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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN 94-e meeting [1], a new SID on artificial intelligence (AI) / machine learning (ML) for multiple use cases was approved considering aspects such as performance, complexity, and potential specification impact. In this contribution, we focus on the use case of beam management, including spatial domain beam prediction and time domain beam prediction. Simulation results, corresponding comparisons and observations are provided to verify the rationality and validity of the proposed beam management enhancements based on artificial intelligence (AI) / machine learning (ML).
Evaluation methodology
Evaluation result assumptions
A working assumption was approved for evaluation results reporting in RAN1#110bis-e meeting,
Working Assumption
For both BM-Case1 and BM-Case 2, the following table is adopted as working assumption for reporting the evaluation results.
Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	


To report the following in table caption: 
· Which side the model is deployed
Further info for the columns:
· Assumptions
· Number of beams/beam pairs in Set A
· Number of beams/beam pairs in Set B
· Baseline scheme, e.g., Option 1 (exhaustive beam sweeping), Option 2(based on measurements of Set B), or baseline described by companies
· Other assumptions can be added later based on agreements
· Model input: input type(s)
· Model output: output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs) 
· Dataset size, both the size of training/validation dataset and the size of test dataset
· Short model description: e.g., CNN, LSTM
· Model complexity, in terms of “number of model parameters” and/or size (e.g. Mbyte)”, and 
· Computational complexity in terms of FLOPs
· Evaluation results: agreed KPIs, with AI/ML / with baseline scheme (if applicable)
Note: To report other simulation assumptions, if any.
In our view, to conclude this issue, the working assumption should be confirmed. Additionally, 3 cases were discussed and reached a working assumption in previous meeting for model generalization, i.e., 
· Generalization-Case1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Generalization-Case2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Generalization-Case3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Same scenario and/or configuration are used for model training and inference without considering generalization performance for generalization-Case1, while generalization-Case2 and generalization-Case3 use different data in model training and inference for generalization verification purpose. Hence, we propose,
Proposal 1: Confirm the working assumption for reporting the evaluation results with minor modification, i.e. Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization with generalization-Case1 for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
Similarly, we prefer a table with model generalization case2 and case3 should be agreed which can report generalization related assumptions, such as model input for training, model input for inference, etc.  The following can be an exemplary table for such purpose.
Table X. Evaluation results for [BM-Case1 or BM-Case2] with generalization-Case2/generalization-Case3 for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	
	Model input data for training at 1st configuration/scenario
	
	

	
	Model input data for inference at 2nd configuration/scenario
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	



Proposal 2: Support to report generalization-Case2 and generalization-Case3 related assumptions, at least including model input data for training and inference with different configurations and/or scenarios. 
KPI discussion
Beam management related KPIs
Besides, overhead from UCI report should also be considered as basic KPI. The motivation of beam prediction in BM-Case 2 is to use fewer beam report to efficiently and accurately predict more beams in temporal domain. For example, originally it needs 40ms to track the beam accurately. With proper Case-2 beam prediction, the beam report can be reduced to once per 160ms. This would help to save UE power, RS overhead and also UL resources. UCI Payload size can also be reduced since it is possible that some prediction needs more input while other prediction needs fewer.
In addition, there are some solutions to share huge amount of training data or assistance information via RAN air interface. We think this could cause trouble for RAN2 study and design, and it’s beneficial to let RAN1 consider signaling overhead in its study from the beginning. We, thus, propose,
UCI reporting overhead reduction, including the number of UCI report and UCI payload size, should be considered as basic KPI.
RRC singling overhead can be considered as optional KPI if huge amount of data, such as training data, assistance information, and AI model data, is exchanged via RAN air interference.
Performance evaluation
In this section, we provide our simulation results for performance evaluation of AI/ML based beam prediction, including data generation and processing, set B pattern selection scheme, assistance information, produce N output beams based expected beam information scheme and DL Tx beam prediction scheme.
Evaluation assumption
AI model structure
In comparison with fully-connection neural network, superior AI model, such as transformer, convolution neural network, LSTM and so on, may increase performance gain and/or decrease model size/computation. However, the main purpose of the SID is to find an effective AI/ML algorithm with acceptable AI generalization, complexity and performance in beam prediction rather than to find an optimal AI model. Thus, a fully-connected AI model with 2 hidden layers and 1000 parameters per hidden layer is used in spatial domain beam prediction, whereas for the neural network structure in temporal domain beam prediction, MLP-mixer is attempted to obtain considerable gain in the following simulations. 
Data generation
373800 samples are generated, which are based on assumptions in appendix A for spatial domain beam prediction. 87.5% of samples are used to model training, and 12.5% of samples are used for validation, which are generated from different simulation drops compared with the training dataset. For temporal domain prediction, 418000 samples are generated, and 80% of data and 20% of data is used for model training and model validation respectively.
More simulation assumptions can be obtained in appendixes. 
Data processing
[bookmark: _Hlk110606638]To address the issue of using one AI model for multiple numbers of Tx and/or Rx beams, we study the performance of using expected information in AI model input, where expected Tx/Rx beam angle is the expected beam angle that the AI model want to predict. For example, if one UE has 8 Rx beams, but the AI model is just trained to output 4 Rx beams. Then introducing 4 expected Rx beam information into the input of the AI model, and the AI model can run twice with different sets of 4 expected Rx beam information as the input and output to get all the Rx beam RSRPs. To simplify solution for performance evaluation, we assume 1 expected beam information applied in this expected beam information-based scheme. As a consequence, the total number of samples should be multiplied by 8, 32 and 256 after introducing expected RX beam information, expected Tx beam information and expected TX/RX beam information in AI model input, respectively. 
Beam management related KPI selection
Base on the above KPI discussion, 4 KPIs are used in following performance evaluations with a default definition of Top-1 genie-aided Tx-Rx beam pair and Tx beam being the Tx-Rx beam pair and Tx beam that results in the largest L1-RSRP over all Tx and Rx beams, i.e. option A is used as default Top-1 genie-aided beam definition if not specified. Further, to realize performance comparison between beam pair prediction and DL Tx beam prediction, Tx-Rx beam pair is used for the following KPI definition.
· Average L1-RSRP difference of Top-1 predicted Tx-Rx beam pair
· Beam prediction accuracy (%) for Top-1 Tx-Rx beam pair
· Beam prediction accuracy (%) with 1dB margin for Top-1 Tx-Rx beam pair
· Beam prediction accuracy (%) for Top-4/1, i.e., the Tx-Rx beam pair prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-4 predicted Tx-Rx beam pairs”
Spatial domain beam perdition
4.2.1 Set B selection scheme
For both spatial domain and temporal domain beam prediction, Set B contains a subset of beams selected from a full-set which may relate to AI output or gNB/UE beam configuration. Then, in RAN1#110bis-e meeting, following agreement was approved for the selection of Set B.
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 
In RAN1#111 meeting, following agreements were approved
Agreement
For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, additionally considering
· Various Set B of beam(pairs)
Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 
From our understanding, only one pre-defined pattern with fixed pattern in Set B is used in option 1 across training and inference stage. Same fixed pattern across training and inference may show good performance in theory, but it lacks flexibility as in practical implementation, one fixed beam or beam pair may suffer performance loss due to unexpected channel variation like blockage, and may cause large interference. Similarly, an untrained fixed pattern for inference may suffer generalization performance loss seriously.
Option 2 brings much more flexible selection schemes in Set B, such as, random patterns in Set B for training and inference (Opt C), and variable pre-configured patterns in Set B for training and inference (Opt A and Opt B). Hence it is needed to study option 2 and make sure it can provide comparable performance as option 1 with higher flexibility. We evaluate this aspect in this sub-section. 
4.2.1.1 Fixed pattern in Set B
373800 samples are generated for spatial domain prediction where each sample includes a full-set of 256 L1-RSRP results. The output of AI model is designed to be L1-RSRP of the full-set and set B is a subset of the L1-RSRP results fed into AI model, as shown in figure 1.
[image: ]
Figure 1 beam prediction with fixed pattern
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]4 fixed patterns with number of 16 beams are generated with various fixed selection method:
· Fixed pattern-1: Fixed pattern with continuous beams
· Fixed pattern-2: Fixed pattern which is randomly selected
· Fixed pattern-3: Well-designed pattern
· Fixed pattern-4: Best fixed pattern
Fixed pattern-1 selected continuous beams from all beam pairs which shall be the worst set among above 4 patterns. Then, Fixed pattern-2 is selected by random generating a fixed beam pattern from total beams, which represents all datasets, including training dataset and validation dataset, use same fixed beams in AI input. Fixed pattern-3 is a well-designed set according to predefined rules, while Fixed pattern-4 is statistically best beam pattern among candidate patterns which have been enumerated with predefined searching criterion.
Two AI application mechanisms are considered, i.e. same or different fixed beam patterns used for training and validation, which may represent performance upper bound and lower bound for a given AI model respectively. 
Table 1: performance evaluation results for a fixed pattern in Set B
	Training
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-1(worst)
	6.17
	35.2
	42.4
	68.5

	Fixed pattern-2 (fixed)
	2.77
	51.1
	59.7
	80.9

	Fixed pattern-3 (designed)
	2.25
	54.5
	63.3
	83.4

	Fixed pattern-4 (best)
	1.99
	55.9
	65.6
	84.2



The above simulation results show performance of different Sets B following Option 1 set B generation rule, i.e., same set B across training and validation. Fixed pattern-1 with a predefined worst fixed pattern brings significant performance deterioration, especially in average L1-RSRP difference, whereas a modest performance gap can be observed among other fixed patterns in beam prediction accuracy aspect, and Fixed pattern-4 has the best performance which is statistically best beam pattern among the enumerated candidate patterns with predefined searching criterion.
Fixed pattern selection scheme with different fixed patterns brings tremendous performance difference.
Better performance gain can be obtained for one fixed pattern selected by well-designed rule or enumerated with predefined searching criterion.
From AI model applicability aspect, the AI model trained with one fixed pattern can be applied the dataset generated by other fixed patterns for generalization performance study. Performance loss is expected. The following results show more details.
Table 2: performance evaluation results for one fixed pattern in Set B with generalization consideration
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-4 (best)
	1.99
	55.9
	65.6
	84.2

