TSG RAN Meeting #19 Birmingham, UK, 11 - 14 March 2003 RP-030055 Title CRs (R99 and Rel-4/Rel-5 Category A) to TS 25.423 on Support of Cell **Individual Offset in RNSAP** Source TSG RAN WG3 Agenda Item 8.3.3 | RAN3 Tdoc | Spec | curr.
Vers. | new Vers. | REL | CR | Rev | Cat | Title | Work item | |-----------|--------|----------------|-----------|-------|-----|-----|-----|--|-----------| | R3-030337 | 25.423 | 3.12.0 | 3.13.0 | R99 | 788 | 2 | F | Support of Cell Individual Offset in RNSAP | TEI | | R3-030338 | 25.423 | 4.7.0 | 4.8.0 | REL-4 | 789 | 2 | Α | Support of Cell Individual Offset in RNSAP | TEI | | R3-030339 | 25.423 | 5.4.0 | 5.5.0 | REL-5 | 790 | 2 | Α | Support of Cell Individual Offset in RNSAP | TEI | # 3GPP TSG-RAN3 Meeting #34 Sophia Antipolis, France, 17 – 21 February 2003 | CHANGE REQUEST | | | | | | | | |-------------------------------|---|--|---|---------------------------|--|--|--| | 2 | 5.423 CR 788 **rev | 2 # Cu | urrent version: 3.12.0 | ж | | | | | For <u>HELP</u> on using | g this form, see bottom of this page o | or look at the p | oop-up text over the % syn | nbols. | | | | | Proposed change affe | e cts: UICC apps第 <mark> ME</mark> [| Radio Acce | ess Network X Core Ne | twork | | | | | Title: 第 S | Support of Cell Individual Offset in RN | ISAP | | | | | | | Source: # R | RAN WG3 | | | | | | | | Work item code: | El | | Date: 第 <mark>18/02/2003</mark> | | | | | | De | se <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an e B (addition of feature), C (functional modification of feature) D (editorial modification) stailed explanations of the above categor found in 3GPP TR 21.900. | earlier release)
ies can | Release: # R99 Use one of the following rele 2 (GSM Phase 2) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6) | | | | | | Reason for Change. | to the cell(s) where a radio lininclude Cell Individual Offset the RADIO LINK SETUP/AD neighbouring cells. The value range used for Cell - Intra/Inter-frequency: -10 - Inter RAT/GSM: -50+5 However, RNSAP supports or frequency case as well as Inter-Intra/Inter Frequency case | k is setup/added. IE in the Neight DDITION RESPO Individual Offse+10 dB 60 dB lly a common Ce -RAT as follow | I, the DRNC shall, if available bouring GSM Cell Information CONSE message for each of the et in RRC is as follows: Cell Individual Offset for Intraces: | e,
ion IE in
he GSM | | | | | Summary of change: 8 | RNSAP is aligned with RRC with Impact Analysis: Impact assessment towards the release): this CR has isolated im (same release) because only one This CR has an impact under the The impact can be considered as the Inter-RAT measurement even | previous versice pact on the present on the present of the protocol points is isolated as it | on of the specification (sar
evious version of the spec
npacted.
t of view. | ne
ification | | | | | Consequences if not approved: | If this CR is not approved, there RRC leading to undesirable behatriggering. Further, full range of C | aviour in terms | of Inter-RAT measureme | nt event | | | | by operators, cannot be used. | Clauses affected: | 第 8.3.1.2, 8.3.2.2, 9.2.1.41c, New 9.2.1.x, 9.3.4 and 9.3.6 | | | | | |-------------------|---|---|---|---------------------------|-------------------------| | | | Υ | N | | | | Other specs | \mathfrak{H} | X | | Other core specifications | CR789 on 25.423 v 4.7.0 | | | | | | | CR790 on 25.423 v 5.4.0 | | Affected: | | | X | Test specifications | | | | | | Χ | O&M Specifications | | | | | • | | - | | | Other comments: | \mathbb{H} | | | | | ## How to create CRs using this form: Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary: - 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. - 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. # 8.3 DCH Procedures # 8.3.1 Radio Link Setup ## 8.3.1.1 General This procedure is used for establishing the necessary resources in the DRNS for one or more radio links. The connection-oriented service of the signalling bearer shall be established in conjunction with this procedure. # 8.3.1.2 Successful Operation Figure 5: Radio Link Setup procedure: Successful Operation When the SRNC makes an algorithmic decision to add the first cell or set of cells from a DRNS to the active set of a specific UE-UTRAN connection, the RADIO LINK SETUP REQUEST message is sent to the corresponding DRNC to request establishment of the radio link(s). The DRNS shall prioritise resource allocation for the RL(s) to be established according to Annex A. If the RADIO LINK SETUP REQUEST message includes the *Allowed Queuing Time* IE the DRNS may queue the request the time corresponding to the value of the *Allowed Queuing Time* IE before starting to execute the request. If no *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message, the DRNC shall assign a new D-RNTI for this UE. ## **Transport Channels Handling:** #### DCH(s): [TDD - If the *DCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new DCHs according to the parameters given in the message.] If the RADIO LINK SETUP REQUEST message includes a *DCH Information* IE with multiple *DCH Specific Info* IEs, then the DRNS shall treat the DCHs in the *DCH Information* IE as a set of co-ordinated DCHs. [FDD - For DCHs which do not belong to a set of co-ordinated DCHs with the *QE-Selector* IE set to "selected", the Transport channel BER from that DCH shall be the base for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [4]. If the *QE-Selector* IE is set to "non-selected", the Physical channel BER shall be used for the QE in the UL data frames, ref. [4].] For a set of co-ordinated DCHs the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" shall be used for the QE in the UL data frames, ref. [4]. [FDD - If no Transport channel BER is available for the selected DCH the Physical channel BER shall be used for the QE, ref. [4]. If all DCHs have *QE-Selector* IE set to "non-selected" the Physical channel BER shall be used for the QE, ref. [4].] The DRNS shall use the included *UL DCH FP Mode* IE for a DCH or a set of co-ordinated DCHs as the DCH FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs. The DRNS shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs. The DRNS shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs. The *Frame Handling Priority* IE defines the priority level that should be used by the DRNS to prioritise between different frames of the data frames of the DCHs in the downlink on the radio interface in congestion situations once the new RL(s) have been activated. #### DSCH(s): If the *DSCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNC shall establish the requested DSCHs [FDD - on the RL indicated by the PDSCH RL ID IE]. In addition, the DRNC shall send a valid set of *DSCH Scheduling Priority* IE and *MAC-c/sh SDU Length* IE parameters to the SRNC in the RADIO LINK SETUP RESPONSE message. If the *PDSCH RL ID* IE indicates a radio link in the DRNS, then the DRNC shall allocate a DSCH-RNTI to the UE Context and include the *DSCH-RNTI* IE in the RADIO LINK SETUP RESPONSE message. ## [TDD - USCH(s)]: [TDD – The DRNS shall use the list of RB Identities in the *RB Info* IE in the *USCH information* IE to map each *RB Identity* IE to the corresponding USCH.] ## **Physical Channels Handling:** #### [FDD - Compressed Mode]: [FDD - If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE, the DRNS shall store the information about the Transmission Gap Pattern Sequences to be used in the Compressed Mode Configuration. This Compressed Mode Configuration shall be valid in the DRNS until the next Compressed Mode Configuration is configured in the DRNS or the last Radio Link is deleted.] [FDD - If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE and the *Active Pattern Sequence Information* IE, the DRNS shall use the information to activate
the indicated Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* IE refers to latest passed CFN with that value. The DRNS shall treat the received *TGCFN* IEs as follows:] - [FDD If any received TGCFN IE has the same value as the received CM Configuration Change CFN IE, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD For all other Transmission Gap Pattern Sequences included in the *Active Pattern Sequence Information* IE, the DRNS shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE for the Transmission Gap Pattern Sequence.] [FDD- If the *Downlink Compressed Mode Method* IE in one or more Transmission Gap Pattern Sequence is set to "SF/2" in the RADIO LINK SETUP REQUEST message, the DRNS shall include the *Transmission Gap Pattern Sequence Scrambling Code Information* IE in the RADIO LINK SETUP RESPONSE message indicating for each DL Channelisation Code whether the alternative scrambling code shall be used or not.] ## [FDD - DL Code Information]: [FDD – When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] #### General: [FDD - If the *Propagation Delay* IE is included, the DRNS may use this information to speed up the detection of UL synchronisation on the Uu interface.] [FDD – If the received *Limited Power Increase* IE is set to "Used", the DRNS shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control.] # **Radio Link Handling:** # **Diversity Combination Control:** [FDD - The *Diversity Control Field* IE indicates for each RL except for the first RL whether the DRNS shall combine the RL with any of the other RLs or not. - If the *Diversity Control Field* IE is set to "May" (be combined with another RL), the DRNS shall decide for any of the alternatives. - If the *Diversity Control Field* IE is set to "Must", the DRNS shall combine the RL with one of the other RL. When an RL is to be combined, the DRNS shall choose which RL(s) to combine it with. - If the *Diversity Control Field* IE is set to "Must not", the DRNS shall not combine the RL with any other existing RL.] [FDD In the RADIO LINK SETUP RESPONSE message, the DRNC shall indicate for each RL with the Diversity