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In this contribution, we provide the details of two main sub-use cases within the use case of CSI feedback enhancement with AI/ML, namely CSI feedback compression with two-sided models and CSI prediction. 
[bookmark: _Hlk510705081]Discussion
[bookmark: _Ref111191898]CSI compression with two-sided models 
An autoencoder (two-sided model) consists of three parts as described in Figure 1: 1) the encoder (the UE part of the two-sided model), 2) the bottleneck (codeword here), and 3) the decoder (the network part of the two-sided model). The encoder aims at compressing the input data, in our case the channel matrix or the eigenvectors, into a codeword that is of dimension smaller than the original information. The bottleneck, in our case the codeword, is the compressed representation of the original information. The bottleneck is followed by the decoder, a module that decompress the codeword and reconstruct the data: the recovered information .  is then compared to  It is a lossy process, and the recovered matrix  will not be the same as  
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[bookmark: _Ref100763549][bookmark: _Ref100763524]Figure 1: Autoencoder architecture.

In order to improve the encoding efficiency, the quantization of codewords is needed. Therefore, it is important to consider the quantization of the CSI after compression. The quantizer module is depicted in Figure 2. The quantization process introduces quantization noise/distortion, it is then important to design an efficient quantizer that minimized the quantization noise. The methods proposed in the literature are not differentiable and cannot be included in the backpropagation of the training. To get optimal performance, the quantization module should be optimized with the overall structure of the neural network. 
[image: ]
[bookmark: _Ref100763745]Figure 2: Lossy compression and recovery.

In the next sub-sections, we further discuss related other aspects of two-sided model handling. 
Model training collaborations
In RAN1 #111bis meeting, the following was agreed.
	Conclusion​
In CSI compression using two-sided model use case, training collaboration type 2 over the air interface for model training (not including model update) is deprioritized in R18 SI.

Note​
· To align terminology, output CSI assumed at UE in previous agreement will be referred as output-CSI-UE.​
· To align terminology, input-CSI-NW is the input CSI assumed at NW 




[bookmark: _Int_OIq4FFVY][bookmark: _Int_fk0tDaN9]First, let us revisit the generic two-sided model with a specific use case in mind. One exemplary AI/ML model for CSI feedback is depicted in Figure 3, at which the channel eigenvector(s) is(are) used as input to AI encoder to demonstrate a specific example. First, UE measures the downlink channel by making use of CSI-RS. Then these estimated channel parameters can be pre-processed before being fed into the AI encoder for CSI compression. For example, in case UE would like to use the channel directional information rather than the raw channel matrix to reduce the dimension of the input, singular value decomposition (or any equivalent operation) can be done to acquire the channel eigenvectors. This pre-processed, if any, channel information is used as input to the AI encoder. The output of the AI encoder needs to be quantized to comply with the CSI feedback format (e.g., bit sequence). In Figure 3, the AI encoder and quantizer have been depicted as separate blocks, but they can be tightly integrated into one block, depending on AI encoder/quantizer design. In any case, the outcome of the UE shall be in the format of bit sequence which should be well defined by 3GPP, as this information is part of UE-NW signaling information (as one of the contents of UCI).
Now let’s move over to the network side operation in Figure 3. Once the CSI feedback is received at the NW side, NW is supposed to do the reverse procedure, i.e., dequantization, AI decoding, and possibly post-processing, if required. In the case of joint training (Type 1), the UE side model (AI encoder) backbone/structure and NW side model (AI decoder) backbone/structure need to be known at the training entity, such that the final AI encoder/decoder can be jointly trained at a single training session. In the case of separate training (Type 3), in which the UE-side training and NW-side training should be done in a separate training session, the NW-side AI decoder training would not require the detailed model backbone/structure of the UE AI encoder for its own training. Be aware here that in Figure 3 the “target CSI” refers to the final CSI format (like precoding matrix for example), which can be readily used at NW for its subsequent operation, e.g., DL MIMO processing. In this context, the target CSI (which is to be acquired by postprocessing output CSI) can be different from the input to AI encoder at UE side. Note here that in this specific example of the channel eigenvector compression, AI decoder output (output CSI) and the target CSI can be of the same format, which makes this use case attractive.



[bookmark: _Ref127520736]Figure 3: AI/ML model for CSI feedback
The type/dimension/configuration of the AI decoder output at NW (“output CSI”), e.g., wrt output CSI type, precoder matrix or channel matrix to put it bluntly, can be restricted to the limited number of options within 3GPP framework. As long as the possible options of the type of the output CSI at NW side (UE side AI encoder input) are well defined and agreed between UE and NW, e.g., dominant/other channel eigenvector, full channel matrix, transformed channel matrix to angle-delay domain, etc., NW side vendors can be prepared for appropriate (proprietary) precoding matrix formulation strategy (including associated postprocessing schemes). For the benefit of making the best use of already developed DL MIMO processing techniques at the NW side and of facilitating fast and phased adoption of AI/ML-empowered CSI compression schemes, this should be considered as one of the probable options at 3GPP. Note here that this does not intend to restrict scope of channel estimation and pre-processing schemes at UE which are left for UE vendor’s proprietary algorithms. Current 3GPP Specs provide the very clear definition of the CSI feedback, e.g., PMI or Type I/II codebook, so that gNB can interpret the CSI feedback without any ambiguity. Similar level of clarify is highly desirable when it comes to AI/ML-compressed CSI feedback, to make gNB interpret the reconstructed CSI information appropriately for efficient DL MIMO processing. For example, when gNB is aware of that the reconstructed CSI feedback is the dominant eigenvector of the DL channel, then gNB can use it without any further major post-processing for the DL MIMO processing. If it refers to the full channel information, gNB might want to take the relevant post-processing to make full use of the reconstructed channel information. It deems desirable to converge to the limited numbers of options, for the benefit of fast adoption of this feature.
Proposal 1: RAN1 shall agree on the type/dimension/configuration of the output CSI (e.g., channel eigenvector, full channel matrix, transformed channel matrix to angle-delay domain) using a two-sided model. 
· Corresponding post-processing of output CSI can be left for NW vendors’ proprietary scheme.

There are two main flavors of Type 3 separate training, i.e., UE-first separate training and NW-first separate training. 
In Type 3 separate training case, one entity (UE or NW) training can take place first, then the other entity (NW or UE, respectively) training can follow, and vice versa. One assumption for this scenario is that one training entity’s training should be able to take place without knowing the details of the backbone/structure of AI module at the other entity. However, the first training entity should have a hypothetical AI model of the other entity for its own training. It should be carefully examined to see which input/output data are available at each training session with consideration of candidate arguments to the loss function. Two major sub-use cases are described below.
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.




UE-first separate training
The procedure of the UE-first separate training is illustrated in Figure 4. The whole procedure can be categorized into two main phases, i.e., UE-side model training phase and NW-side model training phase.