	Fixed pattern-2
	Fixed pattern-1 
	17.6
	3.20
	4.89
	9.49

	Fixed pattern-3
	Fixed pattern-2
	21.0
	3.72
	13.2
	12.0

	Fixed pattern-4
	Fixed pattern-2
	20.6
	2.74
	12.0
	9.29

	Fixed pattern-4
	Fixed pattern-3
	14.4
	9.94
	19.7
	27.5



Compared with the case of Fixed pattern-4 with same fixed pattern for training and validation, the performance with different training and validation fixed patterns is quite poor and not acceptable.
The performance with different training and validation fixed patterns is quite poor and not acceptable, i.e., fixed set B selection scheme suffers serious generalization issue.
Unless an excellent generalization performance can be proved in option 1, i.e. a fixed pattern in Set B for training and same fixed pattern in Set B for validation, fixed set B selection scheme should be deprioritized. 
4.2.1.2 Random patterns in Set B
The fixed beam pattern scheme has gains only when the same fixed set B is applied in both model training and validation, which bring significant restrictions on AI deployment for beam prediction. Such restriction may cause performance loss in real deployment. For example, one or more beams in the fixed Set B may suffer measurement loss due to unexpected channel conditions like blockage, or may cause large interference to neighbor cells. Thus, random pattern selection worthy study as to use different beam patterns in Set B for measurement during inference may have a potential to obtain the beam prediction gain as well as reduce restrictions on AI deployment.
Fixed beam pattern in Set B can have good performance in ideal scenarios but it lacks flexibility. Issues like blockage and inter-cell interference can bring negative impact on the performance of fixed pattern.
[image: ]
Figure 2 beam prediction with random patterns
In this selection scheme, each input sample with 16 beams are randomly selected from the total 256 beams. It seems almost inevitable that the flexibility of AI deployment can be improved by random pattern selection scheme at the expense of lower performance compared with well-designed fixed beam pattern. We have 2 independently random patterns as below:
· Random pattern Set-1: Various beam patterns in Set B
· Random pattern Set-2: Various beam patterns in Set B
Each input sample of Random pattern Set-1 and Random pattern Set-2 has 16 L1-RSRP selected randomly from total 256 L1-RSRP, and each L1-RSRP in an input sample has its corresponding beam pair, i.e. Tx beam in gNB for transmitting and Rx beam in UE for receiving. 
Table 3: performance comparison between fixed pattern and random pattern scheme
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-4
	1.99
	55.9
	65.6
	84.2

	Fixed pattern-4
	Fixed pattern-2
	20.6
	2.74
	12.0
	9.29

	Random pattern Set-1
	11.3
	10.8
	11.2
	36.1

	Random pattern Set-1
	Random pattern Set-2
	11.9
	10.1
	10.9
	35.9


In table 3, compared with using one fixed pattern for training and another fixed pattern for validation, approximately 10dB improvement is obtained from the random pattern selection in training and validation in KPI of average RSRP difference, and similar improvement can be achieved under the KPI of beam prediction accuracy for top-1 and top-4 beams. Although significant performance deterioration can be observed from fixed pattern selection scheme with different fixed patterns in training and validation, the performance of Random pattern Set-1 used for training and an independently Random pattern Set-2 used for validation is similar with that of same Random pattern Set-1 used for training and validation. Besides, in comparison with the best fixed pattern, i.e. Fixed pattern-4, used for both training and validation, the performance of Random pattern Set-1 or Random pattern Set-2 seems not good enough. 
Random pattern selection scheme, which allows multiple random patterns in training, can improve generalization performance as well as beam management related performance if compared to mismatched pattern with always using one pattern in training.
Set B with random beam patterns still suffers tremendous performance deterioration due to huge number of combinations of selecting a target number of beams from total beam pairs. 
4.2.1.3 Pre-configured patterns in Set B
[bookmark: _Hlk111040317]Due to huge various performance gain among different fixed beam patterns and imperfect solution for random beam pattern selection scheme, pre-configured patterns in Set B shall be considered for further improving performance of random-based scheme.  
[image: ]
Figure 3 beam prediction with pre-configured patterns
As Fixed pattern-4 with the best performance gain is the statistically best beam pattern from the enumerated candidate patterns based on predefined searching criterion, to improve the performance of purely random selection, more restricted beam patterns searching from the best beam patterns can be used for sample selection. Specifically, each input pattern with 16 beams can be selected randomly from a given number of candidate patterns with better performance. Thus, we have following Sets B,
· Pre-configured 10 patterns: best 10 patterns 
· Pre-configured 50 patterns: best 50 patterns
· Pre-configured 100 patterns: best 100 patterns
· Pre-configured 500 patterns: best 500 patterns
· Pre-configured 1000 patterns: best 1000 patterns
· Pre-configured 2000 patterns: best 2000 patterns
Table 4: performance evaluation results for pre-configured patterns in Set B
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-4
	1.99
	55.9
	65.6
	84.2

	Random pattern Set-1
	11.3
	10.8
	11.2
	36.1

	Pre-configured 10 patterns
	4.01
	41.2
	48.5
	75.5

	Pre-configured 50 patterns
	6.15
	28.9
	34.7
	64.4

	Pre-configured 100 patterns
	7.34
	22.8
	25.7
	58.7

	Pre-configured 500 patterns
	9.28
	15.3
	17.1
	49.4

	Pre-configured 1000 patterns
	9.51
	14.7
	16.1
	47.9

	Pre-configured 2000 patterns
	9.83
	13.5
	14.7
	46.5



In table 4, even though certain performance loss can be observed from Set B with pre-configured 10 patterns in comparison with Fixed pattern-4, the performance of Set B with pre-configured 10 patterns has a significant increase if it is compared with Random pattern Set-1. However, beam prediction performance deteriorates along with the increase of the number of pre-configured patterns. 
Although certain performance loss can be observed from Set B with pre-configured patterns in comparison with fixed pattern scheme, it has a significant increase compared to random pattern scheme.
Beam prediction performance deteriorates along with the increase of the number of pre-configured patterns. 
Support pre-configured patterns of Set B with a limitation to the number of best X predefined beam patterns, i.e. option 2B.
4.2.2 Necessity of assistance information
In this section, assistance information is introduced to increase performance gain of beam prediction, such as Tx beam id, Tx beam pointing angle, Rx beam id, Rx beam pointing angle in both horizontal and vertical direction, shown as in below figure.
[image: ]
Figure 4 beam prediction with assistance information
4.2.2.1 Fixed pattern with assistance information
In the study of this sub-section, Fixed pattern-4 with different assistance information is used as AI input, where Fixed pattern-4 is statistically best beam pattern among candidate patterns which have been enumerated with predefined searching criterion. The intention of the combinations given below is to evaluate performance improvement of using different assistance information, including the performance comparison between Tx beam and Tx/Rx beam, as well as the difference between beam id and beam pointing angle. Thus, we have 5 input combinations as below:
· Fixed pattern-4: Best fixed pattern
· Fixed pattern-4 + Tx beam id: Best fixed pattern 
+ Tx beam id of horizontal direction + Tx beam id of vertical direction
· Fixed pattern-4 + Tx beam angle: Best fixed pattern 
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
· Fixed pattern-4 + Tx/Rx beam id: Best fixed pattern
+ Tx beam id of horizontal direction + Tx beam id of vertical direction 
+ Rx beam id of horizontal direction + Rx beam id of vertical direction
· Fixed pattern-4 + Tx/Rx beam angle: Best fixed pattern
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
+ Rx beam pointing angle of horizontal direction 
+ Rx beam pointing angle of vertical direction
Table 5: performance evaluation results for fixed pattern in Set B with assistance information
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-4
	1.99
	55.9
	65.6
	84.2

	Fixed pattern-4 + Tx beam id
	2.02
	55.8
	66.0
	84.5

	Fixed pattern-4 + Tx beam angle
	2.02
	56.1
	66.1
	84.5

	Fixed pattern-4 + Tx/Rx beam id
	1.98
	55.8
	66.2
	84.2

	Fixed pattern-4 + Tx/Rx beam angle
	1.99
	55.7
	66.1
	84.2



Similar performance can be achieved for a fixed pattern in set B with or without assistance information.
4.2.2.2 Random patterns with assistance information
Similarly, we have 5 input combinations in random pattern scheme as below:
· Random pattern Set-1: Random pattern selection
· Random pattern Set-1 + Tx beam id: Random pattern selection 
+ Tx beam id of horizontal direction + Tx beam id of vertical direction
· Random pattern Set-1 + Tx beam angle: Random pattern selection 
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
· Random pattern Set-1 + Tx/Rx beam id: Random pattern selection
+ Tx beam id of horizontal direction + Tx beam id of vertical direction 
+ Rx beam id of horizontal direction + Rx beam id of vertical direction
· Random pattern Set-1 + Tx/Rx beam angle: Random pattern selection
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
+ Rx beam pointing angle of horizontal direction 
+ Rx beam pointing angle of vertical direction
Through above results and observations, if AI inputs only include random subsets RSRPs in Set B, the beam prediction AI model is hard to train and relative performance may not reach that of the fixed pattern scheme, as the huge number of combinations of selecting a target number of beams from 256 beam pairs exist. Thus, some assistance information in connection with RSRP input can be used to improve AI performance in beam prediction with random beam pattern scheme.
Table 6: performance comparison between fixed pattern and random pattern with assistance information
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-4
	1.99
	55.9
	65.6
	84.2