Indication in the *RL Information Response* IE whether the RL is combined or not. - In case of combining, the *RL ID* IE indicates one of the existing RLs that the concerned RL is combined with. - In case of not combining, the DRNC shall include in the *DCH Information Response* IE in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and *Transport Layer Address* IE for the transport bearer to be established for each DCH of this RL.] [[TDD - The DRNC shall always include in the RADIO LINK SETUP RESPONSE message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DCH, DSCH and USCH of the RL.] In the case of a set of co-ordinated DCHs requiring a new transport bearer the *Binding ID* IE and the *Transport Layer Address* IE shall be included only for one of the DCHs in the set of co-ordinated DCHs. ## [FDD-Transmit Diversity]: [FDD – If the cell in which the RL is being set up is capable to provide Close loop Tx diversity, the DRNC shall include the *Closed Loop Timing Adjustment Mode* IE in the RADIO LINK SETUP RESPONSE message indicating the configured Closed loop timing adjustment mode of the cell.] [FDD – When the *Diversity Mode* IE is set to "STTD", "Closed loop mode1", or "Closed loop mode2", the DRNC shall activate/deactivate the Transmit Diversity for each Radio Link in accordance with the *Transmit Diversity Indicator* IE]. #### **DL Power Control:** [FDD - If both the *Initial DL TX Power* IE and *Uplink SIR Target* IE are included in the message, the DRNS shall use the indicated DL TX Power and Uplink SIR Target as initial value. If the value of the *Initial DL TX Power* IE is outside the configured DL TX power range, the DRNS shall apply these constrains when setting the initial DL TX power. The DRNS shall also include the configured DL TX power range defined by *Maximum DL TX Power* IE and *Minimum DL TX Power* IE in the RADIO LINK SETUP RESPONSE message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IE or lower than indicated by the *Minimum DL TX Power* IE on any DL DPCH of the RL except during compressed mode, when the δP_{curr} , as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power for the associated compressed frame.] [FDD - If both the *Initial DL TX Power* and the *Uplink SIR Target* IEs are not included in the RADIO LINK SETUP REQUEST message, then DRNC shall determine the initial Uplink SIR Target and include it in the *Uplink SIR Target* IE in the RADIO LINK SETUP RESPONSE message.] [FDD - If the *Primary CPICH Ec/No* IE is present, the DRNC should use the indicated value when deciding the Initial DL TX Power.] [TDD - If the *Primary CCPCH RSCP* IE and/or the *DL Time Slot ISCP Info* IE are present, the DRNC should use the indicated values when deciding the Initial DL TX Power.] [FDD – The DRNS shall start the DL transmission using the indicated DL TX power level (if received) or the decided DL TX power level on each DL channelisation code of a RL until UL synchronisation is achieved on the Uu interface for the concerned RLS or Power Balancing is activated. No inner loop power control or power balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[10] subclause 5.2.1.2) with DPC_MODE=0 and the power control procedure (see 8.3.7).] [TDD – The DRNS shall start the DL transmission using the decided DL TX power level on each DL channelisation code and on each Time Slot of a RL until UL synchronisation is achieved on the Uu interface for the concerned RL. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[22] subclause 4.2.3.3). [FDD – If the received *Inner Loop DL PC Status* IE is set to "Active", the DRNS shall activate the inner loop DL power control for all RLs. If *Inner Loop DL PC Status* IE is set to "Inactive", the DRNS shall deactivate the inner loop DL power control for all RLs according to ref. [10]] #### **Neighbouring Cell Handling:** If there are UMTS neighbouring cell(s) to the cell in which a Radio Link was established then: - The DRNC shall include the Neighbouring FDD Cell Information IE and/or Neighbouring TDD Cell Information IE in the Neighbouring UMTS Cell Information IE for each neighbouring FDD cell and/or TDD cell respectively. In addition, if the information is available, the DRNC shall include the Frame Offset IE, Primary CPICH Power IE, Cell Individual Offset IE, STTD Support Indicator IE, Closed Loop Mode1 Support Indicator IE and Closed Loop Mode2 Support Indicator IE in the Neighbouring FDD Cell Information IE, and the Frame Offset IE, Cell Individual Offset IE, DPCH Constant Value IE and the PCCPCH Power IE in the Neighbouring TDD Cell Information IE. - If a UMTS neighbouring cell is not controlled by the same DRNC, the DRNC shall also include the *CN PS Domain Identifier* IE and/or *CN CS Domain Identifier* IE which are the identifiers of the CN nodes connected to the RNC controlling the UMTS neighbouring cell. For the UMTS neighbouring cells which are controlled by the DRNC, the DRNC shall report in the RADIO LINK SETUP RESPONSE message the restriction state of those cells, otherwise *Restriction state indicator* IE may be absent. The DRNC shall include the *Restriction state indicator* IE for the neighbouring cells which are controlled by the DRNC in the *Neighbouring FDD Cell Information* IE and the *Neighbouring TDD Cell Information* IE. If there are GSM neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include the *Neighbouring GSM Cell Information* IE in the RADIO LINK SETUP RESPONSE message for each of the GSM neighbouring cells. If available the DRNC shall include the *GSM Cell Individual Offset* IE and/or the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. If the *GSM Cell Individual Offset* IE is included in the *Neighbouring GSM Cell Information* IE, then the DRNC shall include the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. #### General: [FDD - If the RADIO LINK SETUP REQUEST message includes the SSDT Cell Identity IE and the S-Field Length IE, the DRNS shall activate SSDT, if supported, using the SSDT Cell Identity IE and SSDT Cell Identity Length IE.] [FDD - If the *DRAC Control* IE is set to "requested" in the RADIO LINK SETUP REQUEST message for at least one DCH and if the DRNS supports the DRAC, the DRNC shall indicate in the RADIO LINK SETUP RESPONSE message the *Secondary CCPCH Info* IE for the FACH where the DRAC information is sent, for each Radio Link established in a cell where DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK SETUP RESPONSE message.] If no *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST
message, the DRNC shall include the node identifications of the CN Domain nodes that the RNC is connected to (using LAC and RAC of the current cell), and the *D-RNTI* IE in the RADIO LINK SETUP RESPONSE message. [FDD - If the *D-RNTI* IE was included the RADIO LINK SETUP REQUEST message the DRNC shall include the *Primary Scrambling Code* IE, the *UL UARFCN* IE and the *DL UARFCN* IE in the RADIO LINK SETUP RESPONSE message.] [TDD – If the *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message the DRNC shall include the *UARFCN* IE, the *Cell Parameter ID* IE, the *Sync Case* IE, the *SCH Time Slot* IE or *Time Slot* IE, the *SCTD Indicator* IE, and the *PCCPCH Power* IE in the RADIO LINK SETUP RESPONSE message.] [TDD - The DRNC shall include the *Secondary CCPCH Info TDD* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response* IE or *USCH Information Response* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response* IE or *USCH Information Response* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] For each Radio Link established in a cell where at least one URA Identity is being broadcast, the DRNC shall include a URA Identity for this cell in the *URA ID* IE, the *Multiple URAs Indicator* IE indicating whether or not multiple URA Identities are being broadcast in the cell, and the RNC Identity of all other RNCs that are having at least one cell within the URA in the cell in the *URA Information* IE in the RADIO LINK SETUP RESPONSE message. Depending on local configuration in the DRNS, it may include the geographical co-ordinates of the cell and the UTRAN access point position for each of the established RLs in the RADIO LINK SETUP RESPONSE message. If the *Permanent NAS UE Identity* IE is included in the RADIO LINK SETUP REQUEST message, the DRNC shall store the information for the considered UE Context for the life-time of the UE Context. If the RADIO LINK SETUP REQUEST message includes the *Permanent NAS UE Identity* IE and a *C-ID* IE corresponding to a cell reserved for operator use, the DRNC shall use this information to determine whether it can set up a Radio Link on this cell or not for the considered UE Context. The DRNS shall start reception on the new RL(s) after the RLs are successfully established. # [FDD - Radio Link Set Handling]: [FDD - The *First RLS Indicator* IE indicates if the concerned RL shall be considered part of the first RLS established towards this UE. The *First RLS Indicator* IE shall be used by the DRNS to determine the initial TPC pattern in the DL of the concerned RL and all RLs which are part of the same RLS, as described in [10], section 5.1.2.2.1.2. [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign the *RL Set ID* IE included in the RADIO LINK SETUP RESPONSE message a value that uniquely identifies the RL Set within the UE Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign the *RL Set ID* IE included in the RADIO LINK SETUP RESPONSE message the same value. This value shall uniquely identify the RL Set within the UE Context.] [FDD –The UL out-of-sync algorithm defined in ref. [10] shall for each of the established RL Set(s) use the maximum value of the parameters N_OUTSYNC_IND and T_RLFAILURE that are configured in the cells supporting the radio links of the RL Set. The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND that are configured in the cells supporting the