 
[bookmark: _Ref118468615]Figure 4: UE-first separate training procedure

1. UE-side model training phase
· UE performs DL channel measurement/estimation based on 3GPP-defined reference signals. This channel information can be pre-processed if UE’s algorithm dictates, prior to AI encoder operation.
· UE performs training of the AI encoder for CSI compression. For model training, UE should have the hypothetical dequantizer/AI decoder/post-processing model at NW-side in mind, to come up with the final target CSI. As there can (or should) be a model mismatch between UE vendor’s hypothetical NW-side model and the actual NW-side model, the outcome of the hypothetical NW-side model is denoted as “projected target CSI” in this document, to differentiate it from the corresponding outcome of the subsequent NW-side model training. For UE training, input to AI encoder, e.g., channel eigenvectors, and its corresponding hypothetical AI decoder output (projected target CSI) as labeled data can play the role as the training data set. 
· On completion of UE-side model training (with its own assumption of the hypothetical NW-side model), UE can provide NW-side with the resulting training dataset, e.g., {input to AI encoder, CSI feedback}, for the subsequent NW-side model training. This can be done offline by uploading the training dataset to the server. Note here that CSI feedback will be in the format of bit sequence, to be defined by 3GPP. The mapping from the AI encoder output (latent feature vector; ze) to the CSI feedback bit sequence may or may not be the subject of 3GPP specification. This aspect is discussed in a separate section later in this document.  
· The details of DL channel parameter estimation and its processing are up to UE’s implementation. The details of the UE side AI encoder model, including its input data and their format, do not need to be revealed to NW-side. However, it deems beneficial for AI encoder output to CSI feedback mapping to be shared between UE-vendor and NW-vendor for the sake of fast training convergence and overall performance.
2. NW-side model training phase
· NW-side can start the training of its AI decoder, together with dequantizer/post-processing operation, as needed, based on the UE-provided training dataset, e.g., {input to AI encoder, CSI feedback}. Note that training of dequantizer can be expedited and/or improved by UE providing NW with AI encoder output to CSI feedback mapping information.
· It is envisioned that the format of CSI feedback should be well-defined in 3GPP. Hence there should not be ambiguity in interpreting them.
· For NW-side model training, an appropriate loss function needs to be defined. One option is to take target CSI (outcome of the actual NW-side model) and input to the AI encoder. In case the channel eigenvector is to be compressed, the target CSI at AI decoder should be close to the input to AI encoder.
 
It should be noted here that there are two major sources of potential performance degradation, i.e., AI model mismatch between UE’s hypothetical AI decoder at NW-side and true AI decoder in use, and distortion coming from quantizer – CSI feedback – dequantizer operation. We believe that at least we should try to minimize possible distortion related to quantization, assuming AI model mismatch is something we should live with. 
[bookmark: _Int_DJDYeap1]When it comes to the generalization of this concept across multiple UE vendors, it can be burdensome for a NW vendor to manage multiple NW-side models per each UE vendor. In this sense, we need to seek for a scheme which can facilitate a common NW-side model which can handle multiple proprietary UE models. Mixed training dataset collected from multiple UE vendors can be one feasible option, but its performance and feasibility need to be studied further. For this purpose, the training dataset format needs to be unified across UE vendors, or better yet, to be standardized, if deemed necessary.
Another item for further investigation comes from the concern that even though the CSI feedback format itself can be standardized; NW vendors may not want 3GPP to dictate how to interpret this information across multiple NW vendors. One way to reduce potential ambiguity is to formulate latent variables (AI encoder output) to bit sequence (CSI feedback) mapping at UE side officially. This will alleviate the burden of CSI interpretation at NW-side for NW-side model training to some extent and reduce the risk of model mismatch between the hypothetical AI decoder model and the actual NW-side model(s) across the multiple NW vendors.
NW-first separate training
The procedure of the NW-first separate training is illustrated in Figure 5. The whole procedure can be categorized into two main phases, i.e., the NW-side model training phase and the UE-side model training phase.
1. NW-side model training phase
· NW performs training on its NW-side AI decoder model. As depicted in Figure 5, NW-side should come up with a hypothetical UE-side model for the generation of UE-side projected outcome, i.e., projected CSI feedback.
· As a result of NW-side training, a training dataset of {hypothetical input to AI encoder, target CSI} can be used for its self-supervised learning. Note here that NW-side should have an UE-side hypothetical models of DL channel measurement & subsequent pre-processing, as well as AI encoder. 
· On completion of NW-side model training (with its own assumption of the hypothetical UE-side model), NW can provide UE-side with the resulting training dataset, e.g., {hypothetical input to AI encoder, projected CSI feedback}, for the subsequent UE-side model training.
2. UE-side model training phase
· UE-side can start the training of its AI encoder based on the NW-provided training dataset, e.g., {hypothetical input to AI encoder, projected CSI feedback}.
· Note that NW-provided hypothetical input to AI encoder is output of the preceding hypothetical UE-side operation, i.e., DL channel measurement and pre-processing, which can be different from the actual UE-side operation (that is UE proprietary) in use.
· NW vendor(s) need to align with multiple UE vendors about a certain set of DL measurement-related parameters and their formats. This may not be straightforward in practice.
· For UE-side model training, the appropriate loss function needs to be defined. One option is to take CSI feedback (outcome of the actual UE-side model) and projected CSI feedback (outcome of the trained hypothetical UE-side model per NW vendor’s hypothesis at the time of NW-side model training).
· Note again that quantizer at UE-side and dequantizer at NW-side should be aligned to remove ambiguity in interpreting CSI feedback bit sequence, to facilitate proper retrieval of zq.

There can be a mismatch between NW-side's hypothetical UE-side model and the actual UE-model, not only in AI encoder model but also in its input (pre-processed DL measurement information). In this sense, there is a higher degree of model ambiguity of the hypothetical “other entity” model (and related arguments), compared with the UE-first separate training case.
Proposal 2: For NW-first separate training scenario, the training dataset for UE-side model training needs to be studied to determine how to acquire a common format of data (input to a hypothetical UE model, i.e., input-CSI-NW) across multiple UE vendors. 
· This investigation needs to be done with the generalization of this concept over multiple NW vendors in mind.
· This issue can be alleviated by our Proposal 1, i.e., by limiting the underlining type/dimension/configuration of the output CSI (which should maintain similarity to input-CSI-NW, as input to AI encoder at UE should be reflected to the output of AI decoder at NW in principle). This will also facilitate the interpretation of the conveyed channel information at the NW side for better precoding operation for DL MIMO.


  
[bookmark: _Ref118470336]Figure 5: NW-first separate training procedure
Quantizer/Dequantizer operation
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded. 