	Random pattern Set-1
	10.83
	12.23
	13.24
	41.04

	Random pattern Set-1 + Tx beam id
	8.31
	17.21
	20.03
	56.21

	Random pattern Set-1 + Tx beam angle
	8.02
	17.94
	21.79
	57.20

	Random pattern Set-1 + Tx/Rx beam id
	5.49
	31.26
	36.63
	54.23

	Random pattern Set-1 + Tx/Rx beam angle
	5.34
	32.01
	37.42
	66.61



Compared with Random pattern Set-1, which only includes RSRP as baseline performance, approximate 2.5 dB and 3dB gain can be obtained for Random pattern Set-1 + Tx beam information, i.e. Tx beam id or Tx beam angle, in KPI of average RSRP difference, respectively, whereas the performance of Random pattern Set-1 with Tx/Rx beam information provides greater than 5 dB gain of average RSRP difference. Similarly, beam prediction accuracy has almost 6 and 20 improvement for Random pattern Set-1 with Tx beam information and Tx/Rx beam information, and more gains can be obtained if considering KPI of beam prediction accuracy for top-1 beam with 1dB margin and beam prediction accuracy for top-4 beams. However, beam management related performance of Random pattern Set-1 with assistance information still seems to have small loss compared to the performance of Fixed pattern-4 used for model training and validation.
Compared with Random pattern Set-1, assistance information brings considerable gain in random pattern selection scheme, especially for Tx/Rx beam angle as assistance information.
Assistance information, such as Tx/Rx beam ID or angle in connection with input RSRPs, should be used as AI input at least for random pattern scheme.
4.2.2.3 Pre-configured patterns with assistance information
In this section, we further study using assistance information of Tx/Rx beam angle for AI/ML beam management with pre-configured pattern selection scheme. 
· Pre-configured 10 patterns + Tx/Rx beam angle: best 10 patterns
+ Tx/Rx beam pointing angle
· Pre-configured 50 patterns + Tx/Rx beam angle: best 50 patterns
+ Tx/Rx beam pointing angle
· Pre-configured 500 patterns + Tx/Rx beam angle: best 500 patterns
+ Tx/Rx beam pointing angle
Table 7: performance evaluation results for pre-configured patterns with assistance information
	Training dataset
	Validation dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Fixed pattern-4
	1.91
	56.68
	68.10
	86.03

	Pre-configured 10 patterns
	4.01
	41.2
	48.5
	75.5

	Pre-configured 10 patterns
+ Tx/Rx beam angle
	2.35
	51.8
	62.3
	83.8

	Pre-configured 50 patterns
	6.15
	28.9
	34.7
	64.4

	Pre-configured 50 patterns
+ Tx/Rx beam angle
	2.82
	46.7
	56.4
	80.7

	Pre-configured 500 patterns
	9.28
	15.3
	17.1
	49.4

	Pre-configured 500 patterns
+ Tx/Rx beam angle
	3.74
	40.2
	48.1
	75.7



In table 7, such Set B with different number of pre-configured best patterns achieve considerable performance improvement compared to its same Set B without any assistance information. Besides, it can be observed that this pre-configured beam pattern scheme has potential to approach the performance upper bound, i.e. Fixed pattern-4, if the performance of each pattern in top-N best patterns has similar performance of top-1 best pattern.
[bookmark: OLE_LINK16][bookmark: OLE_LINK17]Such pre-configured patterns in Set B with Tx/Rx beam angle information as input barely suffers performance loss compared with the best beam pattern.
Pre-configured beam pattern scheme has potential to approach the performance upper bound, i.e. the best fixed pattern, if the performance of each pattern in top-N best patterns has similar performance of top-1 best pattern.
Support assistance information with both Tx and Rx beam information in pre-configured pattern scheme.
Suggest to use both Tx and Rx beam information as assistance information for further performance improvement for both BM-Case1 and BM-Case2.
4.2.3 Beam pair prediction with expected beam information 
In section 4.2.1 and 4.2.2, output size of those AI models is associated with the total number of Tx beams and the total number of Rx beams, which limits AI model deployed in different UE capabilities with a distinct number of Tx/Rx beams. To address this issue, we propose to use the expected output Tx and/or Rx beam information as a part of the input to the AI model.
Consideration of this scheme is to use the AI model to predict the performance of expected Tx and/or Rx angles. For the example of using expected Rx angle, if all Rx angles could be searched and the best RSRP/beam pairs are selected based on the per angle prediction, then the model would be applicable for arbitrary number of Rx beams. Accordingly, the output size of the AI model is only associated with the number of total Tx beams by input expected Rx information into the model. Similarly, the AI output of expected Tx beam is L1-RSRP with all Rx beams and the expected Tx beam, and one predicted L1-RSRP can be obtained in an AI model running cycle by AI input with 1 expected Tx beam information and 1 expected Rx beam information. Figure 5 and Figure 6 depicts the details about using expected Rx beam information and expected Tx beam information, respectively. 
To sum up, expected Rx beam scheme is adaptable to AI/ML operations on numerous UE antenna configurations, and expected Tx beam scheme can be used in a UE without any AI model changing even switching to a cell with a different number of Tx beams. Generalization performance can be further improved by using both expected Tx beam information and expected Rx beam information.
[image: ]
Figure 5: beam pair prediction with expected Rx beam information
For example, as figure 5, Pre-configured 50 patterns + Tx/Rx beam angle with additional 1 expected Rx beam information is fed into AI model, and an expected output of L1-RSPR with all Tx beams and the expected Rx beam indicated in AI input can be obtained. Then, other expected outputs can be acquired by feeding same Pre-configured 50 patterns + Tx/Rx beam angle + different expected Rx beam information per running cycle. After running all cycles which may equal to the number of Rx beams, all the Tx and Rx beam information (L1-RSRP) can be predicted based on this trained AI model. As a consequence, the number of AI model output per running cycle is decoupled with the number of UE Rx beams, which takes significant generalization performance improvement if we need to apply AI/ML operations on numerous UE antenna configurations. 
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Figure 6: beam pair prediction with expected Tx beam information
Similarly, additional 1 expected Tx beam information can be fed into AI model to predict L1-RSPR of 8 Rx beams with indicated expected Tx beam per running cycle. Consequently, L1-RSRP of total 256 beam pairs can be obtained after combining all predicted results of 32 running cycles which each running cycle has same L1-RSRP and corresponding Tx/Rx beam angles as a part of AI input.
In performance evaluation, Pre-configured 50 patterns + Tx/Rx beam angle in section 4.2.2.3 is used as baseline AI model input in expected beam information study. Three types of expected information, including expected Rx beam pointing angle, expected Tx beam pointing angle, and expected Tx/Rx beam pointing angle, will be studied, which represent relative expected beam angles to be predicted. For AI model simplification, we assume 1 expected beam information applied in AI model input in the following expected beam-based simulation, and more expected beam information simultaneously used in each input sample can be further studied if needed.
According to above discussions on expected information schemes and simulation assumptions, we have following combinations:
· Pre-configured 50 patterns + Tx/Rx beam angle + 1 expected Rx beam pointing angle
· Pre-configured 50 patterns + Tx/Rx beam angle + 1 expected Tx beam pointing angle
· Pre-configured 50 patterns + Tx/Rx beam angle + 1 expected Tx beam pointing angle + 1 expected Rx beam pointing angle
[bookmark: _Hlk115099787]The output of AI mode in Pre-configured 50 patterns + Tx/Rx beam angle as baseline beam pair prediction solution is associated with the total number of Tx beams and the total number of Rx beams, i.e. beam pair prediction with pre-configured pattern scheme and assistance information specified in section 4.1.2.3, while Pre-configured 50 patterns + Tx/Rx beam angle with expected information in AI input can be used as enhanced beam pair prediction solution. 
Table 8: performance comparison for expected beam information
	Training 
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Pre-configured 50 patterns 
+ Tx/Rx beam angle 
	2.82
	46.7
	56.4
	80.7

	Pre-configured 50 patterns 
+ Tx/Rx beam angle 
+ 1 expected Rx beam pointing angle
	3.09
	46.8
	55.6
	81.0

	Pre-configured 50 patterns 
+ Tx/Rx beam angle 
+ 1 expected Tx beam pointing angle
	2.91
	46.5
	54.4
	79.9

	Pre-configured 50 patterns 
+ Tx/Rx beam angle 
+ 1 expected Tx beam pointing angle
+ 1 expected Rx beam pointing angle
	3.27
	43.6
	49.9
	78.5



Based on the above simulation results, almost same beam prediction accuracy and marginal performance loss of average RSRP difference can be obtained by Pre-configured 50 patterns + Tx/Rx beam angle with expected Rx beam scheme or expected Tx beam scheme in comparison with Pre-configured 50 patterns + Tx/Rx beam angle, while Pre-configured 50 patterns + Tx/Rx beam angle with additional expected Tx beam + expected Rx beam brings a small performance deterioration. Thus, we have following observation and proposals,
More flexible AI model deployment for different number of Tx/Rx beams can be achieved through using expected Tx/Rx beam information method with only marginal performance loss.
Study beam pair prediction with expected Tx/Rx beam information as the AI input as one of the solutions for generalization to different number of Tx/Rx beams in BM-Case1.
Further study expected information method in BM-Case2.
Further study multiple expected beam information simultaneously used in AI input.
4.2.4 DL Tx beam prediction 
One important issue for AI based BM study is whether we need to support P1 BM procedure (beam pair prediction) or P2 and P3 beam management procedures as in the current NR specification. In P1, AI predicts RSRPs of all beam pairs based on measurement with both Tx beams and Rx beams. For P2 or P3, AI only predicts Tx beam RSRPs or Rx beam RSRPs based on measurement with only Tx beams or Rx beams. For example, in P2, a given number of Tx beams configured along with beam management resources are received by UE with the best Rx beam acquired from previous P3 processing. Then, the best Tx beam and its beam quality can be obtained in gNB by relative beam report with maximum beam index and its L1-RSRP. Consequently, during P2 processing, there is no need to predict any Rx beam information from gNB’ perspective. 
Thus, in addition to enhanced beam pair prediction scheme, i.e. beam pair prediction with expected beam information, 2-step beam prediction scheme will be studied to imitate P2 + P3 beam management process in below two sub use cases, i.e.  spatial domain beam prediction and temporal domain beam prediction. Besides, we will focus on spatial domain beam prediction with P2 processing AI model firstly with different P3 beam searching criterion.
In RAN1#111 meeting, following agreement was approved for Rx beam selection.
Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.

