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Introduction
RAN1 agreements that are related to evaluation on AI/ML for beam management can be found in Annex I. Based on the discussion in previous RAN1 meetings, the focus of the study should be on BM-Case1 and BM-Case2. In this contribution, we discuss the characterization and baseline performance evaluations for sub use case BM-Case1 and for sub use case BM-Case2. We discuss different alternatives for each sub-use case including the details of simulation assumptions, baseline assumptions, and KPIs. We also provide simulation results for various alternatives. 

[bookmark: _Hlk510705081]Discussion
Common Assumptions for Beam Management Use Case
1.1.1 [bookmark: _Ref101443687]KPIs and Corresponding Requirements
To evaluate the performance of AI/ML in beam management, in the RAN1 #109-e meeting the agreement [1] was made to further study the following KPI options: Beam prediction accuracy related KPIs, which may include the options specified in Table 2.1‑1, and System performance related KPIs, which may include the options listed in Table 2.1‑2.
[bookmark: _Ref101387491][bookmark: _Ref101867971]Table 2.1‑1: List of Beam prediction accuracy related KPIs to evaluate the performance of AI/ML in beam management.
	KPIs
	KPI description
	Notes

	Beam prediction accuracy Top-1 (%)
	the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”  
	

Where  is the index of the Top-1 predicted beam and  is the index of the Top-1 genie-aided beam. 
 is the number of data points for obtaining the ML model performance,  is the indicator function. If , then . Otherwise, . Top-1 genie-aided beam index is selected based on  for , where are all the beams in SetA. 

	Beam prediction accuracy Top-K/1 (%) 
	the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”  
	

Where  is the index of the k-th beam in the Top-K predicted beams and  is the index of the Top-1 genie-aided beam. 

	Beam prediction accuracy (%) with 1dB margin for Top-1 beam

	The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam”  
	

Where  is the RSRP of the Top-1 genie-aided beam and  is the RSRP of the Top-1 predicted beam. 

	Average L1-RSRP difference of Top-1 predicted beam
	 The difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam 
	



[bookmark: _Ref110604347]Table 2.1‑2: List of System performance related KPIs to evaluate the performance of AI/ML in beam management.
	KPIs
	KPI description
	Notes

	UE throughput
	CDF of UE throughput, Average throughput and 5%-tile UE throughput
	A similar mechanism as in Rel-16/17 MIMO BM simulations 

	RS overhead reduction 
	RS overhead reduction at least for spatial-domain beam prediction at least for Top-1 beam
	For the evaluation of the overhead for BM-Case1, adoption the Opt1 metric:

•	where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
•	where M is the total number of beams (pairs) to be predicted
For the evaluation of the overhead for BM-Case2, adoption the Opt3 metric:

•	where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
•	where M is the total number of beams (pairs) to be predicted for each time instance
•	where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction



[bookmark: _Ref110988984]BM Case-1: Spatial Domain Beam Prediction 
[bookmark: _Ref111112482]Set A/B are DL Tx Beams
Here, we provide the characterization and baseline performance evaluations for Spatial-domain DL Tx beam prediction for Set A of beams based on measurement results of Set B of beams. 
Baseline Assumptions
Based on the agreed baselines from RAN1#109e, the following options are considered:
· BM-Case1 Baseline-option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· BM-Case1 Baseline-option 2-1 (Set B is a subset of Set A/ Set B is different from Set A): Select the best beam within Set B
· BM-Case1 Baseline-option 2-2 (Set B is different from Set A): Hierarchical search for the best narrow beam from the best wide beam.

[bookmark: _Ref110848946]Evaluation Results for Set B is a Subset of Set A  
In this section, the following BM-Case alternative has been considered for evaluation:
BM- Alt. 1-1 - Set B is a subset of Set A
· ML model input: Set B beam L1-RSRP
· ML model output: Set A best beam ID
· Model training and testing with the same Set B

BM-Case Alt. 1-2
ML model input: Set B beam L1-RSRP + assistant info
· Assistant info:
· the beam ID for the measured beams.
· the beam angle and/or the beam boresight direction for the measured DL Tx beams from NW to UE.
· the UE position information.
· the UE’s angle relative to a panel array of the gNB.
· ML model output: Set A best beam ID
· Model training and testing with the same Set B


[bookmark: _Ref118319324]Table 2.2‑1: Evaluation results for BM-Case1 for DL Tx beam prediction Alt. 1-1.
	[bookmark: _Hlk118318733]
	ML-based beam selection (Set B 32 beams)
	ML-based beam selection (Set B 16 beams)
	ML-based beam selection (Set B 8 beams)
	ML-based beam selection (Set B 4 beams)

	Assumptions
	Number of beams in Set A
	64

	
	Number of beams in Set B
	32
	16
	8
	4

	
	Baseline scheme
	option 2-1

	AI/ML model
input/output
	Model input
	RSRP

	
	Model output
	Beam ID

	Data Size
	Training
	~40,000 UEs

	
	Testing
	~4,000 UEs

	AI/ML model
	Model structure
	ResNet with DNN

	
	Model complexity
	~50k 

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Prediction Accuracy (1 dB RSRP Margin) [%]
	99/-
	96/37
	86/20
	69/11

	
	[L1-RSRP Diff]
	Average RSRP Error [dB]
	0.03/-
	0.2/2.95
	0.8/6.11
	2.605/9.597

	
	[System performance]
	RS overhead Reduction (%)

	50
	75
	87.5
	93.75

	
	
	Average cell throughput ratio – Method/Ideal [%]
	100/98
	100/85
	98/73
	-

	
	
	5th percentile UE throughput ratio – Method/Ideal [%]
	100/97
	99/86
	84/75
	-


Note: Rx beam selection fixed to panel boresight direction.

[bookmark: _Ref111208906]From Table 2.2‑1, we have the following observations:
1. When using 32 beams Set B RSRP to predict the best beam in 64 beams Set A, the prediction accuracy is 99% and the prediction RSRP error mean is 0.2 dB, which is negligible. However, when using 16/8/4 beam Set B RSRP to predict 64 beams Set A, the prediction accuracy drops, and the prediction RSRP error mean increases.
The 32 beams baseline has a similar throughput to the 64 beams baseline, and the 16/8 beams baseline has worse throughput than the 64/32 beams baseline. This indicates that given the current agreed antenna configuration setup, using a large number of beams in Set A (i.e. 64 beams) is not useful as it may not provide any additional system throughput gain but introduce latency. Also, using many beams in Set A may cause misinterpretation of the beam prediction performance as they are too correlated (too close to each other). For example, if Set A has 128 beams and Set B has 32 beams, now  but the prediction accuracy can still be close to 100%. 

2. From Table 2.2‑1, ML-based 16 beams have high prediction accuracy (>95%) and the prediction RSRP error mean is lower than 1 dB, and its good prediction performance is also reflected in the throughput that it has similar system throughput compared to the ideal baseline. On the other hand, from ML-based 8/4 beams, the prediction accuracy drops by a significant margin, and the ML-based 8 beams start losing nonnegligible cell-edge UE throughput compared to the ideal case. Therefore, if the beam prediction model input ONLY uses a “sparse” Set B or a poor Set B pattern design for the UE, may cause throughput loss, especially for the cell-edge UE. By this point, we understand that in certain cases, Set B RSRP may not be sufficient for beam prediction input, and additional assistant info may be needed to improve the prediction performance. 

Observation 1:  For BM-Case1, a large number of beams in Set B (e.g., 32) may not improve the prediction accuracy and the system throughput. Therefore, ML-based beam selection should consider a Set B with a maximum of 16 beams when Set A has 64 beams, hence Set B should have a max of ¼ of Set A beams. 

Observation 2:  The design of Set A/B together with the ML model design should provide comparable or better sector throughput and cell-edge UE throughput compared to the non-ML baseline.

Observation 3:  For BM-Case1, Set B RSRP may not be sufficient for beam prediction input in certain cases.

Next, we show our simulation results with model input as Set B beam RSRP + assistant info.
[bookmark: _Ref118704870]Table 2.2‑2: Evaluation results for BM-Case1 for DL Tx beam prediction Alt. 1-2.
	