On Quantization operation options
Quantization can be categorized into two groups, i.e., scalar quantization and vector quantization. Scalar quantization takes each latent feature vector element and quantizes it one by one. Vector quantization takes either the whole latent vector or segmentized subset of it and to quantize it to map it to pre-defined codeword at a time. In case the length of the latent vector is large, it can be practically difficult to acquire codebook in case of using training-based algorithms like Lloyd VQ scheme. In this sense, segment of the whole vector with a manageable size LS, can be fed into vector quantizer [6]. This procedure is repeated to cover the whole latent vector, and the whole latent vector can be represented by  codewords of size LS, where Lz is the length of the latent feature vector ze.
Scalar quantization can provide a flexibility. It can be a viable option, when input to quantizer {ze} has a bounded value. In this case, each element can be represented with a few numbers of bits only. Either uniform or non-uniform (based on statistics of ze) scheme can be used.
Proposal 3: Regarding the quantization scheme for CSI feedback, a scalar quantization scheme with a limited bit size needs to be studied especially for bounded input to the AI encoder use case, e.g., channel eigenvector compression. 
Vector quantization scheme mandates a codebook which can be rule-based or derived from statistics of the training dataset. In the case of the latter case, the resulting codebook depends on statistics of input data {ze}, which is the output of the AI encoder. Hence it might be the case that we end up with multiple codebooks (one per UE-vendor) in case of Type 2 or Type 3 collaboration scenarios. This is applicable to statistics-based scalar quantization scheme, but vector quantization scheme requires a larger memory footprint for saving of the codebook(s).
It is desirable to have a synchronized operation between the segmentizer at UE-side and the combiner at NW-side for vector quantization scheme. In the case of Type 2 or Type 3 collaboration scenarios, this alignment between UE-vendor and NW-vendor should be done, preferably within the 3GPP framework.
Proposal 4: Regarding vector quantization scheme for CSI feedback for Type 2 or Type 3 two-sided model training collaboration scenarios, the degree of required alignment between quantizer/dequantizer at UE-side/NW-side respectively needs to be studied, e.g., the length of a codeword, the size of a codebook, and the distance metric (or quantization rule) in use.
[image: ]
Figure 6: Quantizer types

About potential specification impact on quantization method alignment
	Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE



As we have shown already, several quantization methods can be considered including uniform scalar quantization, non-uniform scalar quantization, and vector quantization. Thus, alignment of the considered quantization/dequantization method and its hyperparameters are necessary. In the case of uniform scaler quantization, in addition to the quantization type, the number of quantization bits per scalar and the value of each quantization level are shared between the UE and gNB. The feedback size is determined based on the number of quantization bits per scaler and the encoder output size. The value of quantization levels can be determined by sharing all the values or following a standardized quantization method and sharing only the considered minimum and maximum range for quantization.
In the case of the non-uniform quantization approach, similar information needs to be shared between the entities. The main difference is the way of determining the value of quantization levels, which depends also on the considered non-linear function (mu-law, A-law, etc.). Thus, the alignment includes the non-linear function and its hyperparameter. In the last case, vector quantization can be used to apply quantization to the encoder output, by considering the correlation between the output’s entries. Thus, the quantization type, the number of considered bits for representing the centroid vectors, and the values of centroid vectors are necessary to be shared between the AE entities. If the centroid vectors are changed during the training, the updated values need to be communicated to the decoder entity.
Although the codebook in the VQ type needs to be shared once with the network node, it may cause difficulties because the number of FP values to be shared is growing by considering larger segments of encoder outputs and the number of bits for quantization. This property results in increasing codebook and codeword sizes. 
Observation 1: The size of VQ codebook can cause limitations/difficulties in using VQ and needs to be investigated.
Proposal 5: RAN1 may investigate sharing the relevant quantization architecture and parameters from one network entity to the other. For example, the type of quantization and quantization parameters can be shared with the other network node. The quantization parameters depend on the quantization type and may include:
· For scalar uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization
· For scalar non-uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization, type of non-linear function and its parameters
· For vector quantization: Codebook size and all the codewords

As briefly stated in the previous section, quantizer/dequantizer operation can play an important role, as quantization error cannot be ignored for end-to-end system performance evaluation. High level description of quantizer operation is provided below, to lay the foundation for future discussion. Note that examples below are based on joint training scenario to focus on quantization topic. The selected use case for illustration is channel eigenvector compression, but it can be generalized to other types of AI encoder input.
Case 1: Quantization non-aware training
Quantization non-aware training assumes there is no quantization in the training phase while quantizer and potential de-quantizer, respectively, are added to the encoder and decoder in the inference phase. Therefore, the encoder/decoder parameters do not consider the quantization properties in the training of their parameters. One advantage of this scheme is that we can decouple AI encoder/decoder training and quantizer formulation, at the cost of possible end-to-end performance degradation. This allows trials of various quantization schemes without having to re-train the whole chain every time. This scheme consists of 3 major steps.
· [Step1] AI encoder/decoder is trained without any intermediate quantization procedure in the middle. The latent feature vector is directly fed into the AI decoder for training. As training outputs, quantization training data set of the latent feature vector samples at the final epoch can be provided for subsequent quantization formulation, as well as trained AI encoder/decoder parameters.
· [Step2] Quantization procedure is formulated. Either scalar quantization or vector quantization can be adopted. For this operation, a certain distance metric should be used to measure the distance between the input scalar/vector and output quantized value/codeword. Quantization parameters can be designed to minimize the quantization loss and degradation of the reconstructed CSI due to the quantization. Note that it may be challenging to find the distance metric which can lead to the solution minimizing loss at Step1.
· [Step3] The formulated quantizer and potential de-quantizer, respectively, can be plugged into the overall AI encoder and decoder to check end-to-end performance. Optionally, the AI encoder/decoder can be fine-tuned with Quantizer being in the chain to calibrate AI encoder/decoder parameters. Here, the quantizer operation is considered to be frozen (not a subject of update).
[image: ]
Figure 7: Quantization-unaware training example
The quantization loss depends on two factors: (a) distributions of encoder output (2) quantization type and parameters. For example, in the scalar quantization, each encoder output (element) is quantized independently from other encoder outputs (elements). As can be seen from the results in Figure 8 and Figure 9, the best option for the quantization type (uniform or non-uniform) depends on the distribution of the encoder outputs.
[image: ]
[bookmark: _Ref126853658]Figure 8: 1-bit (2 levels) quantization for an encoder output element with Normal distribution (a) uniform quantization (b) non-uniform with mu-law nonlinearity (mu=10). 

[image: ]
[bookmark: _Ref126853664]Figure 9 : 1-bit (2 levels) quantization for an encoder output element with uniform distribution in [-1, 1] (a) uniform quantization (b) non-uniform with mu-law nonlinearity (mu=10).
However, vector quantization (VQ) considers the correlation between the encoder output elements, and adapt automatically to the distribution of the encoder outputs. Shows the frequency of samples for pair of encoder output elements. A VQ is obtained to follow the distribution of samples.
[image: ]
Figure 10 : Heat map visualization of the frequency of pairs for encoder outputs, with a VQ calculated based on the case-1 scheme. The VQ quantizes the segments of size 2, and the VQ includes 16 codewords.
Note: The main advantage of case 1 quantization is that the quantization type and hyperparameters (e.g., number of bits/levels) can be changed without any need for AE model switching or model re-training (same encoder and decoder can be used).
Case 2: Quantization-aware training
Quantization-aware training assumes an integrated quantization training when performing encoder-decoder training. In this case, the quantizer is seen as a trainable layer. The challenge here is how to make the quantization operation differentiable (such that it should be trained with backpropagation of gradients). One obvious advantage of this scheme is that once trained, the quantizer operation should be well aligned to serve the overall KPI for end-to-end training, e.g., SGCS between the input to AI encoder (channel eigenvector, for example) and output of AI decoder (target CSI). 
· Case 2-1: In this case, the quantizer/de-quantizer blocks are in the training loop, but the quantization parameters and functionality are fixed. Therefore, the encoder and decoder models have the possibility to adapt to the quantization functionalities. The scalar uniform and non-uniform quantization fit well with this option, as the hyperparameters of the scalar quantization can be pre-designed.
· Case 2-2: As the quantization hyperparameters are part of the training parameters of the auto-encoder, they are updated through the training. As vector quantization considers a codebook for quantization, case 2-2 is a perfect match for training of vector quantization. As training outputs, we can acquire final codebook or quantization function (or rule) as well as trained encoder & decoder parameters. 