[image: ]
Figure 7: DL Tx beam prediction with random Tx beam pattern
In Figure 7, random pattern selection is used to select 8 L1-RSRPs of 8 Tx beams with 1 specific Rx beam or multi-Rx beams for each sample. Besides, not only selected RSRPs are fed into AI model, but also Tx beam pointing angle and Rx beam pointing angle are used as assistance information. Accordingly, the specific received Rx beam(s) in P2 processing can be searched based on the following 4 alternatives,
· Multiple specific Rx beams where each Tx beam uses its own specific Rx beam: Measurements of Tx beam pattern with multiple specific Rx beams where each Tx beam uses its own specific Rx beams, e.g., Tx pattern with best Rx beam searched from each Tx beam. This corresponds to current assumption for RSRP report.
· 1 specific Rx beam (randomly selected without search) for all model input samples: All measurements are conducted with a specific Rx beam for all model input sample
· 1 specific Rx beam (e.g., best or 2nd best) searched from all beam pairs per model input sample:  Measurements with a specific Rx beam searched from total beam pairs for each model input sample, e.g., best Rx beam searched from total beam pairs
· 1 specific Rx beam searched from a specific Tx beam per model input sample: Measurements with a specific Rx beam searched from a specific Tx beam for each model input sample, e.g., best Rx beam searched from 1st Tx beam
To get the best Rx beam based on one Tx beam by P3 processing, at most 8 CSI-RS resources with repetition on should be used in advance. As a consequence, a baseline Set-B selected by random pattern selection with multiple Rx beams can be considered with 16 measured beams in P1 procedure. The value 16 is obtained from using the 8 CSI-RS resources with repetition on in P2/P3 as 8 extra CSI-RS resources for beam measurement in P1, so that CSI-RS overhead for P1 and P2/P3 can be aligned.  Due to all Rx beams are measured in P2/P3 processing, the selected random pattern per sample should include all 8 Rx beams as predefined selecting criterion for performance improvement in P1 baseline pattern selection scheme. Thus, we have the following baseline for the subsequent evaluations on beam pair prediction and DL Tx beam prediction,
· Random beam pair pattern with 16 L1-RSRPs + Tx/Rx beam angle
4.2.4.1 DL Tx beam prediction with multiple Rx beams where each Tx beam uses its own specific Rx beam
[image: ]
Figure 8. schematic diagram of each Tx beam uses its own best Rx beam
In this section, multiple Rx beams are introduced to DL Tx beam prediction scheme with random Tx pattern where each Tx beam in a Tx pattern uses its own specific Rx beam. For example, in Figure 8, a random Tx pattern with two Tx beams is received with 2 specific Rx beams in sample n for set B acquisition, where Rx beam 1 is the best Rx beam searched from its corresponding Tx beam shown as blue and Rx beam 3 is the best Rx beam searched from the second Tx beam marked as yellow. 
Furthermore, in consideration of best Rx beam can change dynamically due to aspects like channel time-varying, UE movement, rotation or blockage, 5 types of Rx beam searching criterion are evaluated for each Tx beam in each model input sample, i.e. best Rx beam, 2nd best Rx beam, 3rd best Rx beam, worst Rx beam and random Rx beam.
· Multiple specific Rx beams where each Tx beam uses its own specific Rx beam
· Random Tx pattern where each Tx beam uses its own best Rx beam + Tx/Rx beam angle
· Random Tx pattern where each Tx beam uses its own 2nd best Rx beam + Tx/Rx beam angle
· Random Tx pattern where each Tx beam uses its own 3rd best Rx beam + Tx/Rx beam angle
· Random Tx pattern where each Tx beam uses its own worst Rx beam + Tx/Rx beam angle
· Random Tx pattern where each Tx beam uses its own random Rx beam + Tx/Rx beam angle
Table 12: performance evaluation for DL Tx beam prediction with multiple Rx beams where each Tx beam in each model input sample uses its own specific Rx beam
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Random beam pair pattern 
with 16 L1-RSRPs + Tx/Rx beam angle
	4.93
	33.8
	40.3
	69.8

	Random Tx pattern where each Tx beam uses its own best Rx beam + Tx/Rx beam angle
	3.63
	33.9
	43.6
	47.2

	Random Tx pattern where each Tx beam uses its own 2nd best Rx beam + Tx/Rx beam angle
	4.15
	10.8
	22.2
	16.3

	Random Tx pattern where each Tx beam uses its own 3rd best Rx beam + Tx/Rx beam angle
	4.58
	6.27
	16.1
	10.3

	Random Tx pattern where each Tx beam uses its own worst Rx beam + Tx/Rx beam angle
	6.66
	0.2
	7.1
	0.47

	Random Tx pattern where each Tx beam uses its own random Rx beam + Tx/Rx beam angle
	6.58
	5.7
	12.3
	11.2



Similar performance can be achieved for beam pair prediction and DL Tx beam prediction with multiple Rx beams where each Tx beam in each model input sample uses its own best Rx beam, while beam pair prediction provides obvious performance improvement in KPI of beam prediction accuracy for top 4/1 beam. However, significant performance loss can be observed for non-best Rx beam assumptions in DL Tx beam prediction with multiple Tx beams. 
Beam pair prediction provides obvious performance improvement in KPI of beam prediction accuracy for top 4/1 beam, while similar performance can be observed in other KPIs for beam pair prediction and DL Tx beam prediction with multiple Rx beams where each Tx beam uses its own best Rx beam.
Further study the benefit of DL Tx beam prediction with multiple Rx beams where each Tx beam uses its own specific Rx beam.
4.2.4.2 DL Tx beam prediction with 1 specific Rx beam (randomly selected without search)
[image: ]
Figure 9. schematic diagram of 1 specific Rx beam without search for all model input sample
In Figure 9, a random Tx pattern with two Tx beams is used in each model input sample, and Rx beam 1 is used to receive the two Tx beams for all model input samples. Thus, only one specific Rx beam without any Rx beam sweeping is used to study its performance impact which can decrease Rx beam sweeping complexity.
Further, 8 L1-RSRPs of 8 random Tx beams with 1 fixed Rx beam, such as fixed Rx beam-1, Rx beam-2, Rx beam-4, Rx beam-6, shall be used for performance evaluation. We, thus, have the following 5 combinations:
· 1 specific Rx beam without search for all model input sample
· Random Tx pattern with Rx-1 beam + Tx/Rx beam angle
· Random Tx pattern with Rx-2 beam + Tx/Rx beam angle
· Random Tx pattern with Rx-4 beam + Tx/Rx beam angle
· Random Tx pattern with Rx-6 beam + Tx/Rx beam angle
· Random Tx pattern with 1 random Rx beam per model input sample + Tx/Rx beam angle
Table 9: performance evaluation for DL Tx beam prediction with 1 specific Rx beam for all model input sample
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Random beam pair pattern 
with 16 L1-RSRPs + Tx/Rx beam angle
	4.93
	33.8
	40.3
	69.8

	Random Tx pattern with Rx-1 beam 
+ Tx/Rx beam angle
	5.86
	9.22
	11.1
	11.2

	Random Tx pattern with Rx-2 beam 
+ Tx/Rx beam angle
	5.61
	10.3
	12.2
	12.5

	Random Tx pattern with Rx-4 beam 
+ Tx/Rx beam angle
	5.81
	9.95
	12.4
	11.9

	Random Tx pattern with Rx-6 beam 
+ Tx/Rx beam angle
	5.52
	10.9
	13.4
	12.9

	Random Tx pattern with 1 random Rx beam 
+ Tx/Rx beam angle
	5.71
	9.81
	12.6
	12.1



In above table, similar performance can be obtained across DL Tx beam prediction with different unsearched Rx beams, while significant performance deterioration can be observed in DL Tx beam prediction with a randomly selected specific Rx beam for all model input samples compared to random beam pair pattern with 16 L1-RSRPs.
A considerable performance deterioration can be found in DL Tx beam prediction with a fixed specific Rx beam for all model input samples compared to beam pair prediction scheme.
DL Tx beam prediction with a randomly selected specific Rx beam for all model input samples shall be deprioritized.
4.2.4.3 DL Tx beam prediction with 1 specific Rx beam searched from total beam pairs
[image: ]
Figure 10. schematic diagram of 1 specific Rx beam search from total beam pairs per model input sample
Measurement with a specific Rx beam searched from total beam pairs for each model input sample is studied with DL Tx beam prediction in this section. In Figure 10, Rx beam 2 including in the best beam pair searched from total beam pairs of sample n is used to receive 2 Tx beams in sample n. Accordingly, Rx beam 1 and Rx beam 4 is the best Rx beam for receiving Tx beams in sample n + 1 and sample n + k respectively.
3 types of specific Rx beam are assumed, i.e. best Rx beam, 2nd best Rx beam, and worst Rx beam, for DL Tx beam prediction performance improvement.
· 1 specific Rx beam searched from total beam pairs: for each model input sample
· Random Tx pattern with best Rx beam searched from total beam pairs + Tx/Rx beam angle
· Random Tx pattern with 2nd best Rx beam searched from total beam pairs + Tx/Rx beam angle
· Random Tx pattern with worst Rx beam searched from total beam pairs + Tx/Rx beam angle
Table 10: performance evaluation for DL Tx beam prediction with 1 specific Rx beam searched from total beam pairs for each model input sample
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Random beam pair pattern 
with 16 L1-RSRPs + Tx/Rx beam angle
	4.93
	33.8
	40.3
	69.8

	Random Tx pattern with best Rx beam 
searched from total beam pairs + Tx/Rx beam angle
	1.25
	83.7
	86.5
	97.9

	Random Tx pattern with 2nd best Rx beam 
searched from total beam pairs+ Tx/Rx beam angle
	4.24
	0
	14.4
	0

	Random Tx pattern with worst Rx beam 
searched from total beam pairs + Tx/Rx beam angle
	6.68
	0.16
	0.23
	0.21