	ML Model with Assistance Info​

	Assumptions
	Number of beams in Set A
	64

	
	Number of beams in Set B
	8
	4

	
	Baseline scheme
	RSRP only

	AI/ML model
input/output
	Model input
	RSRP+ Beam Angle
	RSRP+Beam ID​
	RSRP+UE Pos​
	RSRP+UE Angle​
	RSRP+ Beam Angle
	RSRP+Beam ID​
	RSRP+UE Pos​
	RSRP+UE Angle​

	
	Model output
	Beam ID

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Prediction Accuracy (1 dB RSRP Margin) [%]
	86/87
	87/87
	87/87
	89/87
	69/69
	69/69
	81/69
	82/69

	
	[L1-RSRP Diff]
	Average RSRP Error [dB]
	0.78/0.74
	0.76/0.74
	0.69/0.74
	0.54/0.74
	2.61/2.61
	2.54/2.61
	1.25/2.61
	1.02/2.61

	
	[System performance]
	RS overhead Reduction (%)

	87.5
	87.5
	87.5
	87.5
	93.75
	93.75
	93.75
	93.75


Notes: Rx beam selection fixed to panel boresight direction. Dataset size and ML model same as in Table 2.2‑1.
From Table 2.2‑2, we make the following observations:
· Reducing the number of RSRP measurements used for the ML model input makes more relevant the use of assistance info as input of the ML model. Reducing the Set B dimension, the ML model has difficulties predicting the best beam, i.e., the angular directions with the highest RSRP values, especially when the few beams used as input all show low RSRP values. In this case, the use of assistance info like the UE position becomes crucial to help the ML model to learn that the best beam has angular directions toward the UE position instead of any other angular directions (including the ones with low RSRP values). The use of the UE’s angle relative to a panel array of the gNB as assistance information, confirm this behavior, as it is easy for the ML model to interpret angles instead of coordinates, predicting those challenging cases even better.  

Observation 4:  For BM-Case1, the ML model using as input only RSRP measurements has performances that reduce significantly by changing the number of RSRP measurements from 8 to 4, i.e., further downsampling Set A, from a ratio of ¼ to a ratio of 1/8. 

Observation 5:  For BM-Case1, when the ML model uses the UE angle as the assistance information, it has a better performance than all the other variants.

Observation 6:  For BM-Case1, the ML model using input RSRP measurements and UE Position has performances that outweigh the performance of the ML model using only RSRP.

· Using assistance information like Beam Angle and Beam ID related to the measured beams may not significantly improve the performance of the ML model that has input a fixed pattern of RSRP measurements. We believe this behavior is due to a fixed pattern of measurements for all the training samples. In this way, the ML model learns implicitly from the RSRP vector, that there are N different beams. Therefore, the information about the beam ID and beam angle of the measured beams does not impact the prediction performance. The same conclusion may not be held when the measured beams used for ML model input are chosen at random by the UE. 

Observation 7:  For BM-Case1, using assistance information like Beam Angle and Beam ID related to the measured beams may not significantly improve the performance of the ML model using as input only RSRP with a fixed pattern.

Proposal 1: For BM-Case1, RAN1 further study the use of assistance information at the ML model input. The following assistance information can be prioritized:
· the UE position information (for NW side model training/inference).
· the UE’s angle relative to a panel array of the gNB (for UE side model training/inference).

Evaluation Results for Set B is Different to Set A  
As mentioned in our other BM paper [4], for BM-Case- Set B is different from Set A, we consider Set B to be a wide beam codebook, and Set A is a refined (narrow) beam codebook. In the following, we will try to compare the Set A prediction performance based on different choices of Set B wide beam codebook, and we consider the following wide beam construction methods:
· [bookmark: _Hlk111107667]Wide beam codebook#1 - baseline
· The wide beam codebook construction is based on [3]

· Wide beam codebook#2
· The wide beam codebook construction is adding circular shift operation on top of [3] 

· Wide beam codebook#3
· Each wide beam codebook is the summation of the randomly selected refined beam in Set A. 

· Wide beam codebook#4
· The wide beam codebook is constructed in a hybrid fashion - some wide beams are constructed based on the wide beam codebook#1 method while other wide beams are constructed based on the wide beam codebook#3 method. The hybrid wide beam codebook has the same coverage as Set A. 

[image: ]Examples of wide beam codebook#1/#2/#3 are shown in Figure 2.2‑1[bookmark: _Ref115258438]Figure 2.2‑1: Examples design of wide beam codebook #1 #2 #3.

All wide beam codebooks combine 4 refined beams into 1 wide beam. In the following, we consider Set A with 64 and 32 refined beams, and Set B will have 16 and 8 wide beams correspondingly. Table 2.2‑3 shows the model performance KPI for different wide beam codebooks

[bookmark: _Ref118325602]Table 2.2‑3: Evaluation results for BM-Case1 for DL Tx beam prediction Alt. 2.
	
	Wide beam codebook#1
	Wide beam codebook#2
	Wide beam codebook#3
	Wide beam codebook#4
	Wide beam codebook#1
	Wide beam codebook#2
	Wide beam codebook#3
	Wide beam codebook#4

	Assumptions
	Number of beams in Set A
	64
	32

	
	Number of beams in Set B
	16
	8

	
	Rx beam selection 
	Optimal Rx beams 

	
	Baseline scheme
	option 2-2

	AI/ML model
input/output
	Model input
	RSRP

	
	Model output
	Beam ID

	Data Size
	Training
	38K

	
	Testing
	4K

	AI/ML model
	Model structure 
	ResNet with DNN

	
	Model complexity
	~50k 

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Prediction Accuracy (1 dB RSRP Margin) [%]
	94
	96
	99
	97
	73
	90
	94
	91

	
	[L1-RSRP Diff]
	Average RSRP Error [dB]
	0.26
	0.13
	0.07
	0.11
	3.16
	0.69
	0.45
	0.65

	
	[System performance]
	RS overhead Reduction (%)

	75
	75
	75
	75
	75
	75
	75
	75

	
	
	Average cell throughput ratio – Method/Ideal [%]
	-
	-
	-
	-
	92/100
	98/100
	98/100
	99/100

	
	
	5th percentile UE throughput ratio – Method/Ideal [%]
	-
	-
	-
	-
	71/100
	93/100
	71/100
	94/100



From Table 2.2‑3, we have the following observations:
1. For Set A with 64 beams, the designed wide beam codebooks #2/#3/#4 have marginal performance gain compared to the baseline wide beam codebook#1. This is mainly because of the large/oversampled beam number 64 in Set A for the current antenna configurations - with a 1 dB error margin, the wrong refined beam prediction may highly possibly has less than 1 dB RSRP difference compared to the actual best beam since the refined beams now are too close to each other.
2. For Set A with 32 beams, the designed wide beam codebooks #2/#3/#4 perform significantly better than the baseline wide beam. The idea behind the wide beam codebook #2/#3/#4 can be found in our other BM paper [4]. And as expected, randomly combining the refined beam to form the wide beam can provide the richest correlation between the refined beam and the wide beam codebook.
3. From Table 2.2‑3, one can see that the refined beam prediction with WB#1 has significantly worse throughputs than the baseline. On the other hand, the suggested WB#2, #3, #4 have comparable throughput to the baseline. One should notice that the assumption for WB#2, #3, #4 is using the wide beam codebook for SSB and using the SSB measurements to predict the refined beams, while the hierarchical search will additionally require UE-specific CSI-RS for P2 beam management. Also, as we point out in [4], WB#3 may not be good for SSB as it will degrade the cell coverage, and the throughput results also tell that the wide beam codebook with the best beam prediction results may not be beneficial for throughput. For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance. 

Observation 8:  For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance.

Proposal 2: For BM-Case1, RAN1 may further study the case of Set A/B are DL Tx and Set B/Set A are different.
· Set B is a wide beam codebook and Set A is a refined beam codebook
· Advance Set B designs are needed to provide sufficient refined beam prediction performance.
[bookmark: _Ref127116545]Evaluation Results for Various Set B of Beams  
In this section, we study the selection of SetB of Tx beams as well as the performances with different patterns of SetB and different pre-configured patterns of Set B. The following configurations were considered:
· Opt1: SetB is fixed across training and inference. For this option we studied several combinations for selecting the 16 Tx beams in SetB from all the Tx beams in SetA.
Among the different combinations of various SetB of beams, we heuristically selected the SetB beams with indexes [ 0, 4, 8, 12, 18, 22, 26, 30, 35, 39, 43, 47, 49, 53, 57, 61] corresponding to different azimuth and elevation angle directions as shown in Figure 2.2‑2.

· Opt2B: SetB is randomly changed among pre-configured patterns. We generate a set of pre-configured SetB patterns with size 24 by permuting some of the azimuth and elevation angle directions of the fixed SetB pattern defined in Opt1. We assume that each UE is configured with a pre-configured SetB pattern selected randomly from the set of pre-configured SetB patterns and the UE uses the same pre-configured SetB pattern over time. Training and inference consider different UEs. 

· Opt2C: SetB is randomly changed among the SetA beams. We assume that each UE randomly selects 16 Tx beams out of 64 Tx beams for measurements. In successive time instances the UE repeats the random selection of the 16 Tx beams out of 64 Tx beams and measures the corresponding beams. Training and inference consider different UEs.

We recall that for training the model for each configuration, we considered a dataset size specified in Table 2.2‑1 formed by ~40,000 UEs and for each UE we considered ~10 reporting instances. Therefore, ~400,000 random SetB patterns were generated for simulating the Opt2C configuration.
Proposal 3: For evaluating various Set B, companies report the number and the generation of pre-configured/pre-known patterns of Set B(s) as well as the number of SetB patterns generated for simulating the Opt2C configuration..
[image: ]
[bookmark: _Ref127114598]Figure 2.2‑2: Representation of the 64 Tx beams in the Grid of Beams (GoB) and their corresponding azimuth and elevation angle directions. 