radio links of the RL Set.] #### **Response Message:** At the reception of the RADIO LINK SETUP REQUEST message, the DRNS allocates the requested type of channelisation codes and other physical channel resources for each RL and assigns a binding identifier and a transport layer address for each DCH or set of co-ordinated DCHs and for each DSCH [TDD – and USCH]. This information shall be sent to the SRNC in the message RADIO LINK SETUP RESPONSE when all the RLs have been successfully established. After sending the RADIO LINK SETUP RESPONSE message the DRNS shall continuously attempt to obtain UL synchronisation on the Uu interface. [FDD - The DRNS shall start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4].] [TDD – The DRNS shall start transmission on the new RL immediately as specified in ref. [4].] # 8.3.1.3 Unsuccessful Operation Figure 6: Radio Link Setup procedure: Unsuccessful Operation In unsuccessful case (i.e. one or more RLs can not be established) the RADIO LINK SETUP FAILURE message shall be sent to the SRNC, indicating the reason for failure. If some radio links were established successfully, the DRNC shall indicate this in the RADIO LINK SETUP FAILURE message in the same way as in the RADIO LINK SETUP RESPONSE message. If the RADIO LINK SETUP REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the *Permanent NAS UE Identity* IE is not present, the DRNC shall consider the procedure as failed and send the RADIO LINK SETUP FAILURE message. [FDD – If the RL identified by the PDSCH RL ID IE is a radio link in the DRNS and this RL is successfully established, then the DRNC shall allocate a DSCH-RNTI to the UE Context and include the DSCH-RNTI IE in the RADIO LINK SETUP FAILURE message.] Typical cause values are: ### **Radio Network Layer Causes:** - [FDD UL Scrambling Code Already in Use]; - DL Radio Resources not Available; - UL Radio Resources not Available; - [FDD Combining Resources not available]; - Combining not Supported - Requested Configuration not Supported; - Cell not Available; - [FDD Requested Tx Diversity Mode not Supported]; - Power Level not Supported; - Number of DL codes not supported; - Number of UL codes not supported; - Dedicated Transport Channel Type not Supported; - DL Shared Channel Type not Supported; - [TDD UL Shared Channel Type not Supported]; - [FDD UL Spreading Factor not Supported]; - [FDD DL Spreading Factor not Supported]; - CM not Supported; - Cell reserved for operator use. ## **Transport Layer Causes:** - Transport Resource Unavailable. #### **Miscellaneous Causes:** - Control Processing Overload; - HW Failure; - Not enough User Plane Processing Resources. ## 8.3.1.4 Abnormal Conditions If the DRNC receives either an S-RNTI or a D-RNTI which already has RL(s) established the DRNC shall send the RADIO LINK SETUP FAILURE message to the SRNC, indicating the reason for failure. [FDD - If the RADIO LINK SETUP REQUEST message includes the *Active Pattern Sequence Information* IE, but the *Transmission Gap Pattern Sequence Information* IE is not present, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] [FDD – If the RADIO LINK SETUP REQUEST message includes both the *Initial DL TX Power* IE and the *Primary CPICH Ec/No* IE or does not include either of these IEs, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] If more than one DCH of a set of co-ordinated DCHs has the *QE-Selector* IE set to "selected" [TDD – or no DCH of a set of co-ordinated DCHs has the *QE-Selector* IE set to "selected"], the DRNS shall regard the Radio Link Setup procedure as failed and shall respond with a RADIO LINK SETUP FAILURE message. [FDD - If only the *Initial DL TX Power* IE or the *Uplink SIR Target* IE is included in the RADIO LINK SETUP REQUEST message, then DRNC shall regard the Radio Link Setup procedure as failed and shall respond with the RADIO LINK SETUP FAILURE message.] If the RADIO LINK SETUP REQUEST message includes a *DCH Information* IE with multiple *DCH Specific Info* IEs, and if the DCHs in the *DCH Information* IE do not have the same *Transmission Time Interval* IE in the *Semistatic Transport Format Information* IE, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message. # 8.3.2 Radio Link Addition #### 8.3.2.1 General This procedure is used for establishing the necessary resources in the DRNS for one or more additional RLs towards a UE when there is already at least one RL established to the concerned UE via this DRNS. This procedure shall use the signalling bearer connection for the relevant UE Context. The Radio Link Addition procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1. [FDD – The Radio Link Addition procedure serves to establish one or more new Radio Links which do not contain the DSCH. If the DSCH shall be moved into a new Radio Link, the Radio Link reconfiguration procedure shall be applied.] [TDD – The Radio Link Addition procedure serves to establish a new Radio Link with the DSCH and USCH included, if they existed before.] # 8.3.2.2 Successful Operation Figure 7: Radio Link Addition procedure: Successful Operation The procedure is initiated with a RADIO LINK ADDITION REQUEST message sent from the SRNC to the DRNC. Upon reception, the DRNS shall reserve the necessary resources and configure the new RL(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The DRNS shall prioritise resource allocation for the RL(s) to be established according to Annex A. #### **Transport Channel Handling:** #### DSCH: [TDD - If the radio link to be added includes a DSCH, the DRNC shall send a set of valid *DSCH Scheduling Priority* IE and *MAC-c/sh SDU Length* IE parameters to the SRNC in the message RADIO LINK ADDITION RESPONSE message.] #### **Physical Channels Handling:** # [FDD-Compressed Mode]: [FDD - If the RADIO
LINK ADDITION REQUEST message includes the *Active Pattern Sequence Information* IE, the DRNS shall use the information to activate the indicated (all ongoing) Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* IE refers to the latest passed CFN with that value. The DRNS shall treat the received *TGCFN* IEs as follows:] - [FDD If any received *TGCFN* IE has the same value as the received *CM Configuration Change CFN* IE, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD For all other Transmission Gap Pattern Sequences included in the *Active Pattern Sequence Information* IE, the DRNS shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE for the Transmission Gap Pattern Sequence.] FDD - If the *Active Pattern Sequence Information* IE is not included, the DRNS shall not activate the ongoing compressed mode pattern in the new RLs, but the ongoing pattern in the existing RL shall be maintained.] [FDD - If some Transmission Gap Pattern sequences using SF/2 method are initialised in the DRNS, DRNS shall include the *Transmission Gap Pattern Sequence Scrambling Code Information IE* in the RADIO LINK ADDITION RESPONSE message to indicate the Scrambling code change method that it selects for each channelisation code] #### [FDD-DL Code Information]: [FDD – When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When p number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] #### General: [FDD - The DRNS shall use the provided Uplink SIR Target value as the current target for the inner-loop power control.] #### **Radio Link Handling:** #### **Diversity Combination Control:** The *Diversity Control Field* IE indicates for each RL whether the DRNS shall combine the new RL with existing RL(s) or not on the Iur. If the *Diversity Control Field* IE is set to "May" (be combined with another RL), the DRNS shall decide for any of the alternatives. If the Diversity Control Field IE is set to "Must", the DRNS shall combine the RL with one of the other RL. If the *Diversity Control Field* IE is set to "Must not", the DRNS shall not combine the RL with any other existing RL. When a new RL is to be combined the DRNS shall choose which RL(s) to combine it with. In the case of combining an RL with existing RL(s), the DRNC shall indicate with the Diversity Indication in the *RL Information Response* IE in the RADIO LINK ADDITION RESPONSE message that the RL is combined. In this case, the *RL ID* IE indicates one of the existing RLs with which the new RL is combined. In the case of not combining an RL with existing RL(s), the DRNC shall indicate with the Diversity Indication in the *RL Information Response* IE in the RADIO LINK ADDITION RESPONSE message that no combining is done. In this case the DRNC shall include in the *DCH Information Response* IE both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DCH, [TDD – and DSCH, USCH] of the RL in the RADIO LINK ADDITION RESPONSE message. In the case of a set of co-ordinated DCHs, the *Binding ID* IE and the *Transport Layer Address* IE shall be included for only one of the DCHs in a set of co-ordinated DCHs. #### [FDD-Transmit Diversity]: The DRNS shall activate any feedback mode diversity according to the received settings. [FDD – If the cell in which the RL is being added is capable to provide Close loop Tx diversity, the DRNC shall include the *Closed Loop Timing Adjustment Mode* IE in the RADIO LINK ADDITION RESPONSE message indicating the Closed loop timing adjustment mode of the cell.] [FDD – When the *Transmit Diversity Indicator* IE is present the DRNS shall activate/deactivate the Transmit Diversity for each new Radio Link in accordance with the *Transmit Diversity Indicator* IE using the diversity mode of the existing Radio Link(s).] # **DL Power Control:** [FDD - If the *Primary CPICH Ec/No* IE measured by the UE is included for an RL in the RADIO LINK ADDITION REQUEST message, the DRNS shall use this in the calculation of the Initial DL TX Power for this RL. If the *Primary CPICH Ec/No* IE is not present, the DRNS shall set the Initial DL TX Power based on the power relative to the Primary CPICH power used by the existing RLs.] [TDD - If the *Primary CCPCH RSCP* IE and/or the *DL Time Slot ISCP Info* IE are included in the RADIO LINK ADDITION REQUEST message, the DRNS shall use them in the calculation of the Initial DL TX Power. If the *Primary CCPCH RSCP* IE and *DL Time Slot ISCP Info* IE are not present, the DRNS shall set the Initial DL TX Power based on the power relative to the Primary CCPCH power used by the existing RL.] [FDD - The Initial DL TX Power shall be applied until UL synchronisation is achieved on the Uu interface for that RLS or Power Balancing is activated. No inner loop power control or power balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref. [10] subclause 5.2.1.2) with DPC_MODE=0 and the power control procedure (see 8.3.7)]. [TDD – The Initial DL TX Power shall be applied until UL synchronisation is achieved on the Uu interface for that RL. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref. [22] subclause 4.2.3.3).]. The DRNC shall also provide the configured UL Maximum SIR and UL Minimum SIR for every new RL to the SRNC in the RADIO LINK ADDITION RESPONSE message. These values are taken into consideration by DRNS admission control and shall be used by the SRNC as limits for the UL inner-loop power control target. The DRNC shall provide the configured *Maximum DL TX Power* IE and *Minimum DL TX Power* IE for every new RL to the SRNC in the RADIO LINK ADDITION RESPONSE message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IE or lower than indicated by the *Minimum DL TX Power* IE on any DL DPCH of the RL [FDD – except during compressed mode, when the δP_{curr} , as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power for the associated compressed frame.]. #### **DL Code Information:** The DRNC shall also provide the selected scrambling and channelisation codes of the new RLs in order to enable the SRNC to inform the UE about the selected codes. #### **Neighbouring Cell Handling:** If there are UMTS neighbouring cell(s) to the cell in which a Radio Link was established then: - The DRNC shall include the Neighbouring FDD Cell Information IE and/or Neighbouring TDD Cell Information IE in the Neighbouring UMTS Cell Information IE for each neighbouring FDD cell and/or TDD cell respectively. In addition, if the information is available, the DRNC shall include the Frame Offset IE, Primary CPICH Power IE, Cell Individual Offset IE, STTD Support Indicator IE, Closed Loop Model Support Indicator IE and Closed Loop Mode2 Support Indicator IE in the Neighbouring FDD Cell Information IE, and the Frame Offset IE, Cell Individual Offset IE, DPCH Constant Value IE and the PCCPCH Power IE in the Neighbouring TDD Cell Information IE. - If a UMTS neighbouring cell is not controlled by the same DRNC, the DRNC shall also include the *CN PS Domain Identifier* IE and/or *CN CS Domain Identifier* IE which are the identifiers of the CN nodes connected to the RNC controlling the UMTS neighbouring cell. - For the UMTS neighbouring cells which are controlled by the DRNC, the DRNC shall report in the RADIO LINK ADDITION RESPONSE message the restriction state of those cells, otherwise Restriction state indicator IE may be absent. The DRNC shall include the Restriction state indicator IE for the neighbouring cells which are controlled by the DRNC in the Neighbouring FDD Cell Information IE, the Neighbouring TDD Cell Information IE and the Neighbouring TDD Cell Information LCR IE. If there are GSM neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include the *Neighbouring GSM Cell Information* IE in the RADIO LINK ADDITION RESPONSE message for each of the GSM neighbouring cells. If available the DRNC shall include the *GSM Cell Individual Offset* IE and/or the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. If the *GSM Cell Individual Offset* IE is included in the *Neighbouring GSM Cell Information* IE, then the DRNC shall include the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. # General: [FDD - If the RADIO LINK ADDITION REQUEST message contains an *SSDT Cell Identity* IE, SSDT shall, if supported, be activated for the concerned new RL, with the indicated SSDT Cell Identity used for that RL.] Depending on local configuration in the DRNS, it may include the geographical co-ordinates of the cell and the UTRAN access point position for each of the added RLs in the RADIO LINK ADDITION RESPONSE message. For each Radio Link established in a cell where at least one URA Identity is being broadcast, the DRNC shall include a URA Identity for this cell in the *URA ID* IE, the *Multiple URAs Indicator* IE indicating whether or not multiple URA Identities are being broadcast in the cell, and the RNC Identity of all other RNCs that are having
at least one cell within the URA in the cell in the *URA Information* IE in the RADIO LINK ADDITION RESPONSE message. [FDD - If the UE has been allocated one or several DCH controlled by DRAC and if the DRNS supports the DRAC, the DRNC shall indicate in the RADIO LINK ADDITION RESPONSE message the *Secondary CCPCH Info* IE for the FACH where the DRAC information is sent, for each Radio Link established in a cell where DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK ADDITION RESPONSE message.] [TDD - The DRNC shall include the Secondary CCPCH Info TDD IE in the RADIO LINK ADDITION RESPONSE message if at least one DSCH Information Response IE or USCH Information Response IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the Secondary CCPCH Info TDD IE in the RADIO LINK ADDITION RESPONSE message if at least one DSCH Information Response IE or USCH Information Response IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] If the *Permanent NAS UE Identity* IE is present in the RADIO LINK ADDITION REQUEST message, the DRNC shall store the information for the considered UE Context for the life-time of the UE Context. If the RADIO LINK ADDITION REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the Permanent NAS UE Identity is available in the DRNC for the considered UE Context, the DRNC shall use this information to determine whether it can add the Radio Link on this cell or not. The DRNS shall start reception on the new RL(s) after the RLs are successfully established. # [FDD-Radio Link Set Handling]: [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign the *RL Set ID* IE included in the RADIO LINK ADDITION RESPONSE message a value that uniquely identifies the RL Set within the UE Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another new or existing RL, the DRNS shall assign the *RL Set ID* IE included in the RADIO LINK ADDITION RESPONSE message the same value. This value shall uniquely identify the RL Set within the UE Context.] [FDD – After addition of the new RL(s), the UL out-of-sync algorithm defined in ref. [10] shall, for each of the previously existing and newly established RL Set(s), use the maximum value of the parameters N_OUTSYNC_IND and T_RLFAILURE that are configured in the cells supporting the radio links of the RL Set. The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND that are configured in the cells supporting the radio links of the RL Set.] #### Response message: If all requested RLs are successfully added, the DRNC shall respond with a RADIO LINK ADDITION RESPONSE message. After sending the RADIO LINK ADDITION RESPONSE message, the DRNS shall continuously attempt to obtain UL synchronisation on the Uu interface. [FDD - The DRNS shall start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4].] [TDD – The DRNS shall start transmission on the new RL immediately as specified in ref. [4].] # 8.3.2.3 Unsuccessful Operation Figure 8: Radio Link Addition procedure: Unsuccessful Operation If the establishment of at least one RL is unsuccessful, the DRNC shall send a RADIO LINK ADDITION FAILURE as response. If some RL(s) were established successfully, the DRNC shall indicate this in the RADIO LINK ADDITION FAILURE message in the same way as in the RADIO LINK ADDITION RESPONSE message. Typical cause values are: #### **Radio Network Layer Causes:** - DL Radio Resources not Available; - UL Radio Resources not Available; - Combining Resources not Available; - Combining not Supported; - Cell not Available; - [FDD Requested Tx Diversity Mode not Supported]; - Power Level not Supported; - CM not Supported; - Reconfiguration CFN not Elapsed; - Number of DL Codes not Supported; - Number of UL codes not supported; - Cell reserved for operator use. #### **Transport Layer Causes:** - Transport Resource Unavailable. #### **Miscellaneous Causes:** - Control Processing Overload; - HW Failure; - Not enough User Plane Processing Resources. ## 8.3.2.4 Abnormal Conditions If the RADIO LINK ADDITION REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the Permanent NAS UE Identity is not available in the DRNC for the considered UE Context, the DRNC shall consider the procedure as failed for this particular Radio Link and send the RADIO LINK ADDITION FAILURE message. # 3GPP TS 25.423 v3.12.0 (2002-12) CR page 15 [FDD – If the RADIO LINK ADDITION REQUEST message includes the *Transmission Gap Pattern Sequence Status* IEs in the *Active Pattern Sequence Information* IE and it does not address exactly all ongoing compressed mode patterns the DRNS shall regard the Radio Link Addition procedure as failed and shall respond with a RADIO LINK ADDITION FAILURE message with the cause value "Invalid CM settings".] [FDD - If the RADIO LINK ADDITION REQUEST message is used to establish a new RL without compressed mode when compressed mode is active for the existing RL(s) (as specified in subclause 8.3.2.2), but at least one new RL is to be established in a cell that has the same UARFCN (both UL and DL) as at least one cell with an already existing RL, the DRNS shall regard the Radio Link Addition procedure as failed and shall respond with a RADIO LINK ADDITION FAILURE message with the cause value "Invalid CM settings".] # <<< Unchanged Text is Removed>>> # 9.2.1.41C Neighbouring GSM Cell Information The *Neighbouring GSM Cell Information* IE provides information for all GSM Celsl that are a neighbouring cell to a cell in the DRNC. | 4 | 7 | |---|---| | | | | IE/Group Name | Presence | Range | IE Type and Reference | Semantics
