed by the two methods.
Observation-1: The GCS obtained from Method 2 gives a larger number than that obtained from Method 1.	
Observation-2: Instead of averaging over ranks evenly in the GCS formula, the stronger ranks whose GCS are larger are more heavily weighted than the weaker ranks in Method 2 of computing GCS.
Intuitively, the GCS computed from Method 2 better represents the strong rank of the channel matrix, which is consistent with the idea that stronger ranks are more important than weak ones. We present more detailed analysis in the next subsection.
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(a) 
Figure 2: The comparison of the GCS obtained from Method 1 and Method 2 in CSI compression using two-sided AI/ML models from LLS in multi-layer transmission.
Discussions
In this subsection, we present the reasons for our choice.
First, from the mathematical perspective, the layers should be weighted differently. In particular, low ranks appear more frequently than high ones, which is due to the fact that the probability of scheduling UEs with a small number of layers is much bigger than more layers. In addition, the SGCS of a low layer is larger than that of a higher layer. So, the SGCSs of the lower layers, which are larger and appear more frequently than those of the higher layers, should be weighted larger in the (overall) SGCS. Method 2 is consistent with this observation, but not Method 1.
Second, the (overall) SGCS calculated according to Method 2 is more consistent with the throughput than that by Method 1. Specifically, increasing the precoding accuracy of low ranks (associated with large singular values) contributes larger than that of high ranks (associated with small singular values) to the gain of throughput. In Method 2, the SGCS of the layer with a larger singular value weights larger than the one with a smaller singular value. However, all layers are weighted equally in the SGCS formula. 
Given that Method 3 is adopted, we still need to adopt a down-selected metric between Method 1 and Method 2. In fact, Method 3 by itself is not enough as an intermediate KPI in some circumstances. A single number, rather than multiple ones, is preferred as an intermediate KPI at least in some scenarios. For example, consider the case that we want to compare the performance of two pairs of layer-common two-sided AI/ML model for the case that rank = 2. The SGCSs for the two layers are  and  for AI/ML model 1, and are  and  for AI/ML model 2, which satisfy . In this case, it is difficult to decide which of the two AI/ML models is better by Method 3 only. By using Method 2, AI/ML model 2 is regarded as superior compared to AI/ML model 1, which is consistent with the reasoning presented earlier. 
As a result, we have the following proposal.
Proposal-1: For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, normalized weighted SGCS should be selected as an intermediate KPI,

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
Evaluation results for CSI compression 
Quantization
In RAN WG1 111 meeting, the following agreement regarding the AI/ML model quantization for CSI compression has been made [2]. In this section, we give the simulation results for the following evaluation cases and show the performance of quantization in spatial-frequency-domain CSI compression using two-sided AI/ML models.  
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training.
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase.
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase.
· Companies to report how to update the quantization method/parameters during the training.
Note: the above cases apply