[bookmark: _Ref127118462]Various SetB with Full Reporting
In this subsection, we consider NW side model training/inference as explaind in Section 4.1.1 of Other BM paper [4]. During inference operations, the NW indicates the UE to measure and report Set B beams measurements. SetB may be fixed by the NW, randomly picked by UE among pre-configured patterns or randomly changed by UE among the SetA beams. Full reporting would require the UE reports more than 4 beams (16 beams) in one reporting instance. 
Part (a) of Figure 2.2‑3 shows the Top-1 Tx beam prediction accuracy for the different configuration of SetB patters described in Section 2.2.1.4. Fixed SetB (Opt1) outperforms Pre-configured SetB (Opt2B) by small margin, and both Fixed/Pre-configured SetBs outperform random SetB (OptC). Part (b) of Figure 2.2‑3 shows the Top-2 Tx beam prediction accuracy above 95% for all three configurations. 
It is worth to mention that model performances for random SetB (OptC) are sensitive to the size of the dataset used for training. High accuracy is atteneined when the number of combinations of 16 Tx beams in SetB over the 64 Tx beams in SetA is large enough.
Observation 9:  Model performances for random SetB (OptC) Tx beam prediction is sensitive to the size of the dataset used for training.

[image: ][image: ]
(a)                                                (b)
[bookmark: _Ref127116474]Figure 2.2‑3: Top-1 and Top-2 Tx beam prediction results for different configuration of SetB patters: in Opt1 SetB is fixed across training and inference, in Opt2B SetB is randomly changed among pre-configured patterns, and in Opt2C SetB is randomly changed among the SetA beams. Model training/inference at NW side assuming reporting of all 16 measurements. 

Various SetB with N-best Beams Reporting
In this subsection, we investigate the model performance when the number of beams for the UE to report in one instance is limited. We considered the same simulations assumptions of Section 2.2.1.4.1 and we experimented with UE reporting the N-best beams with N=8 and N=4 (current option supported by the standard). 
Part (a) of Figure 2.2‑7 shows the Top-1 beam prediction accuracy results with N=8 reporting. Fixed/Pre-configured SetBs decrease the beam prediction accuracy at 1db by 1.7% and 2.7% compared to the full-beam reporting, respectively. A larger degradation of 4.4% it is observed for the random SetB, indicating that OptC is more sensitive to the number of reported beams. 
Observation 10: Model performances for OptC are more sensitive to the number of reported beams.

The resulst when N=4 reporting, are shown in Part (c) of Figure 2.2‑7. Fixed/Pre-configured SetBs decrease the beam prediction accuracy at 1db by 5% and by 7% compared to the full-beam reporting, respectively. Conversely, for the random SetB the beam prediction accuracy at 1db decreases by 12%, confirming the observation above. 
As shown in Part (d) of Figure 2.2‑7, with N=4 further measurements for the Top-2 beams are required to achieve Fixed/Pre-configured SetBs prediction accuracy above the 90-th percentile, indicating that 4-best beams may not be sufficient for training and inference at NW side the model for DL Tx beam prediction. Finally, OptC does not achieve a prediction accuracy above the 90-th percentile even with the further measurements for the Top-2. Suggesting that OptC requires reporting at least 8 beams. 
Observation 11:  Reporting 4-best beams may not be sufficient for training and inference at NW side the model for DL Tx beam prediction with Fixed/Pre-configured SetBs. OptC requires reporting of at least 8 beams.

Proposal 4: For BM-Case1, RAN1 may further investigate to enhance the reporting from 4-best beams to 8-best beams.

Proposal 5: For BM-Case1, RAN1 may prioritize the measurements of Fixed/Pre-configured SetBs (Opt1 and Opt2B) to be used on the NW side for input to model training/inference. 

[image: ] [image: ]
(a)                                               (b)
[image: ][image: ]
                        (c)                                                (d)
Figure 2.2‑4: Top-1 and Top-2 Tx beam prediction results for different configuration of SetB patters. Model training/inference at NW side assuming in (a) and (b) the UE reporting the 8-best beams and in (c) and (d) the UE reporting the 4-best beams.                     

Set B with Variable Number of Beams
Considering the SetA beams are fixed, and SetB has beams randomly changed among SetA beams, we show the beam prediction performance in Table 2.2‑4.
[bookmark: _Ref118705548]Table 2.2‑4: Evaluation results for BM-Case1 DL Tx beam with random Set B.
	
	ML Model 

	Assumptions
	Number of beams in Set A
	64

	
	Number of beams in Set B in model training
	32 
	Random number in [32,64]
	16
	Random number in [16,64]
	Random number in [16,64]

	
	Number of beams in Set B in model  testing 
	32
	32
	16
	32
	16

	
	Rx beam selection 
	Optimal Rx beams 

	AI/ML Model input/output
	Model input
	Beam RSRP, Beam ID (implicitly)

	
	Model output
	Beam ID

	Training Data Size
	Training data
	38K

	
	Testing data
	4K

	AI/ML Model
	Model structure
	CNN-based

	
	Model complexity
	~108k

	Evaluation results
	Beam prediction accuracy 
	Top-1 Prediction Accuracy (1 dB Margin) [%]
	95
	95
	87
	95
	85

	
	
	Top 4/1 Prediction Accuracy [%]
	99
	98
	95
	98
	94

	
	L1-RSRP Diff
	Top-1 Prediction Average RSRP Error [dB]
	0.2
	0.2
	0.9
	0.2
	1

	
	
	Top-4/1 Prediction Average RSRP Error [dB]
	0.01
	0.02
	0.1
	0.02
	0.2


From Table 2.2‑4 we have the following observations:
· The model trained with fixed number of random SetB outperforms the model trained with variable number of Random SetB.

Observation 12: In BM-Case1 DL TX beam prediction, training model with fixed beam number in random Set B outperforms the training model with varied beam number in random Set B.

· Compared to the fixed Set B results in Table 2.2‑1, for DL Tx beam prediction, the model trained with random Set B has similar performance at the testing configuration of |Set B|/|Set A|/ = 32/64 but decreased performance at the testing configuration of |Set B|/|Set A| = 16/64. However, with top K/1 metric (i.e., K=4), the performance of the model trained with random Set B improved significantly. In other words, having random Set B feature implemented for UE side model the beam measurement overhead needs to be increased to have comparable performance with the NW side model trained with fixed Set B.   

Observation 13: In BM-Case1 DL TX beam prediction, compared to training model with fixed Set B, training model with random Set B can provide similar performance when |Set B|/|Set A| is large (i.e., 32/64) but the performance will become inferior when |Set B|/|Set A| is small.

Observation 14: In BM-Case1 DL TX beam prediction, the top-K beam search is needed for the model trained with random Set B.
[bookmark: _Ref127263333]Model Generalization for Various Set B of Beams 
In this subsection, we verify the model generalization capabilities with different configurations of SetB patterns detailed in Section 2.2.1.4. All the results refer to model generalization case 2, where the model is trained based on a SetB configuration that is different from the SetB configuration used for testing. All 16 measurements from Tx beams are used as input of the DL Tx prediction model. 
The best results shown in Figure 2.2‑5 are obtained by training the model with a set of pre-configured SetB patterns and testing with the fixed SetB pattern. This is because the pre-configured SetB patterns contain the fixed SetB pattern. Similarly, even with random SetB patterns, there is a high probability of measuring all the beams included in pre-configured/fixed SetB patterns. Therefore, as shown in Figure 2.2‑5 also training the model with a Random SetB pattern, provides good results when testing the model with pre-configured/fixed SetB patterns. 
Observation 15:  For training the DL Tx prediction model a Random SetB pattern can be used. Later in the inference stage, the DL Tx prediction model can use measurements from pre-configured/fixed SetB patterns. 

In contrast, when the SetB pattern is fixed and pre-configured it is likely that it has no experience measuring all the beams included in a random SetB pattern. Consequently, as shown at the bottom of Figure 2.2‑5 doing training with pre-configured/fixed SetB patterns and testing with random SetB patterns does not provide good prediction accuracy, as well as the case of training with fixed and testing with pre-configured SetB patterns.
Proposal 6: For BM-Case1, RAN1 may prioritize the measurements of Random SetB (Opt2C) to be used at UE side for input to model training and the measurements of Fixed/Pre-configured SetBs (Opt1 and Opt2B) to be used at UE side for model inference. 

[image: Chart
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[bookmark: _Ref127197575]Figure 2.2‑5: Top-1 Tx beam prediction results for different configurations of SetB patters for model generalization Case 2. 