Description | Criticality | Assigned Criticality | |--------------------------------------|----------|---|-----------------------------------|--|-------------|----------------------| | Neighbouring GSM Cell
Information | | 1 <maxnoof
GSMneighb
ours></maxnoof
 | | | GLOBAL | ignore | | >CGI | | 1 | | Cell Global
Identity as
defined in ref.
[1]. | - | | | >>LAI | | 1 | | | _ | | | >>>PLMN Identity | M | | OCTET
STRING (3) | - digits 0 to 9, two digits per octet, - each digit encoded 0000 to 1001, - 1111 used as filler - bit 4 to 1 of octet n encoding digit 2n-1 - bit 8 to 5 of octet n encoding digit 2n -The PLMN Identity consists of 3 digits from MCC followed by either -a filler plus 2 digits from MNC (in case of 2 digit MNC) or -3 digits from MNC (in case of a 3 digit | _ | | | >>>LAC | M | | OCTET
STRING (2) | MNC).
0000 and
FFFE not | _ | | | | | | | allowed | | | | >>CI | М | | OCTET
STRING (2) | | _ | | | >Cell Individual Offset | O | | 9.2.1.7 | The Cell Individual Offset to be used for UEs using DCHs. Should be ignored if the GSM Cell Individual Offset IE is included | - | | | >BSIC | | 1 | | Base Station
Identity Code
as defined in
ref. [1]. | _ | | | >>NCC | М | | BIT | Network | - | | | >>BCC | M | | STRING(3) BIT STRING(3) | Colour Code. Base Station Colour Code. | _ | | | >Band Indicator | М | | ENUMERAT
ED (DCS
1800 band, | Indicates whether or not the BCCH | _ | | | | | PCS 1900
band,) | ARFCN
belongs to the
1800 band or
1900 band of | | | |-----------------------------|----------|--------------------|---|------------|---------------| | | | | GSM frequencies. | | | | >BCCH ARFCN | M | INTEGER
(01023) | BCCH
Frequency as
defined in ref.
[29]. | 1 | | | >GSM Cell Individual Offset | <u>O</u> | <u>9.2.1.x</u> | The GSM Cell Individual Offset to be used for UEs using DCHs. | <u>YES</u> | <u>ignore</u> | | Range bound | Explanation | |----------------------|--| | maxnoofGSMneighbours | Maximum number of neighbouring GSM cells for one cell. | # <<< Unchanged Text is Removed>>> # 9.2.1.x GSM Cell Individual Offset GSM Cell individual offset is an offset that will be applied by UE to the measurement results for GSM carrier RSSI according to [16]. | IE/Group Name | Presence | <u>Range</u> | IE Type
and
Reference | Semantics Description | |----------------------------|----------|--------------|-----------------------------|-------------------------------| | GSM Cell Individual Offset | | | <u>INTEGER</u> (-50,,+50) | Unit in dB. Step size is 1 dB | <<< Unchanged Text is Removed>>> # 9.3.4 Information Element Definitions ``` -- Information Element Definitions __ ******************************** itu-t (0) identified-organization (4) etsi (0) mobileDomain (0) umts-Access (20) modules (3) rnsap (1) version1 (1) rnsap-IEs (2) } DEFINITIONS AUTOMATIC TAGS ::= BEGIN IMPORTS maxCodeNumComp-1, maxNrOfFACHs, maxFACHCountPlus1, maxIBSEG, maxNoOfDSCHs, maxNoOfDSCHs-1, maxNoOfUSCHs, maxNoTFCIGroups, maxNoCodeGroups, maxNrOfDCHs, maxNrOfDL-Codes, maxNrOfDLTs, maxNrOfDPCHs maxNrOfErrors, maxNrOfFDDNeighboursPerRNC, maxNrOfMACcshSDU-Length, maxNrOfNeighbouringRNCs, maxNrOfTDDNeighboursPerRNC, maxNrOfTS, maxNrOfULTs, maxNrOfGSMNeighboursPerRNC, maxRateMatching, maxNrOfPoints, maxNoOfRB, maxNrOfTFCs maxNrOfTFs, maxRNCinURA-1, maxNrOfSCCPCHs. maxTFCI1Combs, maxTFCI2Combs, maxTFCI2Combs-1, maxTGPS, maxTTI-Count,
id-DSCH-Specific-FDD-Additional-List, id-Neighbouring-GSM-CellInformation, \verb|id-Neighbouring-UMTS-CellInformationItem|,\\ maxNrOfLevels, id-MessageStructure, id-RestrictionStateIndicator, id-TypeOfError, id-GSMCellIndividualOffset FROM RNSAP-Constants Criticality, ProcedureID, ProtocolIE-ID, TransactionID, TriggeringMessage FROM RNSAP-CommonDataTypes ProtocolIE-Single-Container{}, ProtocolExtensionContainer{}, RNSAP-PROTOCOL-IES, RNSAP-PROTOCOL-EXTENSION FROM RNSAP-Containers; ``` UNCHANGED TEXT IS REMOVED ``` -- G GapLength ::= INTEGER (1..14) -- Unit Slot ::= INTEGER (1..144,...) GapDuration -- Unit Frame GA-Cell ::= SEQUENCE (SIZE (1..maxNrOfPoints)) OF SEQUENCE { geographicalCoordinate GeographicalCoordinate, ProtocolExtensionContainer { {GA-Cell-ExtIEs} } OPTIONAL, iE-Extensions GA-Cell-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GA-AccessPointPosition ::= SEQUENCE { geographicalCoordinate GeographicalCoordinate, ProtocolExtensionContainer { {GA-AccessPoint-ExtIEs} } OPTIONAL, iE-Extensions } GA-AccessPoint-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GeographicalCoordinate ::= SEQUENCE { latitudeSign ENUMERALE (INTEGER (0..8388607), ENUMERATED { north, south }, latitude INTEGER (0..8388607), longitude INTEGER (-8388608..8388607), iE-Extensions ProtocolExtensionContain ProtocolExtensionContainer { {GeographicalCoordinate-ExtIEs} } OPTIONAL, GeographicalCoordinate-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GSMCellIndividualOffset ::= INTEGER (-50..50) UNCHANGED TEXT IS REMOVED NCC ::= BIT STRING (SIZE (3)) {\tt Neighbouring-UMTS-CellInformation} ::= {\tt SEQUENCE} \ ({\tt SIZE} \ ({\tt 1..maxNrOfNeighbouringRNCs})) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt SEQUENCE} \ ({\tt SIZE} \ ({\tt 1..maxNrOfNeighbouringRNCs})) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt SEQUENCE} \ ({\tt SIZE} \ ({\tt 1..maxNrOfNeighbouringRNCs})) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt ProtocollE-Information} ::= {\tt NeighbouringRNCs}) \ {\tt OF} \ {\tt NeighbouringRNCs} ::= {\tt NeighbouringRNCs} \ {\tt OF} O Single-Container {{ Neighbouring-UMTS-CellInformationItemIE }} Neighbouring-UMTS-CellInformationItemIE RNSAP-PROTOCOL-IES ::= { { ID id-Neighbouring-UMTS-CellInformationItem CRITICALITY ignore TYPE Neighbouring-CellInformationItem PRESENCE mandatory } UMTS-CellInformationItem PRESENCE Neighbouring-UMTS-CellInformationItem ::= SEQUENCE { rNC-ID RNC-ID cN-PS-DomainIdentifier CN-PS-DomainIdentifier cN-CS-DomainIdentifier CN-CS-DomainIdentifier OPTIONAL, Neighbouring-FDD-CellInformation OPTIONAL, Neighbouring-TDD-CellInformation OPTIONAL, neighbouring-FDD-CellInformation neighbouring-TDD-CellInformation Neighbouring-TDD-CellInformation iE-Extensions ProtocolExtensionContainer { {Neighbouring-UMTS- CellInformationItem-ExtIEs} } OPTIONAL, Neighbouring-UMTS-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } Neighbouring-FDD-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfFDDNeighboursPerRNC,...)) OF Neighbouring-FDD-CellInformationItem Neighbouring-FDD-CellInformationItem ::= SEQUENCE { ``` NrOfDLchannelisationcodes ::= INTEGER (1..8) ``` 21 uARFCNforNu UARFCN, uARFCNforNd UARFCN. frameOffset FrameOffset OPTIONAL, primaryScramblingCode PrimaryScramblingCode, PrimarySCIGNET primaryCPICH-Power OPTIONAL, cellIndividualOffset CellIndividualOffset OPTIONAL, txDiversityIndicator TxDiversityIndicator, sTTD-SupportIndicator STTD-SupportIndicator OPTIONAL, ClosedLoopModel-SupportIndicator OPTIONAL, ClosedLoopMode2-SupportIndicator OPTIONAL, closedLoopModel-SupportIndicator \verb|closedLoopMode2-SupportIndicator|\\ ProtocolExtensionContainer { { Neighbouring-FDD- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, Neighbouring-FDD-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { EXTENSION RestrictionStateIndicator PRESENCE optional Neighbouring-GSM-CellInformation ::= ProtocolIE-Single-Container {{ Neighbouring-GSM- CellInformationIE }} Neighbouring-GSM-CellInformationIE RNSAP-PROTOCOL-IES ::= { CellInformationIEs PRESENCE mandatory } Neighbouring-GSM-CellInformationIEs ::= SEQUENCE (SIZE (1..maxNrOfGSMNeighboursPerRNC,...)) OF Neighbouring-GSM-CellInformationItem {\tt Neighbouring-GSM-CellInformationItem} \ ::= \ {\tt SEQUENCE} \ \{ cellIndividualOffset CellIndividualOffset OPTIONAL, bSIC BSIC, band-Indicator Band-Indicator, bcch-arfcn BCCH-ARFCN, ProtocolExtensionContainer { { Neighbouring-GSM- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-GSM-CellInformationItem-ExtlEs RNSAP-PROTOCOL-EXTENSION ::= { CRITICALITY ignore EXTENSION { ID id-GSMCellIndividualOffset GSMCellIndividualOffset PRESENCE optional }, Neighbouring-TDD-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfTDDNeighboursPerRNC,...)) OF Neighbouring-TDD-CellInformationItem Neighbouring-TDD-CellInformationItem ::= SEQUENCE { C-ID. c-ID uARFCNforNt. UARFCN, frameOffset FrameOffset OPTIONAL. cellParameterID CellParameterID, syncCase SyncCase, timeSlot TimeSlot OPTIONAL -- This IE shall be present if Sync Case = Casel -- , OPTIONAL SCH-TimeSlot -- This IE shall be present if Sync Case = Case2 -- , SCTD-Indicator, sCTD-Indicator cellIndividualOffset CellIndividualOffset OPTIONAL, DPCHConstantValue OPTIONAL, dPCHConstantValue pCCPCH-Power PCCPCH-Power OPTIONAL, iE-Extensions ProtocolExtensionContainer { { Neighbouring-TDD- CellInformationItem-ExtIEs} } OPTIONAL, {\tt Neighbouring-TDD-CellInformationItem-ExtIES\ RNSAP-PROTOCOL-EXTENSION\ ::=\ \{\ n=1,\dots,n\}\}} EXTENSION RestrictionStateIndicator PRESENCE optional . . . } ``` ::= INTEGER (0..512) UNCHANGED TEXT IS REMOVED # 9.3.6 Constant Definitions ``` -- Constant definitions __ ******************************** RNSAP-Constants { itu-t (0) identified-organization (4) etsi (0) mobileDomain (0) umts-Access (20) modules (3) rnsap (1) version1 (1) rnsap-Constants (4) } DEFINITIONS AUTOMATIC TAGS ::= BEGIN IMPORTS ProcedureCode, ProtocolIE-ID FROM RNSAP-CommonDataTypes; __ ******************************** -- Elementary Procedures __ ********************** id-commonTransportChannelResourcesInitialisation ProcedureCode ::= 0 ProcedureCode ::= 1 \verb|id-commonTransportChannelResourcesRelease|\\ ProcedureCode ::= 2 id-compressedModeCommand id-downlinkPowerControl ProcedureCode ::= 3 id-downlinkPowerTimeslotControl ProcedureCode ::= 4 id-downlinkSignallingTransfer ProcedureCode ::= 5 id-errorIndication ProcedureCode ::= 6 id-dedicatedMeasurementFailure ProcedureCode ::= 7 \verb|id-dedicatedMeasurementInitiation|\\ ProcedureCode ::= 8 id-dedicatedMeasurementReporting ProcedureCode ::= 9 \verb"id-dedicated Measurement Termination" ProcedureCode ::= 10 id-paging ProcedureCode ::= 11 id-physicalChannelReconfiguration ProcedureCode ::= 12 id-privateMessage ProcedureCode ::= 13 ProcedureCode ::= 14 id-radioLinkAddition id-radioLinkDeletion ProcedureCode ::= 15 id-radioLinkFailure ProcedureCode ::= 16 id-radioLinkPreemption ProcedureCode ::= 17 ProcedureCode ::= 18 id-radioLinkRestoration ProcedureCode ::= 19 id-radioLinkSetup id-relocationCommit ProcedureCode ::= 20 id-synchronisedRadioLinkReconfigurationCancellation ProcedureCode ::= 21 ProcedureCode ::= 22 id-synchronisedRadioLinkReconfigurationCommit ProcedureCode ::= 23 id-synchronisedRadioLinkReconfigurationPreparation \verb|id-unSynchronisedRadioLinkReconfiguration| \\ ProcedureCode ::= 24 \verb"id-uplinkSignallingTransfer" ProcedureCode ::= 25 __ ******************************** maxCodeNumComp-1 INTEGER ::= 255 INTEGER ::= 256 maxRateMatching maxNoCodeGroups INTEGER ::= 256 INTEGER ::= 10 maxNoOfDSCHs maxNoOfRB INTEGER ::= 32 maxNoOfUSCHs INTEGER ::= 10 maxNoTFCIGroups INTEGER ::= 256 INTEGER ::= 1024 maxNrOfTFCs INTEGER ::= 32 maxNrOfTFs maxNrOfCCTrCHs INTEGER ::= 16 INTEGER ::= 128 maxNrOfDCHs INTEGER ::= 8 maxNrOfDL-Codes maxNrOfDPCHs INTEGER ::= 240 maxNrOfErrors INTEGER ::= 256 maxNrOfMACcshSDU-Length INTEGER ::= 16 maxNrOfPoints INTEGER ::= 15 INTEGER ::= 16 maxNrOfRLs ``` CR page ProtocolIE-ID ::= 83 ``` maxNrOfRLSets INTEGER ::= maxNrOfRLs INTEGER ::= 15 -- maxNrOfRLs - 1 maxNrOfRLs-1 INTEGER ::= 14 -- maxNrOfRLs - 2 mayNrOfRLg-2 maxNrOfULTs INTEGER ::= 15 INTEGER ::= 15 maxNrOfDLTs maxRNCinURA-1 INTEGER ::= 15 INTEGER ::= 4 maxTTT-Count INTEGER ::= 16777215 maxCTFC INTEGER ::= 10 maxNrOfNeighbouringRNCs maxNrOfFDDNeighboursPerRNC INTEGER ::= 256 INTEGER ::= 256 maxNrOfGSMNeighboursPerRNC {\tt maxNrOfTDDNeighboursPerRNC} INTEGER ::= 256 maxNrOfFACHs INTEGER ::= 8 INTEGER ::= 10 maxFACHCountPlus1 maxTBSEG INTEGER ::= 16 maxNrOfSCCPCHs INTEGER ::= 8 maxTFCI1Combs INTEGER ::= 512 INTEGER ::= 1024 maxTFCI2Combs maxTFCI2Combs-1 INTEGER ::= 1023 INTEGER ::= 6 maxTGPS maxNrOfTS INTEGER ::= 15 maxNrOfLevels INTEGER ::= 256 maxNoOfDSCHs-1 INTEGER ::= 9 __ ***************** -- IEs __ *********************************** id-AllowedQueuingTime ProtocolIE-ID ::= 4 ProtocolIE-ID ::= 5 id-BindingID ProtocolIE-ID ::= 6 id-C-ID id-C-RNTI ProtocolIE-ID ::= 7 id-CFN ProtocolIE-ID ::= 8 id-CN-CS-DomainIdentifier ProtocolIE-ID ::= 9 id-CN-PS-DomainIdentifier ProtocolTE-TD ::= 10 ProtocolIE-ID ::= 11 id-Cause id-CriticalityDiagnostics ProtocolIE-ID ::= 20 id-D-RNTI ProtocolIE-ID ::= 21 id-D-RNTI-ReleaseIndication ProtocolIE-ID ::= 22 ProtocolIE-ID ::= 26 id-DCHs-to-Add-FDD id-DCHs-to-Add-TDD ProtocolIE-ID ::= 27 id-DCH-DeleteList-RL-ReconfPrepFDD ProtocolIE-ID ::= 30 id-DCH-DeleteList-RL-ReconfPrepTDD ProtocolIE-ID ::= 31 ProtocolIE-ID ::= 32 id-DCH-DeleteList-RL-ReconfRqstFDD \verb|id-DCH-DeleteList-RL-ReconfRqstTDD|\\ ProtocolIE-ID ::= 33 id-DCH-FDD-Information ProtocolIE-ID ::= 34 id-DCH-TDD-Information ProtocolIE-ID ::= 35 ProtocolIE-ID ::= 39
id-FDD-DCHs-to-Modify ProtocolIE-ID ::= 40 id-TDD-DCHs-to-Modify id-DCH-InformationResponse ProtocolIE-ID ::= 43 \verb|id-DL-CCTrCH-InformationAddItem-RL-ReconfPrepTDD|\\ ProtocolIE-ID ::= 44 ProtocolIE-ID ::= 45 id-DL-CCTrCH-InformationListIE-RL-ReconfReadyTDD ProtocolIE-ID ::= 46 \verb|id-DL-CCTrCH-InformationDeleteItem-RL-ReconfRqstTDD|\\ id-DL-CCTrCH-InformationItem-RL-SetupRqstTDD ProtocolIE-ID ::= 47 id-DL-CCTrCH-InformationListIE-PhyChReconfRqstTDD ProtocolIE-ID ::= 48 id-DL-CCTrCH-InformationListIE-RL-AdditionRspTDD ProtocolIE-ID ::= 49 ProtocolIE-ID ::= 50 id-DL-CCTrCH-InformationListIE-RL-SetupRspTDD \verb|id-DL-CCTrCH-InformationAddList-RL-ReconfPrepTDD|\\ ProtocolIE-ID ::= 51 id-DL-CCTrCH-InformationDeleteList-RL-ReconfRqstTDD ProtocolIE-ID ::= 52 id-DL-CCTrCH-InformationList-RL-SetupRqstTDD ProtocolIE-ID ::= 53 id-FDD-DL-CodeInformation ProtocolIE-ID ::= 54 id-DL-DPCH-Information-RL-ReconfPrepFDD ProtocolIE-ID ::= 59 id-DL-DPCH-Information-RL-SetupRqstFDD ProtocolIE-ID ::= 60 id-DL-DPCH-Information-RL-ReconfRqstFDD ProtocolIE-ID ::= 61 ProtocolIE-ID ::= 62 id-DL-DPCH-InformationItem-PhyChReconfRqstTDD ProtocolIE-ID ::= 63 id-DL-DPCH-InformationItem-RL-AdditionRspTDD \verb|id-DL-DPCH-InformationItem-RL-SetupRspTDD|\\ ProtocolIE-ID ::= 64 id-DLReferencePower ProtocolIE-ID ::= 67 id-DLReferencePowerList-DL-PC-Rqst ProtocolIE-ID ::= 68 id-DL-ReferencePowerInformation-DL-PC-Rqst ProtocolTE-TD ::= 69 id-DRXCycleLengthCoefficient ProtocolIE-ID ::= 70 id-DedicatedMeasurementObjectType-DM-Rprt ProtocolIE-ID ::= 71 id-DedicatedMeasurementObjectType-DM-Rqst ProtocolIE-ID ::= 72 id-DedicatedMeasurementObjectType-DM-Rsp ProtocolIE-ID ::= 73 ProtocolIE-ID ::= 74 \verb|id-DedicatedMeasurementType|\\ id-FACH-InfoForUESelectedS-CCPCH-CTCH-ResourceRspFDD ProtocolIE-ID ::= 82 ``` id-FACH-InfoForUESelectedS-CCPCH-CTCH-ResourceRspTDD | 3GPP TS 25.423 v3.12.0 (2002-12) | CR page | |--|---| | 25 | | | id-IMSI | ProtocolIE-ID ::= 84 | | <pre>id-L3-Information id-AdjustmentPeriod</pre> | ProtocolIE-ID ::= 85 ProtocolIE-ID ::= 90 | | id-MaxAdjustmentStep | ProtocoliE-ID ::= 91 | | id-MeasurementFilterCoefficient | ProtocolIE-ID ::= 92 | | id-MessageStructure | ProtocolIE-ID ::= 57 | | id-MeasurementID | ProtocolIE-ID ::= 93 | | <pre>id-Neighbouring-GSM-CellInformation id-Neighbouring-UMTS-CellInformationItem</pre> | ProtocolIE-ID ::= 13 ProtocolIE-ID ::= 95 | | id-PagingArea-PagingRgst | ProtocoliE-ID ::= 102 | | id-FACH-FlowControlInformation | ProtocolIE-ID ::= 103 | | id-Permanent-NAS-UE-Identity | ProtocolIE-ID ::= 17 | | <pre>id-PowerAdjustmentType id-RANAP-RelocationInformation</pre> | ProtocolIE-ID ::= 107 | | id-RL-Information-PhyChReconfRgstFDD | ProtocolIE-ID ::= 109 ProtocolIE-ID ::= 110 | | id-RL-Information-PhyChReconfRqstTDD | ProtocolIE-ID ::= 111 | | id-RL-Information-RL-AdditionRqstFDD | ProtocolIE-ID ::= 112 | | id-RL-Information-RL-AdditionRqstTDD | ProtocolIE-ID ::= 113 | | <pre>id-RL-Information-RL-DeletionRqst id-RL-Information-RL-FailureInd</pre> | ProtocolIE-ID ::= 114 ProtocolIE-ID ::= 115 | | id-RL-Information-RL-ReconfPrepFDD | ProtocoliE-ID ::= 116 | | id-RL-Information-RL-RestoreInd | ProtocolIE-ID ::= 117 | | id-RL-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 118 | | id-RL-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 119 | | <pre>id-RL-InformationItem-DM-Rprt id-RL-InformationItem-DM-Rgst</pre> | ProtocolIE-ID ::= 120 ProtocolIE-ID ::= 121 | | id-RL-InformationItem-DM-Rsp | ProtocoliE-ID ::= 121 ProtocoliE-ID ::= 122 | | id-RL-InformationItem-RL-PreemptRequiredInd | ProtocolIE-ID ::= 2 | | id-RL-InformationItem-RL-SetupRqstFDD | ProtocolIE-ID ::= 123 | | id-RL-InformationList-RL-AdditionRqstFDD | ProtocolIE-ID ::= 124 | | id-RL-InformationList-RL-DeletionRqst
id-RL-InformationList-RL-PreemptRequiredInd | ProtocolIE-ID ::= 125 ProtocolIE-ID ::= 1 | | id-RL-InformationList-RL-ReconfPrepFDD | ProtocoliE-ID ::= 126 | | id-RL-InformationResponse-RL-AdditionRspTDD | ProtocolIE-ID ::= 127 | | id-RL-InformationResponse-RL-ReconfReadyTDD | ProtocolIE-ID ::= 128 | | id-RL-InformationResponse-RL-SetupRspTDD | ProtocolIE-ID ::= 129 ProtocolIE-ID ::= 130 | | <pre>id-RL-InformationResponseItem-RL-AdditionRspFDD id-RL-InformationResponseItem-RL-ReconfReadyFDD</pre> | ProtocoliE-ID ::= 131 | | id-RL-InformationResponseItem-RL-ReconfRspFDD | ProtocolIE-ID ::= 132 | | id-RL-InformationResponseItem-RL-SetupRspFDD | ProtocolIE-ID ::= 133 | | id-RL-InformationResponseList-RL-AdditionRspFDD | ProtocolIE-ID ::= 134 | | <pre>id-RL-InformationResponseList-RL-ReconfReadyFDD id-RL-InformationResponseList-RL-ReconfRspFDD</pre> | ProtocolIE-ID ::= 135 ProtocolIE-ID ::= 136 | | id-RL-InformationResponse-RL-ReconfRspTDD | ProtocoliE-ID ::= 28 | | id-RL-InformationResponseList-RL-SetupRspFDD | ProtocolIE-ID ::= 137 | | id-RL-ReconfigurationFailure-RL-ReconfFail | ProtocolIE-ID ::= 141 | | id-RL-Set-InformationItem-DM-Rprt | ProtocolIE-ID ::= 143 | | <pre>id-RL-Set-InformationItem-DM-Rqst id-RL-Set-InformationItem-DM-Rsp</pre> | ProtocolIE-ID ::= 144 ProtocolIE-ID ::= 145 | | id-RL-Set-Information-RL-FailureInd | ProtocolIE-ID ::= 146 | | id-RL-Set-Information-RL-RestoreInd | ProtocolIE-ID ::= 147 | | id-ReportCharacteristics | ProtocolIE-ID ::= 152 | | <pre>id-Reporting-Object-RL-FailureInd id-Reporing-Object-RL-RestoreInd</pre> | ProtocolIE-ID ::= 153 ProtocolIE-ID ::= 154 | | id-S-RNTI | ProtocoliE-ID ::= 154 ProtocoliE-ID ::= 155 | | id-SAI | ProtocolIE-ID ::= 156 | | id-SRNC-ID | ProtocolIE-ID ::= 157 | | id-SuccessfulRL-InformationResponse-RL-AdditionFailureFDD | ProtocolIE-ID ::= 159 | | <pre>id-SuccessfulRL-InformationResponse-RL-SetupFailureFDD id-TransportBearerID</pre> | ProtocolIE-ID ::= 160 ProtocolIE-ID ::= 163 | | id-TransportBearerRequestIndicator | ProtocolIE-ID ::= 164 | | id-TransportLayerAddress | ProtocolIE-ID ::= 165 | | id-TypeOfError | ProtocolIE-ID ::= 140 | | id-UC-ID | ProtocolIE-ID ::= 166 | | <pre>id-UL-CCTrCH-AddInformation-RL-ReconfPrepTDD id-UL-CCTrCH-InformationAddList-RL-ReconfPrepTDD</pre> | ProtocolIE-ID ::= 167 ProtocolIE-ID ::= 169 | | id-UL-CCTrCH-InformationItem-RL-SetupRqstTDD | ProtocolIE-ID ::= 171 | | id-UL-CCTrCH-InformationList-RL-SetupRqstTDD | ProtocolIE-ID ::= 172 | | id-UL-CCTrCH-InformationListIE-PhyChReconfRqstTDD | ProtocolIE-ID ::= 173 | | id-UL-CCTrCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 174 | | <pre>id-UL-CCTrCH-InformationListIE-RL-ReconfReadyTDD id-UL-CCTrCH-InformationListIE-RL-SetupRspTDD</pre> | ProtocolIE-ID ::= 175 ProtocolIE-ID ::= 176 | | id-UL-DPCH-Information-RL-ReconfPrepFDD | ProtocolIE-ID ::= 177 | | id-UL-DPCH-Information-RL-ReconfRqstFDD | ProtocolIE-ID ::= 178 | | id-UL-DPCH-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 179 | | <pre>id-UL-DPCH-InformationItem-PhyChReconfRqstTDD id-UL-DPCH-InformationItem-RL-AdditionRspTDD</pre> | ProtocolIE-ID ::= 180 ProtocolIE-ID ::= 181 | | id-UL-DPCH-InformationItem-RL-SetupRspTDD | ProtocoliE-ID ::= 182 | | id-UL-DPCH-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 183 | | - | | | 3GPP | TS | 25.423 | v3.12.0 | (2002-1) | 2) | |------|----|--------|---------|----------|----| | | | | | | | | 26 | pg- | |--|---| | id-UL-SIRTarget | ProtocolIE-ID ::= 184 | | id-URA-Information | ProtocolIE-ID ::= 185 | | id-UnsuccessfulRL-InformationResponse-RL-AdditionFailureFDD | ProtocolIE-ID ::= 188 | | id-UnsuccessfulRL-InformationResponse-RL-SetupFailureFDD | ProtocolIE-ID ::= 189 | | id-UnsuccessfulRL-InformationResponse-RL-SetupFailureTDD | ProtocolIE-ID ::= 190 | | id-Active-Pattern-Sequence-Information | ProtocolIE-ID ::= 193 | | id-AdjustmentRatio | ProtocolIE-ID ::= 194 | | id-CauseLevel-RL-AdditionFailureFDD | ProtocolIE-ID ::= 197 | | id-CauseLevel-RL-AdditionFailureTDD | ProtocolIE-ID ::= 198 | | id-CauseLevel-RL-ReconfFailure | ProtocolIE-ID ::= 199 ProtocolIE-ID ::= 200 | | <pre>id-CauseLevel-RL-SetupFailureFDD id-CauseLevel-RL-SetupFailureTDD</pre> | ProtocoliE-ID ::= 200 ProtocoliE-ID ::= 201 | | id-DL-CCTrCH-InformationDeleteItem-RL-ReconfPrepTDD | ProtocolIE-ID ::= 205 | | id-DL-CCTrCH-InformationModifyItem-RL-ReconfPrepTDD | ProtocolIE-ID ::= 206 | | id-DL-CCTrCH-InformationModifyItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 207 | | id-DL-CCTrCH-InformationDeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 208 | | id-DL-CCTrCH-InformationModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 209 | | id-DL-CCTrCH-InformationModifyList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 210 | | id-DL-DPCH-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 212 | | id-DL-DPCH-InformationDeleteListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 213 | | id-DL-DPCH-InformationModifyListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 214 | | id-DSCHs-to-Add-TDD | ProtocolIE-ID ::= 215 | | id-DSCHs-to-Add-FDD | ProtocolIE-ID ::= 216 | | id-DSCH-DeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 217 | | id-DSCH-Delete-RL-ReconfPrepFDD | ProtocolIE-ID ::= 218 | | id-DSCH-FDD-Information | ProtocolIE-ID ::= 219 | | id-DSCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 220 ProtocolIE-ID ::= 221 | | <pre>id-DSCH-InformationListIEs-RL-SetupRspTDD id-DSCH-TDD-Information</pre> | ProtocoliE-ID := 221 ProtocoliE-ID ::= 222 | | id-DSCH-FDD-InformationResponse | ProtocoliE-ID ::= 223 | | id-DSCH-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 226 | | id-DSCH-ModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 227 | | id-DSCH-Modify-RL-ReconfPrepFDD | ProtocolIE-ID ::= 228 | | id-DSCH-Specific-FDD-Additional-List | ProtocolIE-ID ::= 324 | | id-DSCHsToBeAddedOrModified-FDD | ProtocolIE-ID ::= 229 | | id-DSCHToBeAddedOrModifiedList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 230 | | id-GA-Cell | ProtocolIE-ID ::= 232 | |
id-Transmission-Gap-Pattern-Sequence-Information | ProtocolIE-ID ::= 255 | | id-UL-CCTrCH-DeleteInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 256 | | id-UL-CCTrCH-ModifyInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 257 | | id-UL-CCTrCH-InformationModifyItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 258 | | id-UL-CCTrCH-InformationDeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 259 | | id-UL-CCTrCH-InformationModifyList-RL-ReconfPrepTDD id-UL-CCTrCH-InformationModifyList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 260 ProtocolIE-ID ::= 261 | | id-UL-CCTrCH-InformationModifyList-ReconfixqstfDD id-UL-CCTrCH-InformationDeleteItem-RL-ReconfixqstfDD | ProtocoliE-ID ::= 262 | | id-UL-CCTrCH-InformationDeleteList-RL-ReconfRqstTDD | ProtocoliE-ID ::= 263 | | id-UL-DPCH-InformationDeleteListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 264 | | id-UL-DPCH-InformationModifyListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 265 | | id-UnsuccessfulRL-InformationResponse-RL-AdditionFailureTDD | ProtocolIE-ID ::= 266 | | id-USCHs-to-Add | ProtocolIE-ID ::= 267 | | id-USCH-DeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 268 | | id-USCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 269 | | id-USCH-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 270 | | id-USCH-Information | ProtocolIE-ID ::= 271 | | id-USCH-ModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 272 | | id-USCHToBeAddedOrModifiedList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 273 | | <pre>id-DL-Physical-Channel-Information-RL-SetupRqstTDD id-UL-Physical-Channel-Information-RL-SetupRqstTDD</pre> | ProtocolIE-ID ::= 274 ProtocolIE-ID ::= 275 | | id-ClosedLoopModel-SupportIndicator | ProtocoliE-ID ::= 276 | | id-ClosedLoopMode2-SupportIndicator | ProtocolIE-ID ::= 277 | | id-STTD-SupportIndicator | ProtocolIE-ID ::= 279 | | id-CFNReportingIndicator | ProtocolIE-ID ::= 14 | | id-CNOriginatedPage-PagingRgst | ProtocolIE-ID ::= 23 | | id-InnerLoopDLPCStatus | ProtocolIE-ID ::= 24 | | id-PropagationDelay | ProtocolIE-ID ::= 25 | | id-RxTimingDeviationForTA | ProtocolIE-ID ::= 36 | | id-timeSlot-ISCP | ProtocolIE-ID ::= 37 | | id-CCTrCH-InformationItem-RL-FailureInd | ProtocolIE-ID ::= 15 | | id-CCTrCH-InformationItem-RL-RestoreInd | ProtocolIE-ID ::= 16 | | id-RestrictionStateIndicator | ProtocolIE-ID ::= 142 | | id-SplitType | ProtocolIE-ID ::= 247 | | id-LengthOfTFCI2 | ProtocolIE-ID ::= 295 ProtocolIE-ID ::= 202 | | id-PrimaryCCPCH-RSCP-RL-ReconfPrepTDD id-DL-TimeSlot-ISCP-Info-RL-ReconfPrepTDD | ProtocoliE-ID ::= 202 ProtocolIE-ID ::= 203 | | id-DSCH-RNTI | ProtocoliE-ID ::= 249 | | id-PDSCH-RL-ID | ProtocolIE-ID ::= 323 | | id-TimeSlot-RL-SetupRspTDD | ProtocolIE-ID ::= 325 | | id-GSMCellIndividualOffset | ProtocolIE-ID ::= 514 | | | | CR page <>< END OF THE CORRECTED SECTION>>> # 3GPP TSG-RAN3 Meeting #34 Sophia Antipolis, France, 17 – 21 February 2003 | | CHANGE REQUEST | | | | | | | | | |-------------------------------|--|---|---|--|--|--|--|--|--| | * | 25.423 CR 789 #re | ev 2 [%] Curre | ent version: 4.7.0 ** | | | | | | | | For <u>HELP</u> on usi | ing this form, see bottom of this page ffects: UICC apps光 ME | _ | rup text over the 策 symbols. Network X Core Network | | | | | | | | Title: | Support of Cell Individual Offset in F | RNSAP | | | | | | | | | Source: # | RAN WG3 | | | | | | | | | | Work item code: 第 | TEI | E | Date: ₩ 18/02/2003 | | | | | | | | [| A Use one of the following categories: F (correction) A (corresponds to a correction in an B (addition of feature), C (functional modification of feature D (editorial modification) Detailed explanations of the above categore found in 3GPP TR 21.900. | Use n earlier release) I release | Rel-4 e one of the following releases: 2 (GSM Phase 2) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6) | | | | | | | | Reason for change: | to the cell(s) where a radio l include <i>Cell Individual Offs</i> , the RADIO LINK SETUP/A neighbouring cells. The value range used for Ce - Intra/Inter-frequency: Inter RAT/GSM: -50 However, RNSAP supports frequency case as well as In - Intra/Inter Frequency case | ink is setup/added, the et IE in the Neighbour ADDITION RESPON ADDITION RESPON III Individual Offset in 10+10 dB +50 dB only a common Cell I ter-RAT as follows: e & Inter RAT/GSM: th respect to the sure previous version of the previous is impacted to the protocol point of as isolated as it affects. | ring GSM Cell Information IE in ISE message for each of the GSM in RRC is as follows: Individual Offset for Intra/Inter in 1-10+10 dB(in steps of 0.5 dB) Import for Cell Individual Offset in the specification (same bus version of the specification cted. view. | | | | | | | | Consequences if not approved: | | haviour in terms of | tencies between RNSAP and
Inter-RAT measurement event | | | | | | | by operators, cannot be used. | Clauses affected: | 第 8.3.1.2, 8.3.2.2, 9.2.1.41c, New 9.2.1.x, 9.3.4 and 9.3.6 | | | | | |-------------------|---|---|---|---------------------------|--------------------------| | | | Υ | N | | | | Other specs | \mathbb{H} | X | | Other core specifications | CR788 on 25.423 v 3.12.0 | | | | | | | CR790 on 25.423 v 5.4.0 | | Affected: | | | X | Test specifications | | | | | | X | O&M Specifications | | | | | | | | | | Other comments: | \mathbb{H} | | | | | ### How to create CRs using this form: Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary: - 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. - 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. # 8.3 DCH Procedures # 8.3.1 Radio Link Setup ## 8.3.1.1 General This procedure is used for establishing the necessary resources in the DRNS for one or more radio links. The connection-oriented service of the signalling bearer shall be established in conjunction with this procedure. # 8.3.1.2 Successful Operation Figure 5: Radio Link Setup procedure: Successful Operation When the SRNC makes an algorithmic decision to add the first cell or set of cells from a DRNS to the active set of a specific UE-UTRAN connection, the RADIO LINK SETUP REQUEST message is sent to the corresponding DRNC to request establishment of the radio link(s). The Radio Link Setup procedure is initiated with this RADIO LINK SETUP REQUEST message sent from the SRNC to the DRNC. Upon receipt of the RADIO LINK SETUP REQUEST message, the DRNS shall reserve the necessary resources and configure the new RL(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The DRNS shall prioritise resource allocation for the RL(s) to be established according to Annex A. If the RADIO LINK SETUP REQUEST message includes the *Allowed Queuing Time* IE the DRNS may queue the request for a time period not exceedingthe value of the *Allowed Queuing Time* IE before starting to execute the request. # **Transport Channels Handling:** # DCH(s): [TDD - If the *DCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new DCHs according to the parameters given in the message.] If the RADIO LINK SETUP REQUEST message includes a *DCH Information* IE with multiple *DCH Specific Info* IEs, then the DRNS shall treat the DCHs in the *DCH Information* IE as a set of co-ordinated DCHs. [FDD - For each DCH which does not belong to a set of co-ordinated DCHs, and which includes a *QE-Selector* IE set to "selected", the DRNS shall use the Transport channel BER from that DCH for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the DRNS shall use the Physical channel BER for the QE, ref. [4]. If the *QE-Selector* IE is set to "non-selected", the DRNS shall use the Physical channel BER for the QE in the UL data frames, ref. [4].] For a set of co-ordinated DCHs, the DRNS shall use the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" for the QE in the UL data frames, ref. [4]. [FDD - If no Transport channel BER