In our view, for quantization aware training, the quantization/dequantization is involved in both the forward propagation (FP) and the loss function, this in turn affects back propagation (BP) in the whole training phase. The AI/ML model trained by a quantization aware strategy may be completely different from the AI/ML model trained by a quantization non-aware strategy in terms of both model weights and model performance. 
To evaluate the performance difference between quantization aware training and quantization non-aware training, we consider B-bits scalar uniform quantization. In our simulation, the input of quantization is normalized into the range [0,1] by setting the activation function of the neural network layer before quantization as sigmoid. The training data and test data are the right singular vectors of the channel matrix of a CDL-C-300-10. 
The simulation results are provided in Figure 3 for 2-bits quantization aware training and {2,3,4,5}-bits quantization non-aware training under various feedback payloads. From this figure, it can be observed that：
· Compared with quantization aware training, there is a 0.01~0.03 SGCS loss for quantization non-aware training under various feedback payloads.
· The SGCS loss of quantization non-aware training is reduced with the increasing quantization bits and the feedback payloads.
Observation-3: For scalar uniform quantization, the performance of quantization aware training is better than that of quantization non-aware training, and the performance loss of quantization non-aware training is reduced with the increasing quantization bits and feedback payloads.
Let’s fix a payload size, e.g., 120 bits. The numbers of floating-point outputs of the neural networks are 60, 40, 30, 24, for the 2-bit, 3-bit, 4-bit, and 5-bit quantizers, respectively. It is observed from Figure 3 that the performance of the case of quantization aware training followed by a 2-bit scalar quantizer is the best among all cases. The reasons are two-folded. First, the number of floating-point outputs in this case is the largest, which allows a neural network of a large size. Second, since the neural network is trained according to how its floating-point outputs are quantized in quantization aware training, the neural network is trained to adjust a better performance of the classification problem of the quantizer.
Observation-4: For a fixed number of payload size, the number of floating-point outputs of the neural network followed by a small-resolution quantizer is larger than that followed by a high-resolution quantizer. This is helpful in increasing the SGCS performance if quantization aware training is used.
 
[bookmark: _Ref127112313]Figure 3: The SGCS performance of 2-bits quantization aware training and {2,3,4,5}-bits quantization non-aware training.
In addition to the above uniform (scalar) quantization, we also consider a vector quantization (VQ) approach where the VQ table is updated during the training phase. Figure 4 provides the SGCS performance of the scalar uniform quantization and the VQ under various feedback payloads. From this figure, it can be seen that:
· Compared with the “Case 2-1 quantization aware training”, where the (scalar uniform) quantization method is fixed, the vector quantization (VQ) is updated together with the AI/ML models during the training phase in the “Case 2-2 quantization aware training”, which offers slightly better performance.
Observation-5: Under the method of quantization aware training, compared with the fixed scalar uniform quantization method (Case 2-1), better performance is achieved in a updated quantization approach (Case 2-2), where the vector quantization is updated together with the AI/ML models during the training phase.
 
[bookmark: _Ref127114071]Figure 4: The SGCS performance of the fixed/pre-configured quantization and the non-fixed/non-pre-configured quantization under various feedback payloads.
Based on the above simulation results, we have the following proposal.
Proposal-2: Quantization aware training is considered as the priority training strategy for the evaluation of AI/ML based CSI compression feedback.
Proposal-3: In quantization aware training, it is suggested that we increase the number of floating-point outputs for a fixed number of output bit numbers.
We should also note that the cost of Case 2-2 is higher than those of Case 2-1. Specifically, since the quantizer is updated in the training phase, the quantization method, e.g., the codebook for VQ, should be acknowledged between the UE and gNB. The overhead is increased because of the possibly transmitted quantization codebook. With this regard, the throughput gain should be studied to ensure the gain of VQ. So, we have the following proposal.
Proposal-4: For the evaluation of the quantization aware training, study and compare the throughput achieved by the approaches that the quantizers are updated (Case 2-2) or not (Case 2-1) during the training phase. This provides evidence for studying which of the two should be considered as the priority method.
Separate training
In RAN WG1 111 meeting, the following agreement regarding Type 3 training for CSI compression has been made [2]. In this section, we give the simulation results for the following evaluation cases and show the performance of separate training for multi-vendors in spatial-frequency-domain CSI compression using two-sided AI/ML models.  
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors 
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models 