The performance of DL Tx beam prediction with the best Rx beam searched form total beam pairs for each model input sample provides considerable improvement, due to decreased prediction difficulty from predicting 256 beam pairs to 32 beam pairs by pre-acquiring precise best Rx beam of each sample, in comparison with beam pair prediction. However, significant performance deterioration can be observed in DL Tx beam prediction with non-best Rx beam. As either non-best Rx beam or best Rx beam is searched from total beam pairs, there is a low probability that this non-best Rx beam is same as the best Rx beam used for KPI calculation. Thus, zero or near zero beam prediction accuracy can be found in DL Tx beam prediction with 2nd best Rx beam or worst Rx beam searched from total beam pairs.
The performance of DL Tx beam prediction with the best Rx beam searched from total beam pairs provides considerable improvement, as decreased prediction difficulty from predicting 256 beam pairs to 32 beam pairs by acquiring precise best Rx beam of each sample.
Zero or near zero beam prediction accuracy can be found in DL Tx beam prediction with 2nd best Rx beam or worst Rx beam searched from total beam pairs.
Study on how to search best Rx beam from total beam pairs for each model input sample and its feasibility in real network.
4.2.4.4 DL Tx beam prediction with 1 specific Rx beam searched from a specific Tx beam
[image: ]
Figure 11. schematic diagram of 1 specific Rx beam search from a specific Tx beam per model input sample
Considering P3 processing in a traditional network system, “best” Rx beam is usually searched from a specific Tx beam resource with repetition on. In Figure 11, a random Tx pattern with two Tx beams is selected for each model input sample for set B acquisition marked as blue and yellow. Same Rx beam is used to receive two Tx beams in a Tx pattern for each sample, where the Rx beam is searched for each model input sample from a specific Tx beam marked as orange. Rx beam 3 is the best Rx beam searched from the orange Tx beam in sample n, while Rx beam 1 and Rx beam 4 is the best Rx beam searched from the same orange Tx beam in sample n + 1 and sample n + k.
Thus, we evaluate the following cases,
· 1 specific Rx beam searched from a specific Tx beam
· Random Tx pattern with best Rx beam searched from Tx-1 beam + Tx/Rx beam angle
· Random Tx pattern with best Rx beam searched from Tx-8 beam + Tx/Rx beam angle
· Random Tx pattern with best Rx beam searched from Tx-16 beam + Tx/Rx beam angle
· Random Tx pattern with best Rx beam searched from a random Tx beam + Tx/Rx beam angle
Table 11: performance evaluation for DL Tx beam prediction with 1 specific Rx beam searched from a specific Tx beam for each model input sample
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Random beam pair pattern 
with 16 L1-RSRPs + Tx/Rx beam angle
	4.93
	33.8
	40.3
	69.8

	Random Tx pattern with best Rx beam 
searched from Tx-1 beam + Tx/Rx beam angle
	4.04
	47.7
	54.5
	55.9

	Random Tx pattern with best Rx beam 
searched from Tx-8 beam + Tx/Rx beam angle
	4.31
	43.8
	51.1
	51.1

	Random Tx pattern with best Rx beam 
searched from Tx-16 beam + Tx/Rx beam angle
	4.38
	44.1
	50.4
	51.4

	Random Tx pattern with best Rx beam 
searched from a random Tx beam + Tx/Rx beam angle
	4.18
	46.5
	53.1
	55.1



In table 11, the performance of DL Tx beam prediction with a specific Rx beam searched from a specific Tx beam for each model input sample provides improvement compared to beam pair prediction in KPIs of average RSRP difference, beam prediction accuracy for top-1 beam and beam prediction accuracy for top-1 beam with 1dB margin, while beam pair prediction has obvious performance improvement in KPI of beam prediction accuracy for top 4/1 beam in compassion with the DL Tx beam prediction. Additionally, similar performance can be observed for DL Tx beam prediction cases with best Rx beam searched from different Tx beams.
Both beam pair prediction and DL Tx beam prediction with a specific Rx beam searched from a specific Tx beam for each model input sample has its own application targets.
Similar performance can be observed for DL Tx beam prediction cases with best Rx beam searched from different Tx beams.
Support both beam pair prediction scheme and DL Tx beam prediction scheme for different AI based beam prediction targets.
Support DL Tx beam prediction with best Rx beam searched from a Tx beam for each model input sample, and how to define this Tx beam can be FFS.
4.2.5 Generalization study for different beam shape patterns
[bookmark: _Hlk111020011]In this section, we will focus on the influence of another generalization aspect, i.e. different gNB/UE antenna configurations, which bring various beam shape patterns. To simplify this issue, only antenna configurations at gNB with corresponding Tx/Rx pointing angles changed among measurement patterns are evaluated for the following generalization performance study. The number of UE side Rx beams is kept as 8. A universal AI model using random beam pair pattern Set-1 is generated from Table 13, where each input sample includes 16 L1-RSRPs and its corresponding Tx/Rx beam pointing angles, and relative AI output is the RSRPs of total 256 beam pairs. However, random beam pair pattern Set-2 and random beam pair pattern Set-3, which are generated by table 14 and table 15 respectively, have total 128 beam pairs and 64 beam pairs. As a consequence, except random beam pair pattern Set-1, available predicted beams should be selected after model inference for other sets, and the KPI evaluation should also be calculated based on available predicted beams and its total beam pairs. 
Table 13: beam shape pattern 1
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]



Table 14: beam shape pattern 2
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	16 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 112.5]



Table 15: beam shape pattern 3
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	8 Tx beams
Horizontal angle = [-56.25 -11.25 11.25 56.25]
Vertical angle = [22.5 112.5]



· Random beam pair Set-1 with Tx beam shape 1: Random beam pair selection scheme with 32 Tx beams and 8 Rx beams for each model input sample from Table 13 + Tx/Rx beam pointing angle	
· Random beam pair Set-2 with Tx beam shape 2: Random beam pair selection scheme with 16 Tx beams and 8 Rx beams for each model input sample from Table 14 + Tx/Rx beam pointing angle	
· Random beam pair Set-3 with Tx beam shape 3: Random beam pair selection scheme with 8 Tx beams and 8 Rx beams for each model input sample from Table 15+ Tx/Rx beam pointing angle	
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]To get a fair comparison result in generalization aspect, same dataset used for training and validation can be considered as an upper bound performance, while an AI model trained by random beam pair pattern Set-1 can be used for inference with random beam pair pattern Set-2 and random beam pair pattern Set-3. 
Table 16: performance evaluation results for different beam shape patterns
	Training 
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Random beam pair Set-2 
with Tx beam shape 2
	4.08
	36.5
	43.6
	71.5

	Random beam pair Set-1 
with Tx beam shape 1
	Random beam pair Set-2 
with Tx beam shape 2
	5.10 
(+25%)
	31.92
(-12%)
	39.9 
(-8%)
	67.0
 (-6%)

	Random beam pair Set-3 
with Tx beam shape 3
	1.89
	51.1
	62.9
	85.7

	Random beam pair Set-1 
with Tx beam shape 1
	Random beam pair Set-3 
with Tx beam shape 3
	2.95 
(+56%)
	41.0
 (-20%)
	52.5
 (-16%)
	78.4
(-9%)



Compared to upper bound performance of random beam pair Set-2, approximately 1 dB performance deterioration of average RSRP difference and 5 points of beam prediction accuracy loss can be observed by pre-defined AI model trained by random beam pair Set-1 and inferenced by random beam pair Set-2. With distinction of beam shape pattern between training subset and validation subset increasing, 10 points of beam prediction accuracy loss is obtained for validation random beam pair Set-3 as well as 1.1 dB average RSRP difference loss.  
As the difference of beam shape pattern increases, the performance loss of both average RSRP difference and beam prediction accuracy increases along with the difference of the antenna configurations between training subset and validation subset.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case1.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case1.
4.2.6 Feasibility of proprietary protection for assistance information in BM-case1
As we showed in above sections, the assistance information used as part of model input provides significant performance and generalization improvement. However, proprietary information, such as beam angle information, maybe implementation sensitive information, and most companies are cautious to disclose such proprietary information. Thus, a proprietary protection mechanism shall be studied in order not to disclose proprietary information for a given assistance information. 3 examples of such proprietary protection mechanism are shown in the following figures. 
[image: ]
Figure 12: proprietary processing for model training and model inference at UE-side
In Figure 12, a proprietary processing module belongs to NW can be applied to map the real beam angles to proprietary processed beam angles or IDs. Take UE side model as an example. Beam resources with proprietary processed Tx beam angle information are transmitted to the UE, and then measurement RSRPs + corresponding proprietary processed Tx beam angles + corresponding Rx beam angles without proprietary processing can be used as AI input for a UE-side AI/ML model. 
[image: ]
Figure 13: proprietary processing for model training and model inference at NW-side 
Similarly, for NW-side model in Figure 13, measurement RSRPs with proprietary processed Rx beam angle information are transmitted to gNB, and then revived RSRPs + corresponding Tx beam angles without proprietary processing + corresponding proprietary processed Rx beam angles can be used as AI input for a NW-side AI/ML model. 
Thus, such proprietary information can be hided for a one-side AI/ML model training/inference. The model executor does not know the real information before proprietary processing of the other side. 
[image: ]
Figure 14: proprietary processing for model training at NW-side and model inference at UE-side
In Figure 14, an AI/ML model can be trained at NW-side with proprietary processed Tx beam information and proprietary processed Rx beam information, which data protection of Tx beam information and Rx beam information is corresponding to different proprietary processing module, and then the trained model can be transferred from NW-side to UE-side. At model inference stage, such beam resources with proprietary processed Tx beam angle information are transmitted to the UE, and then measurement RSRPs + corresponding proprietary processed Tx beam angles by proprietary processing module-1 + corresponding proprietary processed Rx beam angles by proprietary processing module-2 can be used as AI input. 
Therefore, the delivered information from NW can be a virtual Tx beam information mapped from the real Tx beam information, where the mapping between the real Tx beam information and the virtual Tx beam information can be known only by NW. Then NW does not need to disclose any privacy information if it does not want to. Such mapped information can still be useful for generalization performance at UE side. The key point is a same mapping function shall be maintained across training and inference.
From above theoretical analysis, 4 types of AI input combination can be obtained for beam pair prediction with pre-configured pattern selection as below. Besides, in the following performance evaluation, a value-based mathematical function is used to map real beam information to a virtual beam information, for example, beam pointing angle of 70 degree may be mapped to 1.8243 after proprietary processing module. Such mapping function is same for training and inference. 
· Pre-configured 50 patterns + Tx beam pointing angle of h/v 
+ Rx beam pointing angle of h/v 
· Pre-configured 50 patterns + proprietary processed Tx beam angle of h/v 
+ Rx beam angle of h/v
· Pre-configured 50 patterns + Tx beam angle of h/v 
+ proprietary processed Rx beam angle of h/v
· Pre-configured 50 patterns + proprietary processed Tx beam angle of h/v 
+ proprietary processed Rx beam angle of h/v
Table 17: performance evaluation results for proprietary protection mechanism with a value-based mathematical function 
	Training 
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4/1 [%]