Figure 11: Quantization-aware training example

Observation 2: For scalar quantization, with the same quantization type and hyperparameters, case 2-1 training provides superior performance compared to case 1.
Observation 3: For vector quantization, with the same hyperparameters (codebook size), case 2-2 training provides superior performance compared to case 1.
Proposal 6: To evaluate the performance degradation caused by a quantization block, we may define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) in inference with quantization compared to the training and inference without quantization. The quantization loss metric can be defined for case 1, case 2-1, and case 2-2 (regardless of the quantization type). It may make more sense to report the quantization loss in the dB scale.

Performance monitoring
[bookmark: _Hlk118347304]The measured channel data in real-world radio environments can be different from those in the training datasets. To ensure proper behaviour of the deployed models, performance monitoring is important and provides useful inputs for gNB to make decisions such as model activation/deactivation/updating/switching. The following agreement was reached in [1].
	Agreement
In CSI compression using two-sided model use case, study potential specification impact for performance monitoring including: 
· NW-side performance monitoring:  NW monitors the performance and make decisions of model activation/ deactivation/updating/switching    
· UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model activation/ deactivation/updating/switching   

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to potential co-existence and fallback mechanisms between AI/ML-based CSI feedback mode and legacy non-AI/ML-based CSI feedback mode.



Both NW- and UE-side performance monitoring need to be studied to help gNB make proper decisions. 
	Agreement
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to assistance signaling and procedure for model performance monitoring. 




In CSI compression using two-sided model use case, the SGCS is calculated based on the target (ground-truth) CSI and the NW-reconstructed CSI. If the SGCS is monitored at the UE side, the UE needs to know the NW-reconstructed CSI information. With Type 1 Joint training, the UE can calculate the SGCS since it knows the specific model used on the gNB side. With Type 2 Joint training, there’s no way for UE to do so since the knowledge about the decoder is unknown at UE. With Type 3 Separate training, if the UE-first approach is adopted, even though the UE still does not have the exact knowledge about the decoder, it could try to use the hypothetical decoder used in training as the proxy to derive the NW-reconstructed CSI. If SGCS is monitored at the Network side, it requires UE to send back the ground-truth CSI for calculating SGCS. Since it would introduce large overheads, the frequency of such reports needs to be considered, possibly jointly designed with the data collection process.
Another possible way to do performance monitoring is the model-based calculation of the distance between representations, where representation refers to the encoder output in general. The representation could be quantized or unquantized, and proper definitions of the distance and the corresponding metric threshold can be studied. Unlike comparing the measured channels and the training data sets which are only doable on the UE side, the calculation of the distance between representations is doable at both UE and gNB ends.
Proposal 7: For CSI compression, RAN1 shall study the potential specification impact on model monitoring by considering 
· Methods of model monitoring (NW-sided, UE-sided, hybrid)
· Changes to the reporting framework (e.g., ground-truth reporting to enable performance monitoring at the gNB, KPI reporting when UE considers performance monitoring)
· Changes to the measurement framework (e.g., configuring model monitoring KPIs and measurement resources)

The distribution of CSI feedback samples can be collected in the data collection or offline training phase. The distribution of real-time field data can depart from the distribution of the data used in offline training. Therefore, NW-side could use metrics like CSI feedback distribution discrepancy as assistance information for NW-side model performance monitoring since it does not introduce much signaling overhead. The concept of latent space distribution discrepancy and the associated distance metric can be found in [8]. Following this approach, the heatmap figures below summarize the distributions of all dimensions in feature (codeword) space. Herein, the features are not quantized, and their dimension is 13. The x-axis denotes the codeword dimension index, and the y-axis denotes the codeword value. The color represents the sample numbers at a specific codeword value in each column, indicating each feature dimension's distribution. As shown below, most values in the outdoor scenario aggregate at -1 and drop down in the range between [-0.5,0.5], while the values in the indoor scenario possess a flatter distribution.
[image: ]
Figure 12: The heatmap for distributions in all feature space dimensions.
Observation 4: NW-side monitoring using metrics like CSI feedback distribution discrepancy as assistance information could be considered since it does not introduce much signaling overhead.

Data collection aspects
The following diagram defines the notation for inputs/outputs observed at different reference points, where H is the measured channel, X is the output of some pre-processing and is the subject of compressing, Z is a quantized feedback vector representing DL CSI (CSI feedback refer in section 2.1.2), and Y is the output of the decoder (target CSI refer in section 2.1.2).
[image: ]
Figure 13:AI/ML-based CSI feedback processing chain with the associated notation.
A server at the network or operator side can be used to store data for either Type 1 joint training or Type 3 separate training, or both. In terms of data stored on such a server, there can be options like (H, Z), (X, Z), (X, Z, Y), etc. In principle, the data stored for the purpose of separate training can be used for joint training as well. For example, (X, Z) is required for separate training but it also covers the data needed for joint training. For Type 2 joint training, offline saved data at the server does not suffice due to latency considerations and data exchange over the air needs to be considered. For Type 3 separate training, as highlighted in Section 2.1.2, the data stored on a server can be (Z = CSI feedback, Y’ = projected target CSI) or (Z’ = projected CSI feedback, Y = target CSI) depending on which node perform the separate training first. 
Assume a server is used to store training data. Before initial model deployment, the agreement on data sharing on the server could be done by offline engineering among multiple vendors, at least in theory. In this case, there can be many models trained by using the shared data, e.g., models with different vendors. Also, the training data set may get updated over time or stored as a separate data set to address different deployment scenarios, configurations, and radio environments, etc. In one example, if the UE maintains different encoder models, each associated with a corresponding data set, those data sets shall be uploaded to a server such that the network can have a common or separate decoder model to match the data sets. In the end, this may result in different encoder models being used by the UE (and also a matching decoder at the NW) and these models may switch depending on the scenario, configurations, and other parameters. In terms of potential specification impact, a model ID is needed for the purpose of model enabling/disabling and selecting/switching, which is later used in over-the-air signaling exchanges. At this stage, data delivery can be done in a proprietary manner.
Proposal 8: For data collection for two-sided model training, RAN1 shall further discuss the necessity of a remote server storing data set(s) to facilitate joint/separate training or model updates (due to data set changes). 

Proposal 9: For data collection for two-sided model training, RAN1 shall further investigate the data storage formats to understand the possibilities. 
· The format of the stored data set may depend on whether the joint or separate (UE-side first or network-side first) training is applied. 

Proposal 10: For data collection for two-sided model training, RAN1 shall further investigate whether generalization issues can be handled by multiple trained models with different data sets, the potential specification impact when identifying such models, and how to support switching of models. 