For spatial-frequency-domain CSI compression using two sided AI/ML models, joint training will face proprietary and hardware-compatible challenges for multi-vendors. If the CSI generation part or the CSI reconstruction part is transferred over the air interface, the AI/ML model description is also a big challenge.  For separate training, the CSI generation part and the CSI reconstruction part can be independently trained with a set of separate training data provided by NW side or UE side, even a common data provided by a third parity. This kind of training strategy can directly avoid model transferring and the above challenges.
For the above evaluation cases, the separate training process in our simulations is given as follows:
· Case 1
· UE-first: the CSI generation part and the CSI reconstruction part are jointly trained at a UE side with right singular vectors . Then separate training dataset  is generated with right singular vectors  (different from ) where  is the output of CSI generation part for the input . The CSI reconstruction part is separately trained at a NW side with separate training dataset .
· NW-first: the CSI generation part and the CSI reconstruction part are jointly trained at a NW side with right singular vectors . Then separate training dataset  is generated with right singular vectors  (different from ) where  is the output of CSI generation part for the input . The CSI generation part is separately trained at a UE side with separate training dataset .
· Case 2: Each pair of CSI generation part and the CSI reconstruction part is jointly trained at each UE side with right singular vectors . Then the separate training dataset  is generated for each UE which is similar to Case 1 UE-first. The CSI reconstruction part is separately trained at a NW side with mixed separate training dataset  from multiple UE sides.
· Case 3: Each pair of CSI generation part and the CSI reconstruction part is jointly trained at each NW side with right singular vectors . Then the separate training dataset  is generated for each NW which is similar to Case 1 NW-first. The CSI generation part is separately trained at a UE side with mixed separate training dataset  from multiple NW sides.
	Feedback payload(bits)
	Joint training
	NW-first
without quantization
	NW-first 
with quantization
	UE-first
without quantization
	UE-first
with quantization

	80
	0.7559
	0.7557
	0.7534
	0.7564
	0.7556

	120
	0.8282
	0.8279
	0.8265
	0.8266
	0.8256

	180
	0.8855
	0.8854
	0.8842
	0.8828
	0.8822

	240
	0.9236
	0.9233
	0.922
	0.9232
	0.922

	280
	0.9354
	0.9353
	0.9342
	0.9351
	0.934


[bookmark: _Ref127151911]Table 1: The SGCS performance of separate training with different quantization behaviors.

We perform the link level simulations to evaluate performance of separate training with different quantization behaviors. The training data and test data are the right singular vectors of the channel matrix of a CDL-C-300-10.  Two kinds of separate training dataset are considered as follows：
· The output of CSI generation part after quantization is used for constructing separate training dataset.  
· The output of CSI generation part before quantization is used for constructing separate training dataset.
Table 1 provides the SGCS performance of separate training with two above quantization behaviors. No obvious performance difference is observed between two quantization behaviors for both NW-first and UE-first separate training.
Observation-6: There is negligible performance difference between two quantization behaviors for both NW-first and UE-first separate training. 
[bookmark: _Ref127153778]Table 2: The SGCS performance of UE-first separate training with one UE part model and NW-first separate training with one UE part model.
	Feedback payload(bits)
	Joint training
Transformer
	NW-first
Transformer-Transformer
	NW-first
CNN-Transformer
	UE-first
Transformer-Transformer
	UE-first
Transformer-CNN

	80
	0.7559
	0.7557
	0.7149
	0.7564
	0.705

	120
	0.8282
	0.8279
	0.7664
	0.8266
	0.7768

	180
	0.8855
	0.8854
	0.8086
	0.8828
	0.8206

	240
	0.9236
	0.9233
	0.8432
	0.9232
	0.8705

	280
	0.9354
	0.9353
	0.8923
	0.9351
	0.8854



Table 2 provides the SGCS performance of NW-first separate training with one NW part model and two separate UE part models and UE-first with separate training with one UE part model and two separate NW part models. The training data and test training are also the right singular vectors of the channel matrix of a CDL-C-300-10. It can be seen that there is no significant performance loss between joint training and separate training for Transformer models.
Observation-7: For the Case 1 of Type 3 training, only a negligible SGCS degradation (0.0001~0.0011) is observed compared to joint training. 
Observation-8: For the Case 1 of Type 3 training, by varying the backbones of AI/ML models and fixing other conditions, it is observed that the performance of transformer models is superior to that of a convolutional neural network (CNN).
[bookmark: _Ref127154651]Table 3: The SGCS performance of UE-first separate training with 2 separate UE part models and 2 separate NW part model.
	Feedback payload(bits)
	Joint training Transformer
	Joint training
CNN
	Separate training
Transformer-Transformer
	Separate training
CNN-Transformer