	Pre-configured 50 patterns 
+ Tx beam angle of h/v 
+ Rx beam angle of h/v
	2.82
	46.7
	56.4
	80.7

	Pre-configured 50 patterns 
+ proprietary processed Tx beam angle of h/v 
+ Rx beam angle of h/v
	2.82
	46.9
	56.4
	81.1

	Pre-configured 50 patterns 
+ Tx beam angle of h/v 
+ proprietary processed Rx beam angle of h/v
	2.79
	47.5
	56.7
	81.0

	Pre-configured 50 patterns 
+ proprietary processed Tx beam angle of h/v 
+ proprietary processed Rx beam angle of h/v
	2.79
	47.5
	56.0
	81.0



No performance loss can be observed from proprietary protection with mathematical function processing compared to beam prediction using beam angle directly, if a same processing function is maintained for training and inference. 
Support proprietary protection mechanism for proprietary/privacy information disclosing issue in BM Case 1. Detailed proprietary protection mechanism can be FFS. 
Support to use proprietary processed assistance information as model input to address performance deterioration and sensitive proprietary information disclosure issues in BM-Case1, where a same mapping function is maintained for training and inference.
4.2.7 Representative evaluation results in BM-Case1 based on agreed template
In the following table, we present a set of selective evaluation results based on the agreed template in Section 2.1 to justify the gain of AI based beam prediction in Case 1. The following two cases are selected.
· Beam pair prediction based on a model trained under 1 Rx beam and 32 Tx beams to be used for 8 Rx beams and 32 Tx beams in Set A. 
· DL Tx beam prediction based on measurement of one best Rx beam per model input sample, where the best Rx beam is searched from 1 particular Tx beam in Set B. 
Table 18: performance evaluation results for beam pair prediction with expected Rx beam information and DL Tx beam prediction
	Assumptions
	Number of [beams/beam pairs] in Set A
	256
	256

	
	Number of [beams/beam pairs] in Set B
	16 beams,
pre-configured 50 patterns
	8 beams, 
random patterns with best Rx beam assumption searched from 1 Tx  

	
	Baseline scheme
	Exhaustive 256
	Exhaustive 256

	AI/ML model
input/output
	Model input
	L1-RSRPs 
+ Tx/Rx beam angle information 
+ 1 expected Rx beam information
	L1-RSRPs 
+ Tx/Rx beam angle information

	
	Model output
	One cycle running:
L1-RSRPs of 32 Tx beams with expected Rx beam assumption
Total output:
32 * 8 = 256 beam pairs
	L1-RSRPs of 32 Tx beams with same Rx beam assumption used in Set B

	Data Size
	Training
	327075 * 8
	327075

	
	Testing
	46725 * 8
	46725

	AI/ML model
	[Short model description]
	DNN
	DNN

	
	Model complexity
	1M Byte parameters
	1M Byte parameters

	
	Computational complexity
	2161968 flops
	2079968 flops

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Top-1
	-53.2
	-53.5

	
	
	Top-1 with 1dB margin
	-44.4
	-46.9

	
	
	Top-4/1
	-19
	-44.9

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
	3.09
	4.18

	
	[System performance]
	[RS overhead Reduction (%)

	1-(16/256) =93.75
	1-((8+8)/256) =93.75
Note: 8 resources for model input, 8 resource used for best Rx acquisition 



4.3 Temporal domain beam prediction
4.3.1 Beam pair Prediction
[image: ]
Figure 15: beam pair prediction in temporal domain (P1)
For beam pair prediction scheme, 8 beam pairs from 256 beam pairs are selected with random beam set-B selection scheme and measured at each time instant within a time duration T1, and different beam pairs are selected for measurement among time instants within T1. As a consequence, total of 64 difference beams are used in AI input to predict L1-RSRP of 256 beam pairs at each time instant within T2. In Figure 15, input of AI model includes measured L1-RSRP of beam pair, corresponding Tx beam ID and Rx beam ID, and output of AI model is L1-RSRP of all beam pairs in future time instants.
For non-AI scheme, beam pair measurement in time duration T1 is the same as beam pair prediction scheme, and the best beam pair is decided based on measurement of T1 and regarded as best beam pair for time instants within T2.
BM evaluation metrics are calculated based on difference between decided/predicted best beam pair and real best beam pair in T2. Time duration T1 is fixed to 8*40ms, and time duration T2 is equal to 1*40ms, 4*40ms, or 8*40ms respectively.
Table 19: performance comparison between non-AI and beam pair prediction in temporal domain (T2=1*40ms)
	Scheme
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4/1[%]

	Non-AI
	6.62 
	21.42
	27.82
	21.92

	Beam pair prediction
	0.67
	78.11
	87.61
	94.51



Table 20: performance comparison between non-AI and beam pair prediction in temporal domain (T2=4*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4/1[%]

	Non-AI
	6.79 
	21.24
	27.58
	21.84

	Beam pair prediction
	0.85
	77.04
	86.58
	94.00



Table 21: performance comparison between non-AI and beam pair prediction in temporal domain (T2=8*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4/1[%]

	Non-AI
	7.04 
	20.93
	27.20
	21.72

	Beam pair prediction
	1.11
	75.47
	84.92
	93.27



For BM-Case2, compared with non-AI scheme, beam pair prediction scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
Further study beam pair prediction scheme with expected information as AI input for improving generalization performance in BM-Case2.
4.3.2 DL TX beam prediction
[image: ]
Figure 16: two-step beam prediction in temporal domain (P2+P3)
The two-step scheme includes both Tx beam prediction and Rx beam prediction. The time duration T1 is further divided to T1-1 and T1-2, where T1-1 is a time duration to obtain the measurements of Tx beams for Tx beam prediction with the assumption that best Rx beams is used from the last prediction cycle, called P2 step, and T1-2 is the time duration to obtain the measurements of Rx beams for Rx beam prediction with the predicted best Tx beam, regarded as P3 step.  Based on P2 and P3, the best beam pair is decided and used for T2, as in Figure 16.
In the evaluation, at P2, 4 Tx beams are uniformly random selected and measured from 32 Tx beams at each time instant within T1-1 using the same best Rx beam predicted from P3 procedure of the last prediction cycle. Further, to reduce the complexity in evaluation, we model this P3 non-AI procedure by using the Rx beam with not greater than 1dB RSRP difference compared with the real best Rx beam. Input of AI model includes measured L1-RSRP of Tx beams and corresponding Tx beam IDs, and output of AI model is L1-RSRP of all Tx beams. Time period T1-1 is equal to 4*40ms.
In P3 step, Rx beams are measured at the time instants within T1-2 with the assumption that the best predicted Tx beam is used from the above P2. Input of AI model includes measured L1-RSRP of Rx beams and corresponding Rx beam IDs, and output of AI model is L1-RSRP of all Rx beams at time instances in T2. Time period T1-2 is equal to 4*40ms.
For non-AI 2-step scheme, at P2, measured Tx/Rx beams are the same as 2-step scheme, and best Tx beam is decided based on measured beams, and regarded as best Tx beam for P3. In P3 step, Rx beams are measured at the time instants within T1-2 with the assumption that the best Tx beam is used from the above P2 of non-AI scheme.
BM evaluation metrics are calculated based on difference between decided/predicted best beam pair and real best beam pair in T2. For comparison, non-AI and AI based 2-step scheme are evaluated. For AI based 2-step scheme, best pair is predicted based on P2+P3 procedure, and for non-AI 2-step scheme, best pair is decided based on measurement in P2+P3 procedure without prediction. Time duration T1 is fixed to 8*40ms, and time duration T2 is equal to 1*40ms, 4*40ms or 8*40ms respectively. 
Table 22: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=1*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.17
	39.03
	44.79

	2-step prediction
	0.67
	86.2
	92.55



Table 23: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=4*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.35
	38.31
	44.26

	2-step prediction
	0.86
	84.38
	91.23



Table 24: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=8*40ms)
	Scheme
	Ave. RSRP diff. [dB]
	Accuracy
 for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.62
	37.38
	43.49

	2-step prediction
	1.14
	81.91
	89.31



For BM-Case2, compared with non-AI 2-step scheme, AI based 2-step scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
Further study performance comparison between enhanced beam pair prediction and DL Tx beam prediction with various Rx beam assumptions, such as worst Rx beam, second best Rx beam, random Rx beam per sample, etc., in BM-Case2.
4.3.3 Generalization study of different beam shape patterns
In this section, we will focus on the influence of a generalization aspect, i.e. different gNB/UE antenna configurations, in temporal domain beam prediction, which brings various beam shape patterns. In the above simulations, including both spatial domain beam prediction and temporal domain beam prediction, beam pointing angle is used as AI input for performance improvement with random or semi-random beam subset. As a same mapping from beam angle to beam ID, which can be called as global beam ID or beam pointing angle, is used for evaluation, it implies that there has another option which uses local beam ID. For local beam ID, different mapping from beam angle to beam ID exists between datasets generated from different antenna configurations. Thus, for generalization study, we evaluate the generalization performance applying a trained AI model learned from a certain set of beams pointing angles/global beam IDs or local beam IDs based on a certain number of antennas for unlearned beam shape. 