After initial model deployment, there can be a need for further data collection. For example, some cell-specific data can be accumulated to aid model fine-tuning. For TDD mode, gNB can measure the channel and collect new data; for FDD mode, UE can report channel conditions to gNB or upload the data to the data-sharing server directly. In both cases, the stored data need to have much higher precision than what can be supported in the legacy CSI feedback mechanism, because the newly collected data are for model training. Thus, new types of CSI reports may need to be defined and have a specification impact.
There can be two on-the-fly data collection scenarios. One is for a gNB to gather enough local radio information of a specific cell that this gNB is handling. In this case, the new channel data can come from many UEs in the cell and the time period of the collection can span days, weeks, or even months. Since model updating in this case will not be very often, this can support big changes in the deployed model. On the other hand, model fine-tuning, which may only require short-term channel measurements, is also possible.
Proposal 11: For data collection for two-sided model training, RAN1 shall further investigate whether a stored data set can be updated over time, how to facilitate such data set updates such that updates are known at nodes associated with two-sided models, and model updates associated with the updated data sets. 

Generalization/Scalability aspect
	Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases



[bookmark: _Int_HAe3driT]The auto-encoder (AE) designs with a fixed compression rate (CR) implies that multiple AE models are required to be trained, stored, and managed by gNBs and UEs. Therefore, it is required to consider the case where a single ML model can support multiple CRs {CR1, CR2, …., CRN}, corresponding to the encoder output dimension {Y1, Y2,…, Yn}. A potential approach is to design the encoder and decoder architecture in a way that the desired encoder dimensions {Y1, Y2,…, Yn} are supported by different encoder and decoder layers. For example, the first layer of the encoder compresses the signal to result in an output with dimension Y1, the second layer of the encoder results in an output with dimension Y2, …, and the last layer of the encoder results in an output with dimension YN. The decoder layers are also designed to support different dimensionalities for the compressed CSI, i.e., {Y1, Y2,…, Yn}. Figure 14 shows the design for an auto-encoder that can support several CRs. Also, a progressive training procedure is illustrated to show how the layer parameters can be trained to support different CRs. 
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[bookmark: _Ref127532368]Figure 14 Progressive training of an auto-encoder to support several compression rates.

Proposal 12: RAN1 shall study the possible specification changes when supporting an ML model with multiple compression ratios and how to enable progressive training of such ML model. 

Other specification impacts
The CSI feedback configuration could include: number of the feedback bits; quantization information; type of the associated decoder output (output CSI); indicator for possible post-processing.
In the current standards, RI, PMI and CQI could be jointly reported to gNB according to the given configuration(s), where CQI may need more resources for feedback in the case of sub-band reporting. For codebook-based solutions, UE determines the CQI for reporting based on the precoding matrix indicated by the PMI and also its associated receiver. For neural network-based solutions, CSI compression feedback is accomplished by using two-sided models, where an encoder is deployed on the UE side and decoder on the gNB side. If UE has complete knowledge about the decoder, approaches similar to legacy codebook-based solutions can still be considered for RI determination, and CQI can be calculated based on the decoder output inferred on the UE side. If UE does not have the complete knowledge about the decoder, CQI could be calculated based on input to the encoder on the UE side, which, for example, can be eigenvector(s) or W2. In this case, there would be a mismatch between the calculated CQI and the real CQI, and the CQI reports could be optimistic. This is essentially another source of SINR estimation error. Practically, OLLA can alleviate the problem by adjusting the SINR offset.
Additionally, since the reconstruction capability of the decoder model heavily depend on the underlying subject of compression, it is necessary to have well-defined model outputs, which can include antenna port configurations, sub-band configurations, the type of model output, and possibly others. As indicated in previous sub-sections, the type of model output can be the raw channels, the eigenvectors, or W2-like information. Potential post-processing can include linearly combining DFT vectors if the model output type is W2-like.
Regarding the exact CSI feedback sent from the UE to the network, it is expected that the format of the compressed information (output of the encoder) will be specified to a certain degree. There are several open issues to address there such as integrating ML-enabled CSI compression reports and legacy non-ML CSI reports, combining reporting of ML-enabled/compressed parts of CSI report with legacy non-ML parts, and method of providing scalable and flexible ML-based CSI reporting. To fit into the legacy CSI reporting set-up, mapping of compressed CSI into fixed/configurable/known-payload part (similar to CSI Part 1) and variable/predictable size (similar to CSI Part 2) may also be required with compressed CSI.  With such considerations, the ML-based CSI report can be efficiently integrated into the existing CSI reporting framework. When discussing CSI parts 1 and 2 in the CSI compression framework, as these get different priorities in the NR framework, the decoding and decompressing of the compressed CSI part 1 is also needed, and necessary info and also some level of CSI (e.g., lower resolution) may be sent using such a CSI part 1. Compressed CSI part 2 may provide additional information for CSI (e.g., higher resolution) which can be used together with CSI part 1 to decompress the full CSI.  
Proposal 13: RAN1 shall study the possible use of CSI part 1 and CSI part 2 like approach for the compressed CSI reporting. 

CSI prediction 
	Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer futher till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  