	80
	0.7559
	0.9166
	0.7254
	0.9178

	120
	0.8282
	0.9472
	0.8067
	0.9437

	180
	0.8855
	0.9562
	0.8699
	0.9577

	240
	0.9236
	0.9636
	0.9119
	0.9633

	280
	0.9354
	0.9675
	0.9237
	0.9664


[bookmark: _Ref127154654]Table 4: The SGCS performance of NW-first separate training with 2 separate UE part models and 2 separate NW part model.
	Feedback payload(bits)
	Joint training
Transformer
	Joint training
CNN
	Separate training
Transformer-Transformer
	Separate training
Transformer-CNN

	80
	0.7559
	0.9166
	0.75
	0.9024

	120
	0.8282
	0.9472
	0.8227
	0.9316

	180
	0.8855
	0.9562
	0.8814
	0.9483

	240
	0.9236
	0.9636
	0.9185
	0.9588

	280
	0.9354
	0.9675
	0.932
	0.9648



Table 3 and Table 4 provide the SGCS performances of UE-first separate training with 2 separate UE part models and NW-first separate training with 2 separate NW part models. The transformer model of joint training is trained by right singular vectors of CDL-300-10, but the CNN model of joint training is trained by right singular vectors of CDL-30-10. The separate training data is generated by mixing the input and the output of both Transformer based and CNN based CSI generation part after quantization. It can be noticed that the significant performance loss of Case 2 of Type 3 training is observed compared with joint training when the backbones of joint training AI//ML models are transformer. However, no obvious performance loss is observed for Case 2 of Type 3 training when the backbones of joint training AI//ML models are CNN. For Case 3 of Type 3 training, minor performance loss can be observed for both transformer based and CNN based backbones.
Observation-9: For the Case 2 of Type 3 training, where the training at UE side is performed at first, the SGCS degradation is 0.11~0.03 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-10: For the Case 3 of Type 3 training, where the training at NW side is performed at first, the SGCS degradation is negligibly 0.003~0.006 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Proposal-5：For the evaluation of the Type 3 training, evaluate the effect of the choice of backbone of AI/ML model on the performance of Type 3 training.
Proposal-6：For the evaluation of the Type 3 training, evaluate the effect of the choice of quantizer on the performance of Type 3 training, from the perspectives of
· Training method: quantization aware training or quantization non-aware training.
· Quantization method: scalar quantization or vector quantization.
AI/ML model generalization/scalability
In RAN WG1 111 meeting, the following agreement regarding the scalability over different input dimensions of CSI generation part has been made [2]. In our previous contributions, some evaluation results for AI/ML model generalization/scalability of feedback payload were provided [3][2]. In this section, we give the simulation results for AI/ML model generalization/scalability of sub-bands and antenna ports using zero-padding method in spatial frequency CSI compression.  
	[bookmark: _Hlk127381436]Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases



In our evaluations, the method to achieve the scalability over different input dimensions of CSI generation part is zero-padding. As shown in Figure 5, the input of CSI generation part will be filled with zero value along the sub-band dimension and/or the antenna port dimension if input dimensions are less than pre-configured values. For the CSI reconstruction part, the output will be truncated in the positions of zero-padding. 
[bookmark: _Ref127126631][image: ]
Figure 5: The generalization/scalability of sub-bands and antenna ports with zero-padding method.
We perform the link-level simulation to evaluate the scalability performance of zero-padding method for different numbers of sub-bands and antenna ports. Figure 6 gives the scalability performance for 10 sub-bands and 13 sub-bands under various feedback payloads. In this figure, three lines stand for different combinations of training data and test data as follows:
· 10 sub-bands 32 ports case 1:  both training and test perform on the data of 10 sub-bands and 32 antenna ports.
· 10 sub-bands 32 ports case 2: training on the data of 13 sub-bands and 32 antenna ports, and test on the data of 10 sub-bands and 32 antenna ports.
· 10 sub-bands 32 ports case 3: training on the mixed data of 10 sub-bands and 13 sub-bands, and test on the data of 10 sub-bands and 32 antenna ports.
It can be observed from this figure that:
· There is a significant performance loss when the AI/ML model is trained by 13 sub-bands data and tested by 10 sub-bands data.
· The AI/ML model can achieve the good scalability performance for the number of sub-bands using zero-padding method when the AI/ML model is trained with the mixed data of 10 sub-bands and 13 sub-bands.
It should be noted that the performance of 10 sub-bands 32 ports case 3 is even better than that of 10 sub-bands 32 ports case 1. This performance gain may benefit from a larger size of the mixed data.

[bookmark: _Ref127127665]Figure 6: The scalability performance for different numbers of sub-bands.
Figure 7 gives the scalability performance for 16 antenna ports and 32 antenna ports under various feedback payloads. In this figure, three lines stand for different combinations of training data and test data as follows:
· 13 sub-bands 16 ports case 1:  both training and test perform on the data of 13 sub-bands and 16 antenna ports.
· 13 sub-bands 16 ports case 2: training on the data of 13 sub-bands and 32 antenna ports, and test on the data of 13 sub-bands and 16 antenna ports.
· 13 sub-bands 16 ports case 3: training on the mixed data of 16 antenna ports and 32 antenna ports, and test on the data of 13 sub-bands and 16 antenna ports.
It can be observed from this figure that:
· There is a significant performance loss when the AI/ML model is trained by 32 sub-bands data and tested by 16 sub-bands data.
· The AI/ML model can achieve the good scalability performance for the number of antenna ports using zero-padding method when the AI/ML model is trained with the mixed data of 16 antenna ports and 32 antenna ports.


[bookmark: _Ref127129951]Figure 7: The scalability performance for different numbers of antenna ports.
Observation-11: For generalization/scalability of AI/ML model over the different number of sub-bands, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-12: For generalization/scalability of AI/ML model over the different number of antenna ports, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Finetuning
In the RAN WG1 110bis-e meeting, the following agreement regarding the AI/ML model finetuning for CSI feedback enhancement was made [3].
Agreement
For the evaluation of the potential performance benefits of model fine-tuning of CSI feedback enhancement which is optionally considered by companies, the following case is taken 
· The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
In this section, we evaluate the performance benefits of model finetuning according to this agreement. In particular, link-level simulations are performed. We show that there is a significant performance gain of using finetuning, which is close to the performance of joint training. 
Finetuning for a jointly trained model
We describe our simulation setting as follows. A pair of two-sided AI/ML model is trained using a training dataset composed by the right singular vectors of the channel matrix of a CDL-C-300-10 channel. We then use a dataset composed by the right singular vectors of the channel matrix of a CDL-C-30-10 channel to do finetuning. The inference is performed by the dataset of same type of that of the finetuning dataset, but is independently drawn from the finetuning dataset.
When the size of finetuning dataset is 40K, the performance of finetuning is shown in Figure 8. The simulation parameters are summarized in Table 8 in Appendix A. According to Figure 8, a negligible performance degradation is observed in finetuning, compared to the performance of the jointly trained AI/ML model on CDL-C-30-10 channel.
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Figure 8: The performance of finetuning.
Finetuning for a separately trained model
Using high-resolution codebook quantization
We describe our simulation setting as follows. Two pairs of two-sided AI/ML models, namely AI/ML model pair A and AI/ML model pair B are trained based on the training dataset from the scenarios of CDL-C-30-10 and CDL-C-300-10 channels, respectively. The AI/ML-based CSI generation part of the AI/ML model pair A, namely Encoder A, is finetuned using a dataset  drawn from the CDL-C-300-10 channel, and the updated encoder is called Encoder A’. Then the performance of the pair of AI/ML model, which is composed by Encoder A’ and the AI/ML-based CSI reconstruction part of the AI/ML model pair B, namely Decoder B, is tested using a dataset  drawn independently from the CDL-C-300-10 channel.
We present the datasets used for finetuning () and inference (). The dataset for inference is composed by the right singular vectors of the channel matrices of CDL-C-300-10 channels. The dataset for finetuning is composed by the quantized version of the right singular vectors of the channel matrices of CDL-C-300-10 channels. Specifically, the approach of quantization is high resolution codebook quantization using Rel-16 type II-like method with new parameter values. In this paper, we choose two sets of new parameter values, which are presented in Table 5.
Table 5. The parameters of Rel-16 type II-like method for finetuning dataset construction.
	