[image: ]
Figure 17: different mapping methods: local beam ID vs beam pointing angle
For the case using local beam ID as model input, the training dataset 32x8 has 32 Tx local beam ID, e.g. Tx beam ID = 0 ~ 31, and for validation dataset 16x8 and 8x8, the range of Tx local beam ID is 0~15 and 0~7 respectively. Further, the beam ID used in model input of validation dataset is 0~15 and 0~7 respectively. For the case using beam angle as model input, the training dataset 32x8 has 32 Tx beams with different pointing angles, denoted as beam 0~31, and for validation dataset 16x8 and 8x8, the beam ID used in model input of validation dataset is mapped according to beam pointing angle. The difference between mapping based on local beam ID and beam angle (global beam ID) is displayed in Figure 17.
Table 25: beam shape pattern 1
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]



Table 26: beam shape pattern 2
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	16 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 112.5]



Table 27: beam shape pattern 3
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	8 Tx beams
Horizontal angle = [-56.25 -11.25 11.25 56.25]
Vertical angle = [22.5 112.5]



To simplify this issue, only antenna configuration at gNB with corresponding Tx/Rx beam pointing angles is changed among different validation datasets, while the number of UE side Rx beams is kept as 8. For training dataset, beam shape pattern is generated from table 20, and for validation dataset, beam shape patterns are generated from Table 25, 26 and 27 respectively. 
For AI scheme, beam pair prediction is considered, where 8 beam pairs from 256 beam pairs are selected with random beam set-B selection scheme and measured at each time instant within a time duration T1=8*40ms, and different beam pairs are selected for measurement among time instants within T1. Consequently, total of 64 different beams are used in AI input to predict L1-RSRP of 256, 128 and 64 beam pairs at each time instant within T2 for datasets generated from table 25, table 26 and table 27 respectively. Input of AI model includes measured L1-RSRPs of beam pairs, corresponding Tx beam angles/IDs and Rx beam angles/IDs, and output of AI model is L1-RSRPs of all beam pairs in future time instants. 
For comparison in generalization aspect, same dataset used for training and validation can be considered as an upper bound performance, and different AI input are evaluated and compared in table 28~30. 
Table 28: performance comparison for different beam shape pattern(T2=1*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4/1[%]

	
	Training Data
	Validation Data
	
	
	

	AI (baseline)
	16 x 8 
	16 x 8
	0.57 
	79.11
	95.05

	AI w beam angle
	32 x 8
	16 x 8 
	0.80 (+40%)
	74.01
	92.96

	AI w local beam ID
	32 x 8 
	16 x 8
	12.58 
	9.17
	45.17

	AI (baseline)
	8 x 8
	8 x 8
	0.33 
	84.78
	97.45

	AI w beam angle
	32 x 8
	8 x 8
	0.64 (+93%)
	74.37
	95.28

	AI w local beam ID
	32 x 8
	8 x 8
	8.06 
	20.90
	67.33



Table 29: performance comparison for different beam shape pattern (T2=4*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4/1[%]

	
	Training Data
	Validation Data
	
	
	

	AI (baseline)
	16 x 8 
	16 x 8
	0.71 
	78.06
	94.53

	AI w beam angle
	32 x 8
	16 x 8 
	0.95 (+33%)
	73.15
	92.43

	AI w local beam ID
	32 x 8 
	16 x 8
	12.78 
	8.93
	44.28

	AI (baseline)
	8 x 8
	8 x 8
	0.45 
	83.64
	96.98

	AI w beam angle
	32 x 8
	8 x 8
	0.75 (+66%)
	73.70
	94.88

	AI w local beam ID
	32 x 8
	8 x 8
	8.30 
	20.33
	66.76



Table 30: performance comparison for different beam shape pattern (T2=8*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4/1[%]

	
	Training Data
	Validation Data
	
	
	

	AI (baseline)
	16 x 8 
	16 x 8
	0.91 
	76.33
	93.70

	AI w beam angle
	32 x 8
	16 x 8 
	1.17 (+28%)
	71.64
	91.63

	AI w local beam ID
	32 x 8 
	16 x 8
	13.04 
	8.57
	42.99

	AI (baseline)
	8 x 8
	8 x 8
	0.61 
	81.94
	96.32

	AI w beam angle
	32 x 8
	8 x 8
	0.91 (+49%)
	72.63
	94.22

	AI w local beam ID
	32 x 8
	8 x 8
	8.64 
	19.48
	65.72



From above tables for beam shapes pattern study, performance loss can be observed in AI method of inference with difference dataset which represents validation dataset has different beam shape pattern compared to training dataset. As assumption of 30km/h is used for dataset generation, beam prediction performance of AI based scheme without considering various beam shape pattern seems sufficient. Thus, the absolute performance deterioration is limited directly compared to the baseline, for example approximately 0.3 dB loss in L1-RSRP difference KPI between validation dataset with 8 Tx antennas in table 28, but with large relative performance loss, e.g. up to 93% degradation at same situation.
Besides, it can be observed that local beam ID used in AI input brings significant performance deterioration as the beam ID has different understanding between model training and model inference. Thus, we have following observation and proposal.
Performance loss can be observed if there is difference in beam shape patterns for training and validation in BM-Case2.
For the case using local beam ID as model input, beam loss and accuracy degenerate significantly compared to the performance of AI model training and inference with beam pointing angle.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case2.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case2.
Suggest to use beam pointing angle or other physical IDs reflecting beam pointing angle information as assistance information for AI model input.
4.3.4 Feasibility of proprietary protection for assistance information in BM-case2
According to the results in Section 4.3.3, assistant information, e.g. beam angle, helps to improve the prediction accuracy for generalization, i.e. different gNB/UE antenna configurations, in temporal domain beam prediction. However, beam angle information is implementation sensitive information, and there may be a risk of privacy leakage if exposed to the other side. One approach to address this issue is to provide assistant information based on proprietary processing, as in Figure 18. The proprietary processing shall have the following properties.
· Hide original information by specific processing, e.g, a function or a neural network
· Proprietary processing methods used in inference and training are the same.
· Proprietary processing method is known by processing side only
[image: ]
Figure 18: beam pair prediction with proprietary processing

An example of proprietary processing of beam angle information is to map Tx beam angle to a beam ID based on proprietary pattern, and UE only see the mapped Tx beam ID, as in Figure 19. 
[image: ]
Figure 19: An example of proprietary processing of beam angle information
For the study on mapping order based proprietary protection for assistant information, we evaluate the generalization performance applying a trained AI model learned from a certain set of local beam ID, beam angle or proprietary processed beam angle based on a certain number of antennas for unlearned beam shape. 
[image: ]
Figure 20: different mapping methods: local beam ID vs beam pointing angle vs proprietary processed beam angle
For the case using local beam ID and beam angle as model input, the assumption is same as that in section 4.3.3. For the case using proprietary processed beam angle, the training dataset 32x8 has 32 Tx beam angles, and they are proprietarily mapped to a local beam ID, e.g. Tx beam ID = 0 ~ 31, and for validation dataset 16x8, the same proprietary mapping pattern is used to map beam angle to Tx local beam ID. The difference between ID-angle mapping based on local beam ID, beam angle (global beam ID) and proprietary processed beam angle is displayed in Figure 20.
Other simulation assumptions can be found in section 4.3.3. For comparison in generalization aspect, same dataset used for training and validation can be considered as an upper bound performance, different dataset used for training and validation with local beam ID is regarded as a lower bound performance, and different AI input schemes are evaluated and compared in the following tables. 
Table 31: performance evaluation results for proprietary protection mechanism with a mapping order based mathematical function (T2=1*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4/1[%]

	
	Training Data
	Validation Data
	
	
	

	Local beam ID (baseline1)
	16 x 8
	16 x 8
	0.57
	79.1
	95.0

	Local beam ID (baseline2)
	32 x 8
	16 x 8
	12.5
	9.17
	45.1

	Beam angle 
	32 x 8
	16 x 8
	0.80
	74.0
	92.9

	proprietary processed beam angle
	32 x 8
	16 x 8
	0.95
	71.6
	91.7



Table 32: performance evaluation results for proprietary protection mechanism with a mapping order based mathematical function (T2=4*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4/1[%]

	
	Training Data
	Validation Data
	
	
	

	Local beam ID (baseline1)
	16 x 8
	16 x 8
	0.71
	78.0
	94.5

	Local beam ID (baseline2)
	32 x 8
	16 x 8
	12.7
	8.93
	44.2

	Beam angle 
	32 x 8
	16 x 8
	0.95
	73.1
	92.4

	proprietary processed beam angle
	32 x 8
	16 x 8
	1.10
	70.6
	91.2



Table 33: performance evaluation results for proprietary protection mechanism with a mapping order based mathematical function (T2=8*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4/1[%]

	
	Training Data
	Validation Data
	
	
	

	Local beam ID (baseline1)
	16 x 8
	16 x 8
	0.91
	76.3
	93.7

	Local beam ID (baseline2)
	32 x 8
	16 x 8
	13.0
	8.57
	42.9

	Beam angle 
	32 x 8
	16 x 8
	1.17
	71.6
	91.6

	proprietary processed beam angle
	32 x 8
	16 x 8
	1.33
	69.0
	90.3



For the case using proprietary processed beam angle, beam loss and accuracy degenerate slightly compared to the performance of the case using beam angle directly.
Support proprietary protection mechanism for proprietary/privacy information disclosing issue in BM-Case 2. Detailed proprietary protection mechanism can be FFS. 
Proposal 3: Suggest to use proprietary processed assistance information as model input to address performance deterioration and sensitive proprietary information disclosure issues in BM-Case2, where a same mapping function is maintained for training and inference.
4.3.5 Representative evaluation results in BM-Case2 based on agreed template
In the following table, we present a set of selective evaluation results based on the agreed template in Section 2.1 to justify the gain of AI based beam prediction in Case 2. The following two cases are selected.
· Beam pair prediction. 
· DL Tx beam prediction based on measurement of one Rx beam per model input sample, where the Rx beam is randomly selected from 1dB RSRP region compared with the best beam pair in Set A.
Table 34: performance evaluation results for beam pair prediction with Tx/Rx beam angle information
	