Set A/B are DL Tx-Rx Beam Pairs 
For the beam pair prediction, the data generation and the simulation assumption are reported in Table A.II-1. The only difference for DL Tx-Rx beam pairs is that the training data includes the UE Rx beams information from the best UE panel.  
Evaluation Results for Set B is a Subset of Set A  
The simulation results of fixed Set B for training and testing are shown in Table 2.2‑5
[bookmark: _Ref118705329]Table 2.2‑5: Evaluation results for BM-Case1 for DL Tx-Rx beam pair prediction
	
	ML Model 

	Assumptions
	Number of beam pairs in Set A
	256 beam pairs with 64 Tx and 4 Rx

	
	Number of beam pairs in Set B
	64
	32
	16

	
	Tx beam selection
	Distinct Tx beam for each beam pair

	
	Rx beam selection 
	Circulating all Rx beams over different beam pairs

	AI/ML Model input/output
	Model input
	Beam RSRP

	
	Model output
	Beam ID

	Training Data Size
	Training data
	38K

	
	Testing data
	4K

	AI/ML Model
	Model structure
	CNN-based

	
	Model complexity
	~108k

	Evaluation results
	Beam prediction accuracy (%)
	Top-1 Prediction Accuracy (1 dB Margin) [%]
	94
	88
	75

	
	
	Top 4/1 Prediction Accuracy [%]
	97
	94
	88

	
	L1-RSRP Diff
	Top-1 Prediction Average RSRP Error [dB]
	0.25
	0.5
	1.7

	
	
	Top-4/1 Prediction Average RSRP Error [dB]
	0.1
	0.4
	0.5



From Table 2.2‑5 we have the following observations:
· The results shown in Table 2.2‑5 assume that UE has a model trained with the data perfectly coupled to the gNB beam shape, which is the ideal case.

· No Rx beam repetition procedure is considered in Table 2.2‑5 so each beam pair has a distinct Tx beam. Under such assumption, the Rx beam selection is critical for beam pair prediction performance. Therefore, selecting the Rx beam by following the configured QCL-D info may or may not be the optimum choice for the beam pair prediction. In Table 2.2‑5, we apply circular Rx beam selection for each beam pair. 

Observation 16:  Selecting the Rx beam by following the configured QCL-D info may or may not be the optimum choice for the beam pair prediction.

Proposal 7: Advanced Rx beam selection procedure other than following the configured QCL-D info should be considered for beam pair prediction.

· With the same RS resources (i.e., same DL Tx beam number), the DL Tx beam prediction results shown in Table 2.2‑5 (i.e. |Set A|/|Set B| = 64/32, 64/16) have better performance. 

Observation 17: With the same RS resources, the DL Tx beam prediction has better beam performance regarding the model intermediate KPIs.

Observation 18: The Top-1 beam pair prediction performances are sensible to the number of beam pairs in Set B.A second stage for measuring the Top-K predicted beam pairs can be used to significantly improve the model performance when the number of beam pairs in SetB is reduced.

Proposal 8: Investigate the feasibility to measure the top-K predicted beam pairs since it is needed for improving the model performance for the Tx-Rx beam pair prediction.

Proposal 9: To support RAN1 comparing DL Tx-Rx beam pair prediction (substitutuing P2-P3) and Tx beam prediction companies may report the assumptions for obtaining top-K predicted/measured Tx-Rx beam pairs with Tx beam prediction.

Random Set B with DL Tx-Rx Beam Pairs 
Considering the Set A beams are fixed, and Set B beams are randomly changed among Set A beams, we show the beam pair prediction performance in Table 2.2‑6
[bookmark: _Ref118706169]Table 2.2‑6: Evaluation results for BM-Case1 DL Tx-Rx beam pair with random Set B.
	
	ML Model 

	Assumptions
	Number of beam pairs in Set A
	256 beam pairs with 64 Tx and 4 Rx

	
	Number of beams in Set B in model training
	32 
	Random number in [32,64]
	16
	Random number in [16,64]
	Random number in [16,64]

	
	Number of beams in Set B in model testing 
	32
	32
	16
	32
	16

	
	Tx beam selection
	Distinct Tx beam for each beam pair

	
	Rx beam selection 
	Circulating all Rx beams over different beam pairs

	AI/ML Model input/output
	Model input
	Beam RSRP, Beam ID (implicitly)

	
	Model output
	Beam ID

	Training Data Size
	Training data
	38K

	
	Testing data
	4K

	AI/ML Model
	Model structure
	CNN-based

	
	Model complexity
	~108k

	Evaluation results
	Beam prediction accuracy 
	Top-1 Prediction Accuracy (1 dB Margin) [%]
	65
	64
	52
	61
	43

	
	
	Top 4/1 Prediction Accuracy [%]
	84
	83
	73
	81
	64

	
	L1-RSRP Diff
	Top-1 Prediction Average RSRP Error [dB]
	2
	2.2
	4
	2.5
	6

	
	
	Top-4/1 Prediction Average RSRP Error [dB]
	0.5
	0.6
	1.3
	0.7
	2



From Table 2.2‑6 we have the following observations:
1. Similar to DL Tx beam prediction, training model with fixed number random Set B outperforms training model with varied number random Set B.


Observation 19: In BM-Case1 DL Tx- Rx beam pair prediction, training model with fixed beam number in random Set B outperforms the training model with varied beam number in random Set B.

2. For beam pair prediction, the model trained with random Set B is significantly worse than the model trained with fixed Set B. We think such behavior is mainly because the signal space now is 256 and it is much larger than the signal space of 64 in DL Tx beam prediction. Even with top-K/1 metric, for small K (i.e. K=4) the performance of the beam pair prediction model trained with random Set B is still not sufficient. A large K is needed to provide comparable model performance and system throughput performance for beam pair prediction with random Set B.

Observation 20:  In BM-Case1 DL Tx-Rx beam pair prediction, the use of random SetB provides a nonnegligible performance drop compared to the use of fixed SetB. Top-K beam search may not be sufficient to achieve sufficient intermediate performance KPIs.

Proposal 10: RAN1 prioritizes fixed or pre-configured SetB patterns for further investigations of DL Tx-Rx beam pair prediction.

Model Generalization for Different Scenarios/Configurations
In this section, we verify the generalization performance with different cases (Case 1, Case 2, Case 3, Case 2a) as agreed in RAN1- 111 and based on the simulation assumptions detailed in Table A.II-1. 
For BM Case-1, we considered as a starting point the following set of scenarios/configurations:
· Scenarios
· Various outdoor/indoor UE distributions 
· Configurations
· Various gNB settings 
· Various Set B of beam (detailed in Section 2.2.1.4.4)
Moreover, for BM Case-2, various scenarios with different UE speeds are considered for evaluation and the results are detailed in Section 2.3.1.4. 
Model Generalization for Different Indoor/Outdoor UEs distribution 
In this subsection, we study the model generalization capabilities for different distributions of indoor (In) and outdoor (Out) UEs. The following scenarios have been considered for evaluation:
-Scenario#A: 100% Out UEs
-Scenario#B: 60% In UEs - 40% Out UEs
-Scenario#C: 80% In UEs - 20% Out UEs
Next, we evaluate the various cases combining the different scenarios in multiple ways during training and inference operations. Figure 2.2‑6(a) shows the CDFs of the RSRP error for the following cases: 
· Case#1 (solid red line) when the ML model is trained with Scenario#A (100% Out UEs) and tested with the same Scenario#A (100% Out UEs). 
· Case#2 (solid blue/green lines) when the ML model is trained with Scenario#A and tested with different Scenario#B and #C (60% In UEs - 40% Out UEs and 80% In UEs - 20% Out UEs).
· Case#3 (dashed lines) when the ML model is trained mixing data from Scenario#A#B#C (1/3 split) and tested with different Scenarios.
Case#2 always has worse performance than Case#3, especially when the percentage of In UEs is larger. Case#3 has performance that improves Case#1, due to the larger number of Out UEs in the combined dataset. Therefore, we make the following observation. 
Observation 21: The ML model trained with only outdoor UEs may NOT generalize well for indoor UEs, whereas the ML model trained with mixed indoor/outdoor UEs may generalize well for both indoor and outdoor UEs.

Figure 2.2‑6(b) shows the CDFs of the RSRP error for the following cases: 
· Case#1 (solid green line) when the ML model is trained with Scenario#A (80% In UEs - 20% Out UEs) and tested with the same Scenario#A (80% In UEs - 20% Out UEs). 
· Case#2 (solid red/blu lines) when the ML model is trained with Scenario#A and tested with different Scenario#B and #C (60% In UEs - 40% Out UEs and 100% Out UEs).
· Case#3 (dashed line) when the ML model is trained mixing data from Scenario#A#B#C (1/3 split) and tested with different Scenarios.
Case#2 has a slightly lower performance than Case#3, but overall, the ML model trained with only In UEs seems to generalize for outdoor UEs. Therefore, we make the following observation. 
Observation 22: The ML model trained with indoor UEs may be applied also for outdoor UEs without compromising the performance with respect to the ML model trained with mixed indoor/outdoor UEs.
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[bookmark: _Ref118652264][bookmark: _Ref118652256]Figure 2.2‑6: (a) ML model trained with 100% Out UEs and tested with different In/Out scenarios. (b) ML model trained with 80%/20% In/Out UEs and tested with different In/Out scenarios. Both (a) and (b) show the ML model trained with a mixed dataset and tested with different In/Out scenarios.