	
	
	
	
	
	
	Reference Amplitude (bit)
	Difference Amplitude (bit)
	Phase (bit)
	Total Bit Number
	SCGS in CDL-C-300-10

	Parameter Set #1
	6
	7
	0.5
	0.5
	13
	1
	4
	4
	4
	449
	0.8387

	Parameter Set #2
	12
	13
	0.95
	0.5
	13
	1
	4
	4
	4
	1579
	0.9609



The simulation parameters are summarized in Table 7 in Appendix A. The size of the dataset for finetuning is 40K. The performance is measured by SGCS and is presented in Figure 9.
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Figure 9: The performance of finetuning from an AI/ML model trained in the scenario of CDL-C-30-10 channel, which is compared with that of the jointly trained two-sided AI/ML model and Rel-16 type II codebook for the scenario of CDL-C-300-10.
It is noticed from Figure 9 that the SGCS achieved by finetuning is very close to that of the jointly trained AI/ML model, which is much better than that of Rel-16 type II codebook. We have the following observations and proposal.
Observation-13: There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.
Observation-14: The performance of the finetuning is very similar to that of joint training in terms of the SGCS.
Observation-15: For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.
Proposal-7: High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.
Comparison with finetuning using right singular vectors
In this subsection, we compare the finetuning performance obtained from using Rel-16 type II-like method and true right singular vectors of channel matrices. The result is shown in Figure 10. It is observed that the performance of finetuning using those two types of data is almost the same.
Observation-16: The performance of finetuning is almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.
It is also noticed from Figure 10 that the performance varies for different amount of finetuning data used. Specifically, a better performance is obtained when a larger amount of data is used than a small amount of data used for finetuning. We further study this problem in the next subsection.
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Figure 10: Comparison of the performances of finetuning using Rel-16 type II-like method and right singular vectors of channel matrices.
We analyze the overhead reduction. As discussed above, 449 bits are consumed for each codebook vector with parameters in Table 5, which is approximately 56 bytes. However, according to the antenna configuration and the number of subband as summarized in Table 8, a total number of 3328 bytes is needed to represent a right singular vector in floating-point numbers. By using codebook-based dataset, only  overhead is consumed compared to the dataset of right singular vectors, but only with a minor performance degradation in terms of the SGCS. 
We have the following observation and proposal.
Observation-17: It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method in order to achieve a low-overhead dataset transferring in separate training.
Proposal-8: In order to achieve a low-overhead dataset transferring in over-the-air-training/monitoring , the codebook-based quantization approach should be further studied.
Evaluation results for CSI prediction
In RAN WG1 110bis-e, the following conclusions for CSI prediction have been made. In this section, we provide our views and evaluation results for CSI prediction.
	Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the outdoor UEs, add O2I car penetration loss per TS 38.901 if the simulation assumes UEs inside vehicles.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, no explicit trajectory modeling is considered for evaluation
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, and if the AI/ML model outputs multiple predicted instances, the intermediate KPI is calculated for each prediction instance
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, both of the following types of AI/ML model input are considered for evaluations:
· Raw channel matrixes
· Eigenvector(s)
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the evaluation of CSI prediction:
· Companies are encouraged to report the assumptions on the observation window, including number/time distance of historic CSI/channel measurements as the input of the AI/ML model, and
· Companies to report the assumptions on the prediction window, including number/time distance of predicted CSI/channel as the output of the AI/ML model