	Beam pair prediction
	DL Tx beam prediction

	Assumptions
	Number of [beams/beam pairs] in Set A
	256 beam pairs
	32 Tx beams

	
	Number of [beams/beam pairs] in Set B
	8 beam pairs
	4 Tx beams

	
	Speed
	30km/h

	
	Trajectory length
	16~75 time-instances, 0.04s per time instance

	
	Observation window
	8 observation instances
	4 observation instances + 4 Rx sweeping instances

	
	Prediction window
	1/4/8 prediction instances

	
	Baseline scheme
	Option 2 in 109 Session notes (8 beam pairs)

	AI/ML model
input/output
	Model input
	8 L1-RSRPs and corresponding Tx/Rx beam ID
	4 L1-RSRPs and corresponding Tx beam ID

	
	Model output
	Predicted L1-RSRPS of all beam pairs for future time instances
	Predicted L1-RSRPS of all beams for future time instances

	Data Size
	Training
	334,400
	334,400

	
	Testing
	83,600
	83,600

	AI/ML model
	[Short model description]
	Mixer-MLP
	Mixer-MLP

	
	Model complexity
	1.3M Byte parameters
	1.1M Byte parameters

	
	Computational complexity
	136658944 Flops
	17016832 Flops

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)] 
	Prediction window: 1 prediction instance
	AI Top-1
	56.69
	64.78

	
	
	Prediction window: 4 prediction instances
	AI Top-1
	55.8
	63.14

	
	
	Prediction window: 8 prediction instances
	AI Top-1
	54.54
	60.98

	
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Prediction window: 1 prediction instance
	AI Top-1
	59.79
	64.73

	
	
	Prediction window: 4 prediction instances
	AI Top-1
	59.00
	63.65

	
	
	Prediction window: 8 prediction instances
	AI Top-1
	57.72
	62.11

	
	Average L1-RSRP Diff [dB]
	Prediction window: 1 prediction instance
	AI Top-1
	-5.95
	-5.95

	
	
	Prediction window: 4 prediction instances
	AI Top-1
	-5.94
	-5.93

	
	
	Prediction window: 8 prediction instances
	AI Top-1
	-5.93
	-5.90

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	AI Top-1
	0
	0



5 Conclusions
In this contribution, we discuss some issues on AL/ML for beam management and have the following observations:
1. [bookmark: _GoBack]Fixed pattern selection scheme with different fixed patterns brings tremendous performance difference.
Better performance gain can be obtained for one fixed pattern selected by well-designed rule or enumerated with predefined searching criterion.
The performance with different training and validation fixed patterns is quite poor and not acceptable, i.e., fixed set B selection scheme suffers serious generalization issue.
Fixed beam pattern in Set B can have good performance in ideal scenarios but it lacks flexibility. Issues like blockage and inter-cell interference can bring negative impact on the performance of fixed pattern.
Random pattern selection scheme, which allows multiple random patterns in training, can improve generalization performance as well as beam management related performance if compared to mismatched pattern with always using one pattern in training.
Set B with random beam patterns still suffers tremendous performance deterioration due to huge number of combinations of selecting a target number of beams from total beam pairs. 
Although certain performance loss can be observed from Set B with pre-configured patterns in comparison with fixed pattern scheme, it has a significant increase compared to random pattern scheme.
Beam prediction performance deteriorates along with the increase of the number of pre-configured patterns. 
Similar performance can be achieved for a fixed pattern in set B with or without assistance information.
Compared with Random pattern Set-1, assistance information brings considerable gain in random pattern selection scheme, especially for Tx/Rx beam angle as assistance information.
Such pre-configured patterns in Set B with Tx/Rx beam angle information as input barely suffers performance loss compared with the best beam pattern.
Pre-configured beam pattern scheme has potential to approach the performance upper bound, i.e. the best fixed pattern, if the performance of each pattern in top-N best patterns has similar performance of top-1 best pattern.
More flexible AI model deployment for different number of Tx/Rx beams can be achieved through using expected Tx/Rx beam information method with only marginal performance loss.
Beam pair prediction provides obvious performance improvement in KPI of beam prediction accuracy for top 4/1 beam, while similar performance can be observed in other KPIs for beam pair prediction and DL Tx beam prediction with multiple Rx beams where each Tx beam uses its own best Rx beam.
A considerable performance deterioration can be found in DL Tx beam prediction with a fixed specific Rx beam for all model input samples compared to beam pair prediction scheme.
The performance of DL Tx beam prediction with the best Rx beam searched from total beam pairs provides considerable improvement, as decreased prediction difficulty from predicting 256 beam pairs to 32 beam pairs by acquiring precise best Rx beam of each sample.
Zero or near zero beam prediction accuracy can be found in DL Tx beam prediction with 2nd best Rx beam or worst Rx beam searched from total beam pairs.
Both beam pair prediction and DL Tx beam prediction with a specific Rx beam searched from a specific Tx beam for each model input sample has its own application targets.
Similar performance can be observed for DL Tx beam prediction cases with best Rx beam searched from different Tx beams.
As the difference of beam shape pattern increases, the performance loss of both average RSRP difference and beam prediction accuracy increases along with the difference of the antenna configurations between training subset and validation subset.
No performance loss can be observed from proprietary protection with mathematical function processing compared to beam prediction using beam angle directly, if a same processing function is maintained for training and inference. 
For BM-Case2, compared with non-AI scheme, beam pair prediction scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
For BM-Case2, compared with non-AI 2-step scheme, AI based 2-step scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
Performance loss can be observed if there is difference in beam shape patterns for training and validation in BM-Case2.
For the case using local beam ID as model input, beam loss and accuracy degenerate significantly compared to the performance of AI model training and inference with beam pointing angle.
For the case using proprietary processed beam angle, beam loss and accuracy degenerate slightly compared to the performance of the case using beam angle directly.
and proposals:
1. Confirm the working assumption for reporting the evaluation results with minor modification, i.e. Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization with generalization-Case1 for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
Proposal 5: Support to report generalization-Case2 and generalization-Case3 related assumptions, at least including model input data for training and inference with different configurations and/or scenarios. 
UCI reporting overhead reduction, including the number of UCI report and UCI payload size, should be considered as basic KPI.
RRC singling overhead can be considered as optional KPI if huge amount of data, such as training data, assistance information, and AI model data, is exchanged via RAN air interference.
Unless an excellent generalization performance can be proved in option 1, i.e. a fixed pattern in Set B for training and same fixed pattern in Set B for validation, fixed set B selection scheme should be deprioritized. 
Support pre-configured patterns of Set B with a limitation to the number of best X predefined beam patterns, i.e. option 2B.
Assistance information, such as Tx/Rx beam ID or angle in connection with input RSRPs, should be used as AI input at least for random pattern scheme.
Support assistance information with both Tx and Rx beam information in pre-configured pattern scheme.
Suggest to use both Tx and Rx beam information as assistance information for further performance improvement for both BM-Case1 and BM-Case2.
Study beam pair prediction with expected Tx/Rx beam information as the AI input as one of the solutions for generalization to different number of Tx/Rx beams in BM-Case1.
Further study expected information method in BM-Case2.
Further study multiple expected beam information simultaneously used in AI input.
Further study the benefit of DL Tx beam prediction with multiple Rx beams where each Tx beam uses its own specific Rx beam.
DL Tx beam prediction with a randomly selected specific Rx beam for all model input samples shall be deprioritized.
Study on how to search best Rx beam from total beam pairs for each model input sample and its feasibility in real network.
Support both beam pair prediction scheme and DL Tx beam prediction scheme for different AI based beam prediction targets.
Support DL Tx beam prediction with best Rx beam searched from a Tx beam for each model input sample, and how to define this Tx beam can be FFS.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case1.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case1.
Support proprietary protection mechanism for proprietary/privacy information disclosing issue in BM Case 1. Detailed proprietary protection mechanism can be FFS. 
Support to use proprietary processed assistance information as model input to address performance deterioration and sensitive proprietary information disclosure issues in BM-Case1, where a same mapping function is maintained for training and inference.
Further study beam pair prediction scheme with expected information as AI input for improving generalization performance in BM-Case2.
Further study performance comparison between enhanced beam pair prediction and DL Tx beam prediction with various Rx beam assumptions, such as worst Rx beam, second best Rx beam, random Rx beam per sample, etc., in BM-Case2.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case2.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case2.
Suggest to use beam pointing angle or other physical IDs reflecting beam pointing angle information as assistance information for AI model input.
Support proprietary protection mechanism for proprietary/privacy information disclosing issue in BM-Case 2. Detailed proprietary protection mechanism can be FFS. 
Proposal 6: Suggest to use proprietary processed assistance information as model input to address performance deterioration and sensitive proprietary information disclosure issues in BM-Case2, where a same mapping function is maintained for training and inference.
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Appendix A: SLS simulation assumptions for spatial domain beam prediction
	Parameter
	Value

	Scenario
	Uma with Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30GHz

	Subcarrier spacing
	120kHz

	System BW
	80 MHz

	BS and RRH Tx power
	40dBm

	UE receiver NF
	10

	ISD
	200m

	o2i
	0.5

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 2 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]

	UE RX beam pattern
	4 Rx beams per panel
Horizontal angle = [-67.5 -22.5 22.5 67.5]
Vertical angle = [/]

	Indoor UE fraction
	80%

	UE speed
	3 km/s

	Spatial consistency 
	False

	Rotation
	False


Appendix B: SLS simulation assumptions for temporal domain beam prediction
	Parameter
	Value

	Scenario
	Uma with Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30GHz

	Subcarrier spacing
	120kHz

	System BW
	80 MHz

	BS and RRH Tx power
	40 dBm

	UE receiver NF
	10

	ISD
	200m

	o2i
	0.5

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 2 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]

	UE RX beam pattern
	4 Rx beams per panel
Horizontal angle = [-67.5 -22.5 22.5 67.5]
Vertical angle = [/]

	Indoor UE fraction
	0%

	UE speed
	30km/h (baseline), 60km/h (optional)

	Spatial consistency 
	True, Spatial consistency procedure A

	Rotation
	False

	UE trajectory model
	Option #4,
Random direction straight-line trajectories, including direction change at the end of time interval

	Orientation model
	Option 1b,
Randomly per-UE chosen for UE orientation initially, and UE orientation is fixed during SLS.
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