Model Generalization for Different gNB Antenna Array Configurations
In this subsection, we verify the model generalization capabilities with different gNB antenna array configurations:
· Configuration-A : 
· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ
· Set A = 64 Tx Beams 
· Set B = 16 Tx Beams 
· Configuration-B:
· One panel: (M, N, P, Mg, Ng) = (8, 16, 2,1, 1), (dV, dH) = (0.5, 0.5) λ
· Set A = 64 Tx Beams 
· Set B = 16 Tx Beams 
We summarize in Table 2.2‑7 the list of results obtained by combining the configurations in different ways during training and inference operations.
[bookmark: _Ref115259177]Table 2.2‑7: BM Case-1(DL TX) training/testing configuration for evaluating ML model generalization. In all configurations Set A = 64 Tx Beams and Set B = 16 Tx Beams.
	
	ML Model Training Configuration
	ML Model Testing Configuration
	Results 

	Case 1 
	Configuration-A 
	Configuration-A 
	Figure 2.2‑7 (a)

	
	Configuration-B
	Configuration-B
	Figure 2.2‑7 (b)

	Case 2

	Configuration-A 
	Configuration-B
	Figure 2.2‑7 (a)

	
	Configuration-B
	Configuration-A 
	Figure 2.2‑7 (b)

	Case 3 

	Configuration-A + Configuration-B (50% split)
	Configuration-A 
	Figure 2.2‑7 (c)

	
	Configuration-A + Configuration-B (50% split)
	Configuration-B
	Figure 2.2‑7 (c)

	Case 2A
	Configuration-A + Fine-tuning on Configuration-B 
	Configuration-B 
	Figure 2.2‑7 (d)

	
	Configuration-A + Fine-tuning on Configuration-B 
	Configuration-A
	Figure 2.2‑7 (d)



Figure 2.2‑7 (a) shows the CDF of the RSRP error for the case when the ML model is trained and tested on the same configuration of the gNB antenna array (Case 1) and for the case when the ML model is trained on the configuration with 4x8 antenna elements and tested with a larger antenna configuration of 8x16 antenna elements (Case 2). Note that the ML model does not generalize well for the larger antenna array size and the beam prediction accuracy falls below 50%. This is due to the different gaps between beams when the antenna configuration changes from 4x8 to 8x16, which modifies the distribution of the RSRP measurements for the ML model input, making the beam difficult to predict. 
A similar trend can be observed in Figure 2.2‑7 (b) where the ML model is trained with the configuration of 8x16 antenna elements and tested with a smaller antenna configuration of 4x8 antenna elements. Also, in this case, the beam prediction accuracy for the unseen antenna configuration of 4x8 has particularly low performance, whereas the prediction accuracy for the trained antenna configuration of 8x16 is about 85% with a 1 dB margin.
Therefore, with Case 2 for supporting the two gNB antenna array configurations, two ML models may be required, and a switching mechanism should be in place to change between different ML models.
Observation 23: model's generalization capabilities are poor for Case 2, when the model is tested on a gNB antenna array configuration that is different from the configuration used during training.

On the other hand, Figure 2.2‑7 (c) shows the case when a dataset generated with mixed configurations is used for training a single ML model (Case 3). Performances are slightly lower than the case when the ML model is trained and tested on the same configuration of the gNB antenna array.
With Case 3 for supporting the two gNB antenna array configurations a single ML model can be used. Nevertheless, some performance degradations are expected compared to the case when the ML model is trained with data from only one configuration of the gNB antenna array. Supporting multiple configurations may further reduce ML performance.
Observation 24:  The model generalizes well in Case 3, when trained with a mix of data from different gNB antenna array configurations.

Finally, we show in Figure 2.2‑7 (d), the case 2A when the model was trained with gNB antenna array 8x16 and fine-tuned for gNB antenna array 4x8, using different dataset sizes. Solid curves represent the model tested with antenna array of 4x8 (same configuration used for fine-tuning). Results show that decreasing the number of data samples in the dataset, the model accuracy slightly degradates. Even if the dataset is 10%, predictions are still closer (2% difference) to case 1. Nevertherless, this is due to fixed pattern B, which requires fewer samples than the random pattern B for the model training to converge. 
Observation 25: The model generalizes well for Case 2a when a reduced dataset for a different gNB antenna array configuration is used for fine-tuning the model.

On the other hand, we show in Figure 2.2‑7 (d) with dashed curves the testing of the fine-tuned model with the original gNB antenna array 8x16 used for training the model before fine-tuning. Prediction accuracy is no longer at the same level as before fine-tuning and degradates increasing the dataset sizes used for fine-tuning, suggesting that the model may easily forget the previously learned task when fine-tuned with new data. The model may easily forget the previously learned task when fine-tuned with new data.
Proposal 11: RAN1 prioritizes model generalization studies for case 3 and case 2a.

Proposal 12: Support RAN1 to further study fine-tuning (case 2a), including assessing the performance on previously learned scenarios/configurations.
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[bookmark: _Ref127119837][bookmark: _Ref118643430]Figure 2.2‑7: (a) model is trained with gNB antenna array 4x8 and tested with gNB antenna arrays of 4x8 and 8x16. (b) model is trained with a gNB antenna array of 8x16 and tested with gNB antenna arrays of 4x8 and 8x16. (c) model is trained with mixed data with gNB antenna arrays of 4x8 and 8x16, then tested with gNB antenna arrays of 4x8 and 8x16. (d) model was trained with gNB antenna array 8x16 and fine-tuned for gNB antenna array 4x8, using different dataset sizes. Then, the model is tested with antenna arrays of 4x8 and 8x16. 

BM Case-2: Temporal Domain Beam Prediction
Set A/B are DL Tx Beams
In this section, we provide the characterization and baseline performance evaluations for Temporal DL Tx beam prediction for Set A of beams based on the historical measurement results of Set B of beams. 
Baseline Assumption
Based on the agreements in RAN1#109, we have the baseline method shown in Table 2.3‑1.
[bookmark: _Ref118706979]Table 2.3‑1: Baseline for BM-Case2.
	Benchmarks
	Method description

	BM- Case2 baseline Option 2
	Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1.



With BM- Case2 baseline Option 2, the simple baseline method we use is to apply the best beam measured at the current time instant from Set A to all the future time instants. Table 2.3‑2 shows the performance of the baseline method.
[bookmark: _Ref118707019]Table 2.3‑2: Beam prediction performance for BM- Case2 baseline Option 2
	Method
	Metric
	t+40ms
	t+80ms
	t+160ms
	t+240ms
	t+320ms
	t+400ms
	t+480ms
	t+560ms
	t+640ms

	UE speed 30km/h 
Apply the best beam measured from Set A at time t

	Top-1 beam
prediction accuracy with 1dB margin (%) 
	84
	84
	83
	77
	70
	63
	56
	50
	44

	
	Average L1-RSRP difference of Top-1 predicted beam
(dB)
	0.6
	0.6
	0.7
	0.9
	1.1
	1.5
	2
	2.5
	3

	
	Beam prediction accuracy Top-K-1 (K=4)
(%)
	92
	92
	92
	91
	88
	84
	79
	74
	69



From Table 2.3‑2 with low UE speed configuration, one can see that the best DL Tx beam measured at time t from Set A can be used at least for a certain period, i.e. about 240ms, and the beam gain is just minor different (approximately within 1 dB) to the actual best beam. Therefore, the ML-based temporal domain beam prediction should be applied to show an advantage for the scenario configuration that the non-ML method collapses. 
Observation 26: In BM-Case2 with low UE speed configuration, the best beam prediction measured at time t from the reference non-ML method is accurate at least for a certain short period.


Evaluation Results for Different K and F with Set B is the Same as Set A
Figure 2.3‑1 shows a diagram of BM-Case 2 simulation configuration, where  is the CSI measurement/reporting periodicity, t is the model inference time instant, K is model training observation window length, F is model training prediction window length and F’ is model testing prediction window length.


[bookmark: _Ref118706431]Figure 2.3‑1: BM-Case 2 simulation configuration
The simulation results for Set B is the same as Set A are shown in Table 2.3‑3 and Table 2.3‑4.
[bookmark: _Ref118706536]Table 2.3‑3: Simulation configuration for Set B is the same as Set A.
	