For CSI prediction, eigenvectors as the input of AI/ML models can be a starting point since their dimension size is more less than raw channel matrices. The eigenvector prediction considered in this contribution is illustrated in Figure 11 where the historical eigenvectors are used to predict the future eigenvectors at one or multiple slots.  The gain of the AI/ML based eigenvector prediction compared to the sample-and-hold method is evaluated by link level simulations. The CDL-C channel is considered in Table 1 where Doppler’s shifts 100/200/400 respectively correspond to UE speeds 30/60/120 km/h. The sampling interval of eigenvectors (v1, v2, v3, …) is 5ms, the slot number of AI/ML model input and output is 4 and 1, respectively. The evaluation result is provided in Table 6 where CNN and residual CNN are considered. It can be seen that:
· AI/ML based eigenvector prediction outperforms the sample-and-hold method for temporal domain.
· For AI/ML based eigenvector predictions, the performance gain is decreased as the UE speed increases, compared to the sample-and-hold method.
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[bookmark: _Ref127294612]Figure 11: The prediction of right singular vectors (eigenvectors). 

[bookmark: _Ref127296674]Table 6: The SGCS performance of AI/ML based CSI prediction and sample-and-hold for right singular vectors of CDL-C channels.
	SGCS 
	Sample-and-hold
	AI/ML-based CSI prediction
(v1,v2,v3,v4->v5)

	
	
	CNN
	Residual CNN

	CDL-C-30-100
	0.556
	0.911
	0.916

	CDL-C-300-100
	0.557
	0.940
	0.945

	CDL-C-30-200
	0.398
	0.679
	0.670

	CDL-C-300-200
	0.395
	0.799
	0.822

	CDL-C-30-400
	0.426
	0.542
	0.551

	CDL-C-300-400
	0.425
	0.666
	0.688



Observation-18: AI/ML-based eigenvector prediction outperforms the sample-and-hold method for temporal domain.
Observation-19: For AI/ML-based eigenvector predictions, the performance gain is decreased as the UE speed increases, compared to the sample-and-hold method.
A. Evaluation methodologies and simulation parameters
In the previous meeting, the frequency granularity for computing the intermediate KPI for CSI compression using two-sided AI/ML model is agreed [3] for the purpose of calibrating the performance of both AI/ML-based and legacy codebook-based approaches among companies.
Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for the calculation of intermediate KPI, the following is considered as the granularity of the frequency unit for averaging operation 
· For 15kHz SCS: For 10MHz bandwidth: 4 RBs; for 20MHz bandwidth: 8 RBs
· For 30kHz SCS: For 10MHz bandwidth: 2 RBs; for 20MHz bandwidth: 4 RBs
· Note: Other frequency unit granularity is not precluded and reported by companies
The parameters for link-level simulation used in this paper are summarized in Table 7.
Table 7. Simulation parameters.
	Parameter
	Value


	Duplex, Waveform
	FDD, OFDM

	BS Antenna Element Number (
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE Antenna Element Number ()
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	UE Speed
	3 km/h

	Channel Estimation
	Realistic Channel Estimation

	Rank per UE
	1

	SNR
	10 dB

	Channel Model
	CDL-C

	Data size
	80000 for training, 4000 for testing.