Channel prediction is seen as a main enabler for more advanced use cases, which are sensitive to channel aging like MU MIMO precoding or coherent JT-CoMP as discussed for cell-free massive MIMO. Furthermore, accurate channel prediction over a large prediction horizon can support high speed UEs and can be a suitable means to reduce the CSI reporting overhead over the state-of-the-art techniques like NR TYPE II. Such overhead reduction can be achieved by a reduced CSI reporting rate, which is then related to the channel prediction quality. 
We should note that channel prediction also fundamentally impacts massive MIMO overhead for reference signals in FDD systems. Without channel prediction the usage of the reported CSI is limited by the coherence time and coherence frequency bandwidth. In case of a high number of antenna elements or antenna ports the related number of CSI reference signals might become a large portion of the resource elements in this coherence area of the radio channel. Therefore, it reduces the related number of resource elements for the user data rate, i.e., the PDSCH. With channel prediction the channel evolution might be reconstructed, thereby potentially might overcome this coherence related limitations. 
Most useful is it to predict as CSI the explicit radio channel evolution in the time and/or the frequency domain as this will enable any type of precoding, will support any type of MU MIMO user grouping and scheduling and therefore is the basis for more advanced future concepts like extensive massive MIMO, or cell free massive MIMO. Alternatively, the CSI prediction might be close to current Type II CSI reporting and predicting parameters like PMI, RI, CQI, etc. Note that the possible inference and reporting options for channel prediction are closely related to the options as discussed in Section 2 for channel compression. Therefore, the channel prediction can be either for the explicit CSI, for the strongest eigenvectors, or, for W2 while W1 is fixed for a certain number of prediction steps. . Reporting predicted CSI relative to the spatial domain beams W1 is beneficial as the beam forming gain can improve the channel estimation quality, which is essential for a high channel prediction performance. 
Proposal 14: As basic channel prediction scheme report Type II CSI like W1, W2, and Wf for the future time instance tpredict. The AI/ML model of the UE predicts the CSI from N semi-persistent CSI RSs with a repletion rate of, e.g., 5 ms within the observation window of length tobserve. 
For optimum channel estimation and channel prediction, the CSI RSs should cover the full RF bandwidth as it is well known from theory that the observed frequency bandwidth affects the theoretical Cramer Rao Bound of the unbiased channel estimator. The Cramer Rao Bound itself is defined by the Fisher information contained in a certain signal used for the estimation of certain signal parameters like the delay, amplitude, or phase of a multipath component. This Fisher information is then increasing for an increasing number of CSI RSs and increasing RF bandwidth. This can be illustrated, for example, by assuming a single multipath component. The delay of such a multipath component is then related to a phase slope in the frequency domain and obviously the estimation of such a phase slope will be easier in case of a larger frequency bandwidth. When applying autoregressive filters as being used for Kalman filters we often observe even a degradation for increasing frequency bandwidth. This can be explained by the overall structure with parallel instances of the same state space model on parallel frequency bands. The performance degrades if the size of the frequency band is larger than the coherence bandwidth. 
Often, neural network implementations based on long-short term memory (LSTM) lead to similar structures as the Kalman filter and might similarly ignore the frequency domain information, which leads to corresponding performance loss. Contrary, with optimized neural network structures the frequency domain channel information can be beneficially exploited to improve the channel prediction performance.    
Helpful for optimum precoding is then to predict the evolution over time of the radio channel instead of the radio channel just for a single prediction time, or sequence of time instances. This provides full scheduling flexibility and the highest precoding performance, which might be especially relevant for larger prediction horizons. 
The expected performance gain is for low to moderate UE speeds the reduced effect of channel aging, which can be evaluated by comparing the UE throughput or spectral efficiency with and without channel prediction. Without channel prediction then one has to use the outdated CSI from the time instance of the latest channel observation, which is typically denoted as zero order hold (ZOH).
In alignment with the latest agreements, so far, the focus is on the simplest channel prediction scheme, where the UE infers the channel prediction based on regular persistent, semi-persistent or aperiodic CSI RSs. Then the UE calculates for the predefined or agreed prediction time the conventional Type II CSI message like the matrices ,  and  in case of NR Release 16. That way, the ML-related standardization impact is minimized and mainly requires the control messages for setting up and/or agreeing between UE and gNB on the best-fitting prediction time. 
For more advanced schemes, it might be worth evaluating, comparing, and including the options as discussed in Section 2.1 for the enhanced CSI feedback compression and also for the case of channel prediction. This can be either for the one-sided case and Level x collaboration, i.e., just for the inference process of the Type II CSI at the UE side, which might then result in different overhead performance trade-offs. 
Proposal 15: Compare channel prediction over broad bandwidth versus based on Type II CSI per sub-band. 
AI/ML model description
In the following, some possible ML-based channel prediction implementations will be given and compared to rule-based Kalman filters as predictors. The model training, validation, and testing will be discussed exemplary for a most simple RNN consisting of LSTM neural networks (LSTM NNs). The possible inference operation using ML, rule based, or, ML-enabled networks will be provided, together with the possible collaboration modes between UE and gNB. Then we shortly discuss version control and lifecycle management of the predictor models, and finally suggest a baseline reference mode of operation.
Model generation (training/validation/testing)
For channel prediction, we consider Kalman filter as PHY layer algorithm baseline while LSTM NNs might serve as the AI/ML baseline. Recurrent neural networks, LSTMs, and gated recurrent units (GRUs) are AI/ML models often used for applications where the data has some time dependency, e.g., speech recognition, natural language processing, and time forecast. Therefore, it is a reasonable idea to use LSTM as the AI/ML CSI prediction baseline. The LSTM learns the time evolution of the channel coefficients by means of supervised learning with the mean squared error (MSE) as typical loss function. The loss value guides the gradient descent optimization, which uses the backpropagation through time (BPTT) algorithm. 
A low MSE is typically aligned with a high generalized cosine similarity (GCS) or squared GSC (SGCS) as defined in the latest EVM agreement so that the trained neural network should perform well for the reporting of Type II CSI. Nonetheless, there might be benefits by training the neural networks directly with the GCS or SGCS as cost function. This might result in either a further improved channel prediction performance, or a reduced complexity.   
Note that channel prediction based on RNNs is here given more as a possible reference, while higher performance, lower complexity, or other benefits might suggest other more advanced NN implementations in the future. For example, the dense layer structures in Figure 15 have been replaced in the latest version by convolutional layer structures in Figure 16, which reduces the overall complexity of the neural network.
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[bookmark: _Ref118366347]Figure 15: Generic structure of a LSTM NN that receives as input channel coefficients of N past time instances and outputs the next N+p channel coefficients in the frequency domain for a subcarriers f1.
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[bookmark: _Ref118366546]Figure 16: Convolutional LSTM NN for CSI prediction, where N is the number of past channels (data samples) at the predictor’s input and p is the channel prediction window. The use of convolutional layers instead of dense layers reduces the overall number of trainable parameters. For this design, the number of trainable parameters is independent of the number of PRBs (NPRB).

A LSTM neural network (NN) is designed to perform channel prediction of p subframes ahead based on knowledge of N past subframes, see Figure 16. For a SISO channel represented in the frequency domain, a few channel coefficients  serve as input to the convolutional LSTM NN which is trained to output the channel coefficient in the next subframe , or subframes ahead. . Prediction of multiple time steps ahead is also possible, but often limited to the number of time steps at the input of the LSTM NN. Nonetheless, as the prediction horizon increases, the complexity of the AI/ML predictor may also increase in order to maintain a good performance. This is expected due to the reduction of the time correlation between the channel time samples.
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[bookmark: _Ref100232517][bookmark: _Ref100522173][bookmark: _Ref118709433]Figure 17: Configuration for channel prediction. The CSI-RS are collected, preprocessed and inputted to the AI/ML CSI predictor. For this exemplary case, the CSI predictor outputs the prediction at a maximum of 5ms ahead with 1ms resolution. 

During training of the LSTM NN, the channel measurements should be inputted to the model in a sequential way, i.e., the dataset (input and labels pairs) should not be shuffled. This is needed for the LSTM NN to learn the change dependencies among the time-frequency channel coefficients. For instance, Figure 17 shows the order to provide the channel coefficients for the LSTM NN during training. After training the model parameters, the LSTM NN takes any sequence of three coefficients and outputs the next channel coefficient, regardless of where they happen. However, note that there are no performance guarantees if the trained LSTM model is used for predicting channel coefficients under different conditions, e.g., different Doppler frequency. For a somehow different scenario than that considered during training, an AI/ML CSI predictor may need to fine-tune its weights in order to maintain a good prediction performance. 
Proposal 16: Define baseline as UE-sided implementation of AI/ML models without model transfer relying on offline training of generalized AI/ML models.  
Inference operation
Figure 18 considers the basic UE-sided inference operation based on a channel prediction model (CP model). It uses the CSI RSs for observing the radio channel and infers from these n CSI estimates, the predicted CSI for the time instance tpredict. The inference of the predicted radio channel can similarly be implemented for pure PHY layer rule-based models, for pure ML models, and for ML-enabled models combining specific PHY and ML blocks. Such PHY plus ML-based inference might have benefits with respect to the overall achievable performance, minimized latency, and moderate complexity.
In the latest agreement, the EVM has been defined, which includes a scheduling delay  of 4ms. In addition, we have to assume a CSI RS repetition rate like one CSI every 5ms. The time instance  falls together with the latest time instance of the CSI RS. Then, the UE will need some inference time  of at least 1ms. With these variables we can define the minimum prediction time , which will overcome any CSI outdating:
.
With the above-given assumptions, the optimum prediction time will be . This is twice the time of the CSI RS repetition rate and is probably still optimistic as for more advanced neural networks an inference time of just 1ms is probably challenging. Helpful would be a higher CSI RS repetition rate, but this is obviously at the cost of higher overhead for CSI RSs. Otherwise, assuming cell-specific CSI RSs for, e.g., 32 antenna ports transmitted with a periodicity of 5ms, the related overhead is typically acceptable with 3.8 percent.
A channel predictor at UE side has potential benefits with respect to the direct access to the channel knowledge compared to the gNB, which would have to rely on the quantized and compressed reported CSI information. In addition, the ML based standardization impact can be minimized by using the collaboration level x in combination with a one-sided model assumption, i.e., no collaboration and a vendor-specific neural network implementation. This is fine, when the UE calculates the conventional Type II CSI for the predicted time instance  instead of the latest observation time .
Note that the evolution of the radio channel is partly deterministic like the smooth evolution of multipath component delays over time for moving UEs. This can be exploited, e.g., by tracking solutions with overall reduced feedback overhead. This might lead to new methods compared to simple UE-sided Type II feedback, potentially including then type y and/or type z cooperation levels.
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[bookmark: _Ref118709483]Figure 18: possible implementations of the channel prediction with a CP model at the UE side, either as pure PHY based method, as ML neural network or as a combined PHY/ML model.