	Method 1

	Assumptions
	Number of beams in Set A
	64

	
	Number of beams in Set B
	64

	
	Rx beam selection 
	Optimal Rx beams 

	
	Baseline scheme
	-

	
	UE speed (km/h)
	30

	
	CSI measure/report period  [ms]
	160

	
	Observation Window (K)​ [ms]​
	Table 2.3‑4

	
	Prediction Window (F) [ms]​
	

	
	UE trajectory
	Option 4

	AI/ML model
input/output
	Model input
	RSRP

	
	Model output
	Beam ID

	Data Size
	Training
	80k UE trajectories

	
	Testing
	10k UE trajectories

	AI/ML model
	Model structure
	LSTM-based, Conv2D

	
	Optimizer
	Adam

	
	Scheduler
	StepLR

	
	Model complexity
	~360k

	Evaluation results

	Beam prediction accuracy 
	Top-1 beam Prediction Accuracy (1 dB RSRP Margin) [%]
	Table 2.3‑4

	
	L1-RSRP Diff
	Top-1 beam prediction average RSRP Error [dB]
	



[bookmark: _Ref118706580]Table 2.3‑4: Simulation results for the configuration in Table 2.3‑3
	Method
	K
	F
	Top-1 beam prediction accuracy with 1dB margin (%) / Top-1 beam prediction RSRP error mean (dB)
F’

	
	
	
	1 160ms
	2 320ms
	3 480ms
	4 540ms
	5 800ms
	6 960ms
	7 1120ms
	8 1280ms
	9 1340ms
	10 1600ms

	Baseline Option 2
	-
	-
	82/0.7
	74/1
	65/1.4
	56/2
	48/2.7
	42/3.4
	36/4.2
	31/5
	29/5.8
	25/6.5

	LSTM-based
	2
	5
	84/0.6
	80/0.8
	74/1
	70/1.3
	63/1.6
	58/2
	52/2.6
	47/3
	42/3.6
	38/4.2

	
	3
	
	85/0.6
	82/0.7
	78/0.9
	75/1
	71/1.3
	66/1.6
	62/2.0
	58/2.3
	54/2.7
	50/3.1

	
	4
	
	85/0.6
	83/0.7
	80/0.8
	77/1
	73/1.2
	70/1.4
	67/1.7
	63/2
	59/2.3
	57/2.6

	
	5
	
	85/0.6
	83/0.7
	81/0.8
	78/0.9
	75/1.1
	73/1.3
	69/1.6
	66/1.8
	63/2.1
	60/2.4

	
	6
	
	86/0.5
	84/0.6
	81/0.8
	78/0.9
	76/1
	73/1.2
	70/1.5
	68/1.7
	64/2
	62/2.3

	
	7
	
	86/0.5
	84/0.6
	82/0.8
	79/0.9
	76/1
	73/1.2
	71/1.5
	68/1.7
	65/1.9
	63/2.2

	
	8
	
	86/0.5
	84/0.6
	82/0.7
	79/0.9
	76/1
	74/1.2
	72/1.4
	70/1.7
	67/1.9
	64/2.2

	
	9
	
	86/0.5
	84/0.6
	82/08
	79/0.9
	77/1
	74/1.3
	72/1.5
	70/1.7
	67/2
	64/2.2

	
	10
	
	86/0.5
	84/0.6
	81/0.8
	79/0.9
	77/1
	75/1.3
	72/1.5
	70/1.7
	67/1.9
	65/2.2

	
	10
	10
	86/0.5
	84/0.6
	81/0.8
	82/0.9
	77/1
	76/1.2
	73/1.4
	71/1.6
	69/1.8
	67/2



From Table 2.3‑3 and Table 2.3‑4 we have the following observations:
· Compared to baseline option 2, the ML method shows beam prediction performance improvement in different future time instants even when the testing prediction window is longer than the training prediction window, i.e. [F+1, …, F’]. 

Observation 27: In BM-Case2, compared to baseline option 2, the ML method shows beam prediction performance improvement in different future time instants even when the testing prediction window is longer than the training prediction window, i.e. [F+1, …, F’].

· The ML method only using beam RSRP input seems to be more useful for beam prediction in a relatively short future period. For example, increasing K (i.e. K/F = 2/5,…,10/5) can provide acceptable beam prediction performance for a relatively short future period (i.e. F’ < ~800ms). However, even with increasing K or with increasing F (i.e. K/F = 10/5, 10/10), the beam prediction performance for the relatively further future time instants (i.e. F’ >>800ms) may not be sufficiently accurate. 

Observation 28: In BM-Case2, the ML method only using beam RSRP input will be more useful for beam prediction for a relatively short future period.

Proposal 13: Support RAN1 to further study BM Case-2 considering observation window larger than prediction window, limiting prediction window to relatively short future period (e.g. 1 s).

Evaluation Results for Set B is a Subset of Set A
The following sections is more focused on the evaluation results considering the Set B is a Subset of Set A and the use of assistance info as ML model input. The results are obtained with the One-Shot ML Model using two values for K/F, either 200ms/40ms or 200ms/80ms. In Table 2.3‑5 we compare the results of the One-Shot ML Model reducing the beams in Set B from 64 to 32.
[bookmark: _Ref118370539]Table 2.3‑5: Evaluation results for BM-Case2 for DL Tx beam prediction with One-Shot ML Model and Set B Beams.
	
	One-Shot ML Model (Set B subset of Set A) 
	One-Shot ML Model (Set B subset of Set A)

	Assumptions
	Number of beams in Set A
	64
	64

	
	Number of beams in Set B
	32
	32

	
	Baseline scheme
	One-Shot ML Model (Set B same of Set A)
	One-Shot ML Model
(Set B same of Set A)

	
	CSI measure/report period  [ms]
	40
	40

	
	Observation Window​ [ms]​
	200
	200

	
	Prediction Window (F=1) 
[ms]​
	40
	80

	AI/ML model
input/output
	Model input
	RSRP
	RSRP

	
	Model output
	Beam ID
	Beam ID

	Data Size
	Training
	~10k UE trajectories x 4 sec duration
	~10k UE trajectories x 4 sec duration

	
	Testing
	~1k UE trajectories x 4 sec duration
	~1k UE trajectories x 4 sec duration

	AI/ML model
	[Short model description]
	LSTM-based, Conv2D
	LSTM-based, Conv2D

	
	Model complexity
	~300k
	~300k

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Prediction Accuracy (1 dB RSRP Margin) [%]
	74.83​/89.25​
	70.77​/79.81

	
	[L1-RSRP Diff]
	Average RSRP Error [dB]
	0.7699​/0.2901
	0.9451​/0.5867

	
	[System performance]
	RS overhead Reduction (%)

	50%/0%
	50%/0%


Notes: Spatial consistency Type B.
Next, in Table 2.3‑6 we compare the results of the One-Shot ML Model with and without assistance information. 
[bookmark: _Ref118370545]Table 2.3‑6: Evaluation results for BM-Case2 for DL Tx beam prediction with One-Shot ML Model and Assistance Info.
	[bookmark: _Hlk118369665]
	One-Shot ML Model +Assistance Info
	One-Shot ML Model +Assistance Info
	One-Shot ML Model +Assistance Info
	One-Shot ML Model +Assistance Info

	Assumptions
	Number of beams in Set A
	64
	64
	64
	64

	
	Number of beams in Set B
	32
	32
	64
	64

	
	Baseline scheme
	RSRP only
	RSRP only
	RSRP only
	RSRP only

	
	Observation Window​ [ms]​
	200
	200
	200
	200

	
	Prediction Window (F=1) 
[ms]​
	40
	80
	40
	80

	AI/ML model
input/output
	Model input
	RSRP+UE Pos
	RSRP+UE Pos
	RSRP+UE Pos
	RSRP+UE Pos

	
	Model output
	Beam ID
	Beam ID
	Beam ID
	Beam ID

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Prediction Accuracy (1 dB RSRP Margin) [%]
	75.17​/74.83
	70.77​/70.77
	89.29​​/89.25
	79.59​/79.81

	
	[L1-RSRP Diff]
	Average RSRP Error [dB]
	0.7574​/0.7699​
	0.9451​/0.9451
	0.2879/​0.2901
	0.5923​/0.5867​

	
	[System performance]
	RS overhead Reduction (%)

	50%
	50%
	0%
	0%


Notes: Spatial consistency Type B. Dataset size and ML model same as in Table 2.3‑5.
From Table 2.3‑5 and Table 2.3‑6, we make the following observations:
· From Table 2.3‑5, the ML model using as input only RSRPs has performance that decreases when reducing the number of measurements from 64 to 32 or when increasing the length of the prediction window. This is expected because a smaller number of measurements reduces the number of beams tracked and thus the possibility to predict which one would be the best in the future time instance. At the same time, a larger prediction window makes the prediction tasks more challenging as beam behavior is more unpredictable with a larger prediction horizon.  

Observation 29: For BM-Case2, the ML model using as input only RSRPs has performance that decreases when Set B is a subset of Set A and if no advanced algorithm is applied for beam selection in Set B.

Observation 30: For BM-Case2, the ML model using as input only RSRPs has performance that decreases when increasing the length of the prediction window.