	Bandwidth
	10 MHz

	RB Number
	52

	Sub-Band Number
	13

	Carrier Frequency
	2 GHz

	Sub-Carrier Spacing
	15 kHz

	Delay Spread
	30 ns
	300 ns



B. The details of the two-sided AI/ML model
In this appendix, we present the details of the two-sided AI/ML model we use in our evaluation.
The structure of the two-sided AI/ML model is depicted in Figure 12. The number of parameters in the AI/ML model is 10.86M, and the computational complexity is 137.96M FLOPS.
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Figure 12: The two-sided AI/ML model used in the simulations.

Conclusions
Observation-1: The GCS obtained from Method 2 gives a larger number than that obtained from Method 1.	
Observation-2: Instead of averaging over ranks evenly in the GCS formula, the stronger ranks whose GCS are larger are more heavily weighted than the weaker ranks in Method 2 of computing GCS.
Observation-3: For scalar uniform quantization, the performance of quantization aware training is better than that of quantization non-aware training, and the performance loss of quantization non-aware training is reduced with the increasing quantization bits and feedback payloads.
Observation-4: For a fixed number of payload size, the number of floating-point outputs of the neural network followed by a small-resolution quantizer is larger than that followed by a high-resolution quantizer. This is helpful in increasing the SGCS performance if quantization aware training is used.
Observation-5: Under the method of quantization aware training, compared with the fixed scalar uniform quantization method (Case 2-1), better performance is achieved in a updated quantization approach (Case 2-2), where the vector quantization is updated together with the AI/ML models during the training phase.
Observation-6: There is negligible performance difference between two quantization behaviors for both NW-first and UE-first separate training. 
Observation-7: For the Case 1 of Type 3 training, only a negligible SGCS degradation (0.0001~0.0011) is observed compared to joint training. 
Observation-8: For the Case 1 of Type 3 training, by varying the backbones of AI/ML models and fixing other conditions, it is observed that the performance of transformer models is superior to that of a convolutional neural network (CNN).
Observation-9: For the Case 2 of Type 3 training, where the training at UE side is performed at first, the SGCS degradation is 0.11~0.03 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-10: For the Case 3 of Type 3 training, where the training at NW side is performed at first, the SGCS degradation is negligibly 0.003~0.006 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-11: For generalization/scalability of AI/ML model over the different number of sub-bands, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-12: For generalization/scalability of AI/ML model over the different number of antenna ports, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-13: There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.
Observation-14: The performance of the finetuning is very similar to that of joint training in terms of the SGCS.
Observation-15: For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.
Observation-16: The performance of finetuning is almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.
Observation-17: It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method in order to achieve a low-overhead dataset transferring in separate training.
Observation-18: AI/ML-based eigenvector prediction outperforms the sample-and-hold method for temporal domain.
Observation-19: For AI/ML-based eigenvector predictions, the performance gain is decreased as the UE speed increases, compared to the sample-and-hold method.

Proposal-1: For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, normalized weighted SGCS should be selected as an intermediate KPI,

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
Proposal-2: Quantization aware training is considered as the priority training strategy for the evaluation of AI/ML based CSI compression feedback.
Proposal-3: In quantization aware training, it is suggested that we increase the number of floating-point outputs for a fixed number of output bit numbers.
Proposal-4: For the evaluation of the quantization aware training, study and compare the throughput achieved by the approaches that the quantizers are updated (Case 2-2) or not (Case 2-1) during the training phase. This provides evidence for studying which of the two should be considered as the priority method.
Proposal-5：For the evaluation of the Type 3 training, evaluate the effect of the choice of backbone of AI/ML model on the performance of Type 3 training.
Proposal-6：For the evaluation of the Type 3 training, evaluate the effect of the choice of quantizer on the performance of Type 3 training, from the perspectives of
· Training method: quantization aware training or quantization non-aware training.
· Quantization method: scalar quantization or vector quantization.
Proposal-7: High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.
Proposal-8: In order to achieve a low-overhead dataset transferring in over-the-air-training/monitoring, the codebook-based quantization approach should be further studied.
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