Proposal 17: For model inference define a common timeline between UE and gNB about CSI RS configuration like periodic and aperiodic CSI RSs and the time . Allow for UE sided pre-processing and AI/ML model selection.

Lifecycle management of AI/ML model
Lifecycle management of AI/ML models depends on the operation mode, i.e., UE-sided, gNB-sided or combined mode. In case of UE-sided prediction, the UE vendor might have to ensure up-to-date and verified neural network model usage. Similarly, in case the prediction is done at the gNB side, then the gNB vendor or MNO might be responsible to keep models up to date. This includes then more or less all aspects as discussed in [1], and copied below, for data collection, model training, model deployment, model inference, model monitoring, model update and model transfer, and for two-sided models includes also the UE capability exchange.
In more advanced implementations, the ML and potentially the PHY layer models might be adapted to the general radio channel conditions. Eventually, this might include online training for fine-tuning of pre-trained ML models. 
In the case of parallel models running on the UE and gNB side with an explicit exchange of model parameters, then a very detailed model selection, model verification, and model training description will be needed.
Proposal 18: The UE should constantly track the channel prediction performance like the channel prediction horizon versus the feedback overhead, the execution latency as well as the required channel observation time within the agreed limits between UE and gNB.
AI/ML Model Overfitting
For future implementations of channel prediction, the generalization capabilities of AI/ML models are of interest as it affects the number of required AI/ML models as well as LCM issues like model update, selection, activation, deactivation, etc. 
Model overfitting (or fine-tunning) to the current radio channel evolution as part of UE-sided channel prediction is promising with respect to the channel prediction performance as can be concluded from some first simulation results in R1-2212327. AI/ML model overfitting for channel prediction can be seen as a special case of model fine-tuning, where the generalized AI/ML model is specialized to the current UE-specific channel conditions. Such overfitting might benefit from collaboration level y, i.e., by control information harmonizing the UE-sided CSI inference with the gNB processing, while the AI/ML models as such are not exchanged between the UE and the gNB. This is because the overfitting requires active CSI RS transmissions, which are controlled by the gNB, i.e., the gNB should be aware of the overfitting needs of the active UEs.   
For UE-sided channel prediction, we can assume that the UE has a generalized AI/ML model available, either delivered from the gNB or as a vendor-specific pre-defined model, which is trained for a relatively wide range of scenarios/configurations. A wide range of scenarios/configurations ensures that ideally only a single, or, at least only few AI/ML models have to be implemented at the UE side. 

The basic procedure for overfitting (OF) with channel prediction at the UE side might be as follows:
1) The UE starts as usual, without overfitting, and observes the radio channel for several time instances over the duration observe and predicts the CSI into the future for the time predict.  
2) Due to the generalization to a wide range of scenarios/configuration, the AI/ML model inference performance might degrade for the case of so far unseen scenarios/configuration as well as for scenarios/configuration, which are not supported very well by the generalized AI/ML model. In these cases, when the prediction performance falls below a certain target level , it is proposed to overfit the generalized AI/ML model specifically to the current radio channel conditions. Note that the target level  might be set by a control message of the gNB or directly by the UE vendor. 
3) For the purpose of overfitting, the UE triggers a short re-training procedure of the generalized AI/ML model. In a first step the UE requests from the gNB a semi-periodic transmission of CSI RSs, which allows the UE to estimate the radio channel evolution over a certain time period . In this time period  the UE compares the radio channel evolution with the respective CSI predictions from the generalized AI/ML model to evaluate the current prediction performance. Instead of semi-persistent CSI RS a configuration of periodic plus aperiodic CSI RSs is possible as well.   
4) The CSI predictions as well as the known evolution of the radio channel during time  provides then a set of labeled data, which can be used for a short retraining of the AI/ML model by supervised learning. After the retraining the AI/ML model matches as far as possible to the current radio channel, i.e., is as far as possible overfitted to the current UE conditions. Note that, according to the literature, general overfitting of AI/ML models should be avoided. However, here it is helpful as long as the large-scale conditions of the radio channel remain constant.   

A certain challenge with this approach is that the “prediction performance” for one realization does not tell how close an AI/ML model is already to the potential optimum predictor performance, i.e., how close the generalized AI/ML model is to a fully overfitted AI/ML model. In addition, to generate sufficient labeled data for the overfitting the time period  might get large with corresponding large overhead, for example, for transmission of CSI RSs.
For that reason, it might be useful to combine a first neural network NN1 for the inference of the predicted radio channel with a second neural network NN2, which infers from the observed CSI during the time duration observe a closeness value . As illustrated in Figure 19 the neural network NN2 might include besides the observed CSI also other time domain channel properties (TDCP) like UE mobility, delay spread, the time of the last overfitting, etc. to infer the closeness value  As illustrated in Figure 19 top right we define the closeness value  as the potential gain due to overfitting. For any given cost function like NMSE or SGCS the closeness value  will be small in case the overfitting gain due to a retraining of the AI/ML model is high (see blue curve). Contrary, a low potential overfitting gain (see red curve) leads to a high closeness value  as the current generalized AI/ML model covers the current radio channel conditions already very well.
Note that the neural network NN2 has to be trained in advance together with NN1 and is useful as it provides a fast and reliable estimate of the closeness value . At the same time, the UE might directly use its last channel observations and predictions to directly estimate the closeness value  without the help of the neural network NN2. But, in case of few channel observations the estimation reliability might be limited and the processing overhead for the calculation of  might be high.
Dependent on the closeness value  the UE can trigger different durations for the semi-persistent CSI RS, which have then to be configured semi-periodic and transmitted correspondingly by the gNB. Table 1 illustrates a possible configuration table for a quantized closeness value  to be sent by the UE as UCI message and the related CSI RS durations. The gNB informs the UE then about the exact timing of the CSI RSs so that it can run a short retraining of its ML model NN1 for a few number of epochs and a limited time duration of less than one to few hundreds of ms.    