· For the results in Table 2.3‑6 with assistance information, the ML model performance decreases when reducing the number of measurements from 64 to 32 or when increasing the length of the prediction window as much as in the ML model using as input only RSRP. We believe that this is due to the variation in the UE position within the observation window. For the UE speed of 30 Km/h, the distance gap between two successive time samples is =0.33 m, which is not a relevant variation for the ML model input data and can’t improve the information given by the history of RSPR measurements. Moreover, the UE trajectory is straight, which may facilitate the prediction with only RSPR measurements. Differently, a UE trajectory changing direction may become more difficult to predict, and in this case, we expect the use of assistance information such as UE position to become relevant. 

Observation 31: For the UE speed of 30 Km/h and prediction windows of 40 and 80 ms, the ML model using as input RSRP and assistance info (UE position) does not provide significant gains to the ML model using as input only RSRP.

Proposal 14: For BM-Case2, RAN1 further verifies whether there is any use of using assistance information at the input of the ML model for different UE speeds and trajectory. The UE position information can be prioritized for NW side model training/inference.
[bookmark: _Ref118655110]Evaluation Results for Different UE Speeds 
In this subsection, we study the model generalization capabilities for different UE speeds. The following four scenarios have been considered for evaluation: Scenario#A for UE speed 30 Kmh, Scenario#B for UE speed 60 Km/h, Scenario#C for UE speed 90 Km/h, and Scenario#D for UE speed 120 Kmh. 
For this study, we consider the one-shot model with Set B the same as Set A. The prediction window is considered fixed F=1 (40 ms) between training and testing as well as the observation window K=5 (200 ms). 
At first, we verify the generalization capabilities of the different ML models trained at different UE speeds by comparing the performances in Case#1 (same UE speed for training/testing) to the ones obtained in Case #2 (different UE speed for training/testing). 
As shown in Figure 2.3‑2(a), the performances of the ML model for Case#1 represented with solid lines are very similar for the different UE speeds. The ML model for the lower speed, i.e. 30 Km/h performs slightly better than the ones for the higher speeds of 90 Km/h and 120 Km/h. 
Differently, when the ML model trained at a specific UE speed is applied to a different UE speed (Case #2), the performance degrades significantly, especially if the UE speeds are very different. This is evident for instance looking at the dashed-dot red line, representing the ML model trained at 120 Km/h and tested at 30Kmh and the black dotted line representing the ML model trained at 30 Km/h and tested at 120 Kmh. 
On the other hand, Figure 2.3‑2(b) shows the generalization performance when the model is trained with a dataset containing a mix of scenarios with UE moving at different speed. In this case, the model tested on different speeds generalize well and performance remains high independently by the UE speed.  
Proposal 15: Support RAN1 to further study different approaches to improve the ML model generalization for BM-Case2 for different UE speeds.
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[bookmark: _Ref118663472]Figure 2.3‑2: (a) Case 1 and Case 2 model generalization for different UE speeds. (b) Case 3 model generalization for different UE speeds.


Conclusion
In this contribution, we discuss remaining details of evaluation assumption of ML for Beam management. In particular, we have following observations and proposals: 
Observation 1:  For BM-Case1, a large number of beams in Set B (e.g., 32) may not improve the prediction accuracy and the system throughput. Therefore, ML-based beam selection should consider a Set B with a maximum of 16 beams when Set A has 64 beams, hence Set B should have a max of ¼ of Set A beams. 

Observation 2:  The design of Set A/B together with the ML model design should provide comparable or better sector throughput and cell-edge UE throughput compared to the non-ML baseline.

Observation 3:  For BM-Case1, Set B RSRP may not be sufficient for beam prediction input in certain cases.

Observation 4:  For BM-Case1, the ML model using as input only RSRP measurements has performances that reduce significantly by changing the number of RSRP measurements from 8 to 4, i.e., further downsampling Set A, from a ratio of ¼ to a ratio of 1/8. 

Observation 5:  For BM-Case1, when the ML model uses the UE angle as the assistance information, it has a better performance than all the other variants.

Observation 6:  For BM-Case1, the ML model using input RSRP measurements and UE Position has performances that outweigh the performance of the ML model using only RSRP.

Observation 7: For BM-Case1, using assistance information like Beam Angle and Beam ID related to the measured beams may not significantly improve the performance of the ML model using as input only RSRP with a fixed pattern.

Proposal 1: For BM-Case1, RAN1 further study the use of assistance information at the ML model input. The following assistance information can be prioritized:
· the UE position information (for NW side model training/inference).
· the UE’s angle relative to a panel array of the gNB (for UE side model training/inference).

Observation 8: For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance.

Proposal 2: For BM-Case1, RAN1 may further study the case of Set A/B are DL Tx and Set B/Set A are different.
· Set B is a wide beam codebook and Set A is a refined beam codebook
· Advance Set B designs are needed to provide sufficient refined beam prediction performance.
Proposal 3: For evaluating various Set B, companies report the number and the generation of pre-configured/pre-known patterns of Set B(s) as well as the number of SetB patterns generated for simulating the Opt2C configuration..

Observation 9:  Model performances for random SetB (OptC) Tx beam prediction is sensitive to the size of the dataset used for training.

Observation 10: Model performances for OptC are more sensitive to the number of reported beams.

Observation 11: Reporting 4-best beams may not be sufficient for training and inference at NW side the model for DL Tx beam prediction with Fixed/Pre-configured SetBs. OptC requires reporting of at least 8 beams.

Proposal 4: For BM-Case1, RAN1 may further investigate to enhance the reporting from 4-best beams to 8-best beams.

Proposal 5: For BM-Case1, RAN1 may prioritize the measurements of Fixed/Pre-configured SetBs (Opt1 and Opt2B) to be used on the NW side for input to model training/inference. 

Observation 12: In BM-Case1 DL TX beam prediction, training model with fixed beam number in random Set B outperforms the training model with varied beam number in random Set B.

Observation 13: In BM-Case1 DL TX beam prediction, compared to training model with fixed Set B, training model with random Set B can provide similar performance when |Set B|/|Set A| is large (i.e., 32/64) but the performance will become inferior when |Set B|/|Set A| is small.

Observation 14: In BM-Case1 DL TX beam prediction, the top-K beam search is needed for the model trained with random Set B.

Observation 15: For training the DL Tx prediction model a Random SetB pattern can be used. Later in the inference stage, the DL Tx prediction model can use measurements from pre-configured/fixed SetB patterns. 

Proposal 6: For BM-Case1, RAN1 may prioritize the measurements of Random SetB (Opt2C) to be used at UE side for input to model training and the measurements of Fixed/Pre-configured SetBs (Opt1 and Opt2B) to be used at UE side for model inference. 

Observation 16: Selecting the Rx beam by following the configured QCL-D info may or may not be the optimum choice for the beam pair prediction.

Proposal 7: Advanced Rx beam selection procedure other than following the configured QCL-D info should be considered for beam pair prediction.

Observation 17: With the same RS resources, the DL Tx beam prediction has better beam performance regarding the model intermediate KPIs.

Observation 18: The Top-1 beam pair prediction performances are sensible to the number of beam pairs in Set B.A second stage for measuring the Top-K predicted beam pairs can be used to significantly improve the model performance when the number of beam pairs in SetB is reduced.

Proposal 8: Investigate the feasibility to measure the top-K predicted beam pairs since it is needed for improving the model performance for the Tx-Rx beam pair prediction.

Proposal 9: To support RAN1 comparing DL Tx-Rx beam pair prediction (substitutuing P2-P3) and Tx beam prediction companies may report the assumptions for obtaining top-K predicted/measured Tx-Rx beam pairs with Tx beam prediction.

Observation 19: In BM-Case1 DL Tx- Rx beam pair prediction, training model with fixed beam number in random Set B outperforms the training model with varied beam number in random Set B.

Observation 20: In BM-Case1 DL Tx-Rx beam pair prediction, the use of random SetB provides a nonnegligible performance drop compared to the use of fixed SetB. Top-K beam search may not be sufficient to achieve sufficient intermediate performance KPIs.

Proposal 10: RAN1 prioritizes fixed or pre-configured SetB patterns for further investigations of DL Tx-Rx beam pair prediction.

Observation 21: The ML model trained with only outdoor UEs may NOT generalize well for indoor UEs, whereas the ML model trained with mixed indoor/outdoor UEs may generalize well for both indoor and outdoor UEs.

Observation 22: The ML model trained with indoor UEs may be applied also for outdoor UEs without compromising the performance with respect to the ML model trained with mixed indoor/outdoor UEs.

Observation 23: The ML model's generalization capabilities are poor for Case 2, when the model is tested on a gNB antenna array configuration that is different from the configuration used during training.

Observation 24: The model generalizes well in Case 3, when trained with a mix of data from different gNB antenna array configurations.

Observation 25: The model generalizes well for Case 2a when a reduced dataset for a different gNB antenna array configuration is used for fine-tuning the model.