is available for the selected DCH, the DRNS shall use the Physical channel BER for the QE, ref. [4]. If all DCHs have *QE-Selector* IE set to "non-selected", the DRNS shall use the Physical channel BER for the QE, ref. [4].] [TDD - If no Transport channel BER is available for the selected DCH, the DRNS shall use 0 for the QE, ref. [4].] The DRNS shall use the included *UL DCH FP Mode* IE for a DCH or a set of co-ordinated DCHs as the DCH FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs. The DRNS shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs. The DRNS shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs. The *Frame Handling Priority* IE defines the priority level that should be used by the DRNS to prioritise between different frames of the data frames of the DCHs in the downlink on the radio interface in congestion situations once the new RL(s) have been activated. If the *DCH Information* IE contains a *DCH Specific Info* IE which includes the *Guaranteed Rate Information* IE, the DRNS shall treat the included IEs according to the following: - If the *Guaranteed Rate Information* IE includes the *Guaranteed UL Rate* IE, the DRNS shall apply the Guaranteed Rate in the uplink of this DCH. The DRNS may decide to request the SRNC to limit the user rate of the uplink of the DCH at any point in time. The DRNS may request the SRNC to reduce the user rate of the uplink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to only reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *DCH Specific Info* IE in the *DCH Information* IE does not include the *Guaranteed UL Rate* IE, the DRNS shall not limit the user rate of the uplink of the DCH. - If the *Guaranteed Rate Information* IE includes the *Guaranteed DL Rate* IE, the DRNS shall apply the Guaranteed Rate in the downlink of this DCH. The DRNS may decide to request the SRNC to limit the user rate of the downlink of the DCH at any point in time. The DRNS may request the SRNC to reduce the user rate of the downlink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to only reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *DCH Specific Info* IE in the *DCH Information* IE does not include the *Guaranteed DL Rate* IE, the DRNS shall not limit the user rate of the downlink of the DCH. #### DSCH(s): If the *DSCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNC shall establish the requested DSCHs [FDD - on the RL indicated by the PDSCH RL ID IE]. In addition, the DRNC shall send a valid set of *DSCH Scheduling Priority* IE and *MAC-c/sh SDU Length* IE parameters to the SRNC in the RADIO LINK SETUP RESPONSE message. If the *PDSCH RL ID* IE indicates a radio link in the DRNS, then the DRNC shall allocate a DSCH-RNTI to the UE Context and include the *DSCH-RNTI* IE in the RADIO LINK SETUP RESPONSE message. # [TDD - USCH(s)]: [TDD - If the *USCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS shall establish the requested USCHs, and the DRNC shall provide the *USCH Information Response* IE in the RADIO LINK SETUP RESPONSE message.] [TDD – The DRNS shall use the list of RB Identities in the *RB Info* IE in the *USCH information* IE to map each *RB Identity* IE to the corresponding USCH.] # [TDD - CCTrCH Handling]: [TDD – If the *UL CCTrCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new UL CCTrCH(s) according to the parameters given in the message.] [TDD – If the *DL CCTrCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new DL CCTrCH(s) according to the parameters given in the message.] [TDD – If the *TPC CCTrCH List* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the identified UL CCTrCHs with TPC according to the parameters given in the message.] # **Physical Channels Handling:** #### [FDD - Compressed Mode]: [FDD - If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE, the DRNS shall store the information about the Transmission Gap Pattern Sequences to be used in the Compressed Mode Configuration. This Compressed Mode Configuration shall be valid in the DRNS until the next Compressed Mode Configuration is configured in the DRNS or the last Radio Link is deleted.] [FDD - If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE and the *Active Pattern Sequence Information* IE, the DRNS shall use the information to activate the indicated Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* IE refers to latest passed CFN with that value. The DRNS shall treat the received *TGCFN* IEs as follows:] - [FDD If any received *TGCFN* IE has the same value as the received *CM Configuration Change CFN* IE, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD For all other Transmission Gap Pattern Sequences included in the *Active Pattern Sequence Information* IE, the DRNS shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE for the Transmission Gap Pattern Sequence.][FDD- If the *Downlink Compressed Mode Method* IE in one or more Transmission Gap Pattern Sequence is set to "SF/2" in the RADIO LINK SETUP REQUEST message, the DRNC shall include the *Transmission Gap Pattern Sequence Scrambling Code Information* IE in the RADIO LINK SETUP RESPONSE message indicating for each DL Channelisation Code whether the alternative scrambling code shall be used or not.] #### [FDD - DL Code Information]: [FDD – When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] #### General: [FDD - If the *Propagation Delay* IE is included, the DRNS may use this information to speed up the detection of UL synchronisation on the Uu interface.] [FDD – If the received *Limited Power Increase* IE is set to "Used", the DRNS shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control.] # Radio Link Handling: #### **Diversity Combination Control:** [FDD - The *Diversity Control Field* IE indicates for each RL, except for the first RL whether the DRNS shall combine the RL with any of the other RLs or not. - If the *Diversity Control Field* IE is set to "May" (be combined with another RL), the DRNS shall decide for any of the alternatives. - If the *Diversity Control Field* IE is set to "Must", the DRNS shall combine the RL with one of the other RLs. When an RL is to be combined, the DRNS shall choose which RL(s) to combine it with. - If the *Diversity Control Field* IE is set to "Must not", the DRNS shall not combine the RL with any other existing RL.] [FDD - In the RADIO LINK SETUP RESPONSE message, the DRNC shall indicate for each RL with the Diversity Indication in the *RL Information Response* IE whether the RL is combined or not. - In case of combining, the *RL ID* IE indicates one of the existing RLs that the concerned RL is combined with. - In case of not combining, the DRNC shall include in the *DCH Information Response* IE in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and *Transport Layer Address* IE for the transport bearer to be established for each DCH of this RL.] [TDD - The DRNC shall always include in the RADIO LINK SETUP RESPONSE message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DCH,] DSCH and USCH] of the RL.] In the case of a set of co-ordinated DCHs requiring a new transport bearer the *Binding ID* IE and the *Transport Layer Address* IE shall be included in the RADIO LINK SETUP RESPONSE message for only one of the DCHs in the set of co-ordinated DCHs. #### [FDD-Transmit Diversity]: [FDD – If the cell in which the RL is being set up is capable to provide Close loop Tx diversity, the DRNC shall include the *Closed Loop Timing Adjustment Mode* IE in the RADIO LINK SETUP RESPONSE message indicating the configured Closed loop timing adjustment mode of the cell.] [FDD – When the *Diversity Mode* IE is set to "STTD", "Closed loop mode1", or "Closed loop mode2", the DRNC shall activate/deactivate the Transmit Diversity for each Radio Link in accordance with the *Transmit Diversity Indicator* IE]. #### **DL Power Control:** [FDD - If both the *Initial DL TX Power* IE and *Uplink SIR Target* IE are included in the message, the DRNS shall use the indicated DL TX Power and Uplink SIR Target as initial value. If the value of the *Initial DL TX Power* IE is outside the configured DL TX power range, the DRNS shall apply these constrains when setting the initial DL TX power. The DRNS shall also include the configured DL TX power range defined by *Maximum DL TX Power* IE and *Minimum DL TX Power* IE in the RADIO LINK
SETUP RESPONSE message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IE or lower than indicated by the *Minimum DL TX Power* IE on any DL DPCH of the RL except during compressed mode, when the δP_{curr} , as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power for the associated compressed frame.] [FDD - If both the *Initial DL TX Power* and the *Uplink SIR Target* IEs are not included in the RADIO LINK SETUP REQUEST message, then DRNC shall determine the initial Uplink SIR Target and include it in the *Uplink SIR Target* IE in the RADIO LINK SETUP