[bookmark: _Ref127521030]Table 1 – Quantized closeness measure and an exemplary relationship with the duration of the new CSI RS transmission for overfitting.
	Quantized closeness measure
	Meaning
	Required CSI-RS duration for overfitting

	0-0.25
	Long overfitting
	200 ms

	0.25-0.5
	Moderate overfitting
	150 ms

	0.5-0.75
	Short overfitting
	100 ms

	0.75-1
	No overfitting
	0 ms
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[bookmark: _Ref127483988]Figure 19 - illustration of proposed scheme with the ML model NN1 as the conventional generalized channel predictor and the ML model NN2 for inference of the closeness value for the moving UE estimating the radio channel on x distinct UE locations. On the right we see the cost function evolution for a UE with low (blue) and high (red) closeness value.

The benefit of the proposed overfitting procedure is that we can use for channel prediction a highly generalized AI/ML model thereby simplifying life cycle management as there is ideally only one single – or very few - relevant AI/ML models. At the same time, the overfitting ensures high or even close to the best possible prediction performance. The closeness value  allows to minimize the overhead for overfitting to those cases, where overfitting leads to high performance improvements. In addition, the time for overfitting is minimized for high closeness values  or even set to zero in case the overfitting gain is very low. 
Proposal 19: Consider the possibility of overfitting/fine-tuning of UE models for improved CSI prediction.
Baseline Scheme(s)
As baseline scheme for ML-based channel prediction, we see the UE-based channel prediction, where the CP model is realized mainly by an LSTM neural network potentially enhanced by some CNN layers. Here, the gNB transmits n CSI RSs and the UE feeds the related n CSI estimates into the CP model. 
We assume an OFDM signal with a regular grid of CSI RS in time and frequency and potentially enhanced by a first stage NN for noise reduction of the channel estimates. Typically, the neural network will directly use as input signal the normalized LMMSE estimates of the complex channel transfer functions, which are then split into the real and imaginary parts. The output signal is the predicted channel transfer function for a predefined prediction time .
In case the channel prediction is done at the gNB side, then the UE has to report the n CSI estimates on the PUCCH to the gNB. Then it might be beneficial as part of the CSI compression to transform the CSI from frequency into time domain. Furthermore, some channel prediction methods include as part of the data preprocessing such a frequency to time domain signal transformation. gNB sided channel prediction might allow for more complex and more advanced channel prediction methods, potentially, leading to an improved channel prediction horizon.
Conclusion
In this contribution, we have discussed the details of two CSI sub-use cases. Our proposals and observations are:	

CSI compression sub-use case: 

Proposal 1: RAN1 shall agree on the type/dimension/configuration of the output CSI (e.g., channel eigenvector, full channel matrix, transformed channel matrix to angle-delay domain) using a two-sided model. 
· Corresponding post-processing of output CSI can be left for NW vendors’ proprietary scheme.

Proposal 2: For NW-first separate training scenario, the training dataset for UE-side model training needs to be studied to determine how to acquire a common format of data (input to a hypothetical UE model, i.e., input-CSI-NW) across multiple UE vendors. 
· This investigation needs to be done with the generalization of this concept over multiple NW vendors in mind.
· This issue can be alleviated by our Proposal 1, i.e., by limiting the underlining type/dimension/configuration of the output CSI (which should maintain similarity to input-CSI-NW, as input to AI encoder at UE should be reflected to the output of AI decoder at NW in principle). This will also facilitate the interpretation of the conveyed channel information at the NW side for better precoding operation for DL MIMO.

Proposal 3: Regarding the quantization scheme for CSI feedback, a scalar quantization scheme with a limited bit size needs to be studied especially for bounded input to the AI encoder use case, e.g., channel eigenvector compression. 
Proposal 4: Regarding vector quantization scheme for CSI feedback for Type 2 or Type 3 two-sided model training collaboration scenarios, the degree of required alignment between quantizer/dequantizer at UE-side/NW-side respectively needs to be studied, e.g., the length of a codeword, the size of a codebook, and the distance metric (or quantization rule) in use.
Observation 1: The size of VQ codebook can cause limitations/difficulties in using VQ and needs to be investigated.
Proposal 5: RAN1 may investigate sharing the relevant quantization architecture and parameters from one network entity to the other. For example, the type of quantization and quantization parameters can be shared with the other network node. The quantization parameters depend on the quantization type and may include:
· For scalar uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization
· For scalar non-uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization, type of non-linear function and its parameters
· For vector quantization: Codebook size and all the codewords

Observation 2: For scalar quantization, with the same quantization type and hyperparameters, case 2-1 training provides superior performance compared to case 1.
Observation 3: For vector quantization, with the same hyperparameters (codebook size), case 2-2 training provides superior performance compared to case 1.
Proposal 6: To evaluate the performance degradation caused by a quantization block, we may define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) in inference with quantization compared to the training and inference without quantization. The quantization loss metric can be defined for case 1, case 2-1, and case 2-2 (regardless of the quantization type). It may make more sense to report the quantization loss in the dB scale.
Proposal 7: For CSI compression, RAN1 shall study the potential specification impact on model monitoring by considering 
· Methods of model monitoring (NW-sided, UE-sided, hybrid)
· Changes to the reporting framework (e.g., ground-truth reporting to enable performance monitoring at the gNB, KPI reporting when UE considers performance monitoring)
· Changes to the measurement framework (e.g., configuring model monitoring KPIs and measurement resources)

Observation 4: NW-side monitoring using metrics like CSI feedback distribution discrepancy as assistance information could be considered since it does not introduce much signaling overhead.
Proposal 8: For data collection for two-sided model training, RAN1 shall further discuss the necessity of a remote server storing data set(s) to facilitate joint/separate training or model updates (due to data set changes). 

Proposal 9: For data collection for two-sided model training, RAN1 shall further investigate the data storage formats to understand the possibilities. 
· The format of the stored data set may depend on whether the joint or separate (UE-side first or network-side first) training is applied. 

Proposal 10: For data collection for two-sided model training, RAN1 shall further investigate whether generalization issues can be handled by multiple trained models with different data sets, the potential specification impact when identifying such models, and how to support switching of models. 

Proposal 11: For data collection for two-sided model training, RAN1 shall further investigate whether a stored data set can be updated over time, how to facilitate such data set updates such that updates are known at nodes associated with two-sided models, and model updates associated with the updated data sets. 

Proposal 12: RAN1 shall study the possible specification changes when supporting an ML model with multiple compression ratios and how to enable progressive training of such ML model. 

Proposal 13: RAN1 shall study the possible use of CSI part 1 and CSI part 2 like approach for the compressed CSI reporting. 
CSI prediction sub-use case: 
Proposal 14: As basic channel prediction scheme report Type II CSI like W1, W2, and Wf for the future time instance tpredict. The AI/ML model of the UE predicts the CSI from N semi-persistent CSI RSs with a repletion rate of, e.g., 5 ms within the observation window of length tobserve. 
Proposal 15: Compare channel prediction over broad bandwidth versus based on Type II CSI per sub-band. 
Proposal 16: Define baseline as UE-sided implementation of AI/ML models without model transfer relying on offline training of generalized AI/ML models.  
Proposal 17: For model inference define a common timeline between UE and gNB about CSI RS configuration like periodic and aperiodic CSI RSs and the time . Allow for UE sided pre-processing and AI/ML model selection.
Proposal 18: The UE should constantly track the channel prediction performance like the channel prediction horizon versus the feedback overhead, the execution latency as well as the required channel observation time within the agreed limits between UE and gNB.
Proposal 19: Consider the possibility of overfitting/fine-tuning of UE models for improved CSI prediction.
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