Proposal 11: RAN1 prioritizes model generalization studies for case 3 and case 2a.

Proposal 12: Support RAN1 to further study fine-tuning (case 2a), including assessing the performance on previously learned scenarios/configurations.

Observation 26: In BM-Case2 with low UE speed configuration, the best beam prediction measured at time t from the reference non-ML method is accurate at least for a certain short period.

Observation 27: In BM-Case2, compared to baseline option 2, the ML method shows beam prediction performance improvement in different future time instants even when the testing prediction window is longer than the training prediction window, i.e. [F+1, …, F’].

Observation 28: In BM-Case2, the ML method only using beam RSRP input will be more useful for beam prediction for a relatively short future period.

Proposal 13: Support RAN1 to further study BM Case-2 considering observation window larger than prediction window, limiting prediction window to relatively short future period (e.g. 1 s).

Observation 29: For BM-Case2, the ML model using as input only RSRPs has performance that decreases when Set B is a subset of Set A and if no advanced algorithm is applied for beam selection in Set B.

Observation 30: For BM-Case2, the ML model using as input only RSRPs has performance that decreases when increasing the length of the prediction window.

Observation 31: For the UE speed of 30 Km/h and prediction windows of 40 and 80 ms, the ML model using as input RSRP and assistance info (UE position) does not provide significant gains to the ML model using as input only RSRP.

Proposal 14: For BM-Case2, RAN1 further verifies whether there is any use of using assistance information at the input of the ML model for different UE speeds and trajectory. The UE position information can be prioritized for NW side model training/inference.

Proposal 15: Support RAN1 to further study different approaches to improve the ML model generalization for BM-Case2 for different UE speeds.
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Annex I (Earlier agreements on 9.2.3.1)
Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted

Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.

Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.

Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.


Agreement
UE rotation speed is reported by companies.
Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.

Agreement
For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.

Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
FFS: the details of model complexity and computational complexity
Agreement
For spatial-domain beam prediction, further study the following options as baseline performance
Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
FFS CSI-RS/SSB as the RS resources
Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
FFS: how conventional scheme to obtain performance KPIs
FFS: how to determine the subset of RS resources is reported by companies
Other options are not precluded.

Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	For spatial domain beam prediction, 3km/h
For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB





Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area

where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  


Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.

Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
Description of AI/ML model, e.g, NN architecture type
Model inputs/outputs (per sub-use case)
Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded


Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
o   Other KPIs are not precluded and can be reported by companies, for example:
  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
  Latency reduction:
  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
       where M is the total number of beams
  Power consumption reduction: FFS on details

Agreement
 The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE distribution

	· FFS 10 UEs per sector/cell for system performance related KPI (if supported) [e.g,, throughput] for full buffer traffic (if supported) evaluation (model inference). 
· X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference). 
· 
· Other values are not precluded 
· Number of UEs per/sector per cell during data collection (training/testing) is reported by companies if relevant
· More UEs per sector/cell for data generation is not precluded. 


	UE Antenna Configuration
	· Antenna setup and port layouts at UE: [1,2,1,4,2,1,1], 2 panels (left, right)
· [Panel structure: (M,N,P) = (1,4,2)]
· panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams





Agreement
The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 3km/h(optional), 30km/h (baseline), 60km/h (optional), 90km/h (optional), 120km/h (optional)
· Other values are not precluded

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor


	

Agreement
· If UE orientation is modeled, it can be independently modeled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 

Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size

Working Assumption
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Conclusion
· For system performance related KPI (if supported) evaluation (model inference), companies report either of the following traffic model:
· Option 1: Full buffer
· Option 2: FTP model with detail assumptions (e.g., FTP model 1, FTP model 3)

Agreement
· BS antenna configuration: 
· antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
· Other assumptions are not precluded
· BS Tx power for evaluation: 
· 40dBm (baseline)
· Other values (e.g. 34 dBm) are not precluded and can be reported by companies
· UE antenna configuration (Clarification of agreement in RAN 1 #110): 
· antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 
· Other assumptions are not precluded

Agreement
· For the evaluation of both BM-Case1 and BM-Case2, 32 or 64 downlink Tx beams (maximum number of available beams) at NW side. 
· Other values, e.g., 256, etc, are not precluded and can be reported by companies.
· For the evaluation of both BM-Case1 and BM-Case2, 4 or 8 downlink Rx beams (maximum number of available beams) per UE panel at UE side. 
· Other values, e.g., 16, etc, are not precluded and can be reported by companies.

Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.


Agreement 
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam considers the following options 
· Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams



Agreement 
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair considers the following options:
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Option B: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.



Working Assumption
For both BM-Case1 and BM-Case 2, the following table is adopted as working assumption for reporting the evaluation results.

Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	



To report the following in table caption: 
· Which side the model is deployed
Further info for the columns:
· Assumptions
· Number of beams/beam pairs in Set A
· Number of beams/beam pairs in Set B
· Baseline scheme, e.g., Option 1 (exhaustive beam sweeping), Option 2(based on measurements of Set B), or baseline described by companies
· Other assumptions can be added later based on agreements
· Model input: input type(s)
· Model output: output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs) 
· Dataset size, both the size of training/validation dataset and the size of test dataset
· Short model description: e.g., CNN, LSTM
· Model complexity, in terms of “number of model parameters” and/or size (e.g. Mbyte)”, and 
· Computational complexity in terms of FLOPs
· Evaluation results: agreed KPIs, with AI/ML / with baseline scheme (if applicable)
Note: To report other simulation assumptions, if any.

Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 

Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies

Agreement
· At least for BM-Case 2, consider the following assumptions for evaluation
· Periodicity of time instance for each measurement/report in T1:
· 20ms, 40ms, 80ms, [100ms], 160ms, [960ms]
· Other values can be reported by companies.
· Number of time instances for measurement/report in T1 can be reported by companies.
· Time instance(s) for prediction can be reported by companies.


Agreement

The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side
Agreement
· For the evaluation of the overhead for BM-Case1, adoption the following metrics:
· RS overhead reduction, 
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Companies report the assumption on additional measurements


Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 

Agreement
For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, additionally considering
· Various Set B of beam(pairs)

Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.


Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
· Other scenarios/configurations(parameters and settings) are not precluded and can be reported by companies.

Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.
Annex II (Assumptions for Data Generation & Simulations)
The methodology for dataset construction and performance evaluation is based on the statistical channel models from TR 38.901 and the system level simulation approach is adopted as a baseline as agreed in RAN1 #109-e meeting [1]. Based on what is agreed upon, we adopt the system level assumptions and the parameters for the Dense Urban scenario detailed in Table A.II-1. 
[bookmark: _Ref127465018]Table A.II-1: SLS assumptions for dataset generation & performance evaluation for AI/ML beam management.
	Parameters
	Values

	Frequency Range​
	FR2 @ 30 GHz ​

	Deployment​
	200m ISD,​ BS Antenna height=25 m
2-tier model with wrap-around (7 sites, 3 sectors/cells per site)​

	Channel mode​
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.​

	System BW​
	80MHz​, ​SCS: 120 kHz

	UE Speed​
	· For spatial domain beam prediction, 3km/h​
· For time domain beam prediction: 30km/h 

	UE distribution​
	10 UEs per sector/cell for data generation/evaluation​​, UE Antenna height=1.5 m
For spatial domain beam prediction: 100% outdoor​
For time domain prediction: 100% outdoor​

	BS Tx Power​
	40 dBm

	BS Antenna Configuration​
	One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ ​
· TXRU weights mapping:​ one TXRU mapped to multiple antenna elements
· Beam selection: based on maximum L1-RSRP
· Number of BS beams​: 64

	BS Antenna radiation pattern​
	TR 38.802 Table A.2.1-6, Table A.2.1-7​

	Maximum UE Tx Power​
	23 dBm​

	UE Antenna Configuration​
	Panel structure: (M,N,P) = (1,4,2)​, 2 panels (left, right) with (Mg, Ng) = (1, 2) 
· TXRU weights mapping: one TXRU mapped to multiple antenna elements
· panel selection: ideal
· number of UE beams: 8
· beam selection: 
1. Fixed Rx beam direction to panel boresight 
2. Optimal Rx beam selection based on maximum L1-RSRP

	UE Antenna radiation pattern​
	TR 38.802 Table A.2.1-8, Table A.2.1-10​

	Link adaptation​
	Based on CSI-RS​

	Traffic Model​
	· Full buffer as default option
· FTP traffic when specified

	Inter-panel calibration for UE​
	Ideal​

	Control and RS overhead​
	common overhead is 30% based on TR 37.910 for DenseUrban-eMBB scenario [2]

	Control channel decoding​
	Ideal

	UE receiver type​
	MMSE-IRC​

	BF scheme​
	Analog Beamforming

	TRP selection
	Based on RSRP

	BS receiver Noise Figure​
	7 dB​

	UE receiver Noise Figure​
	10 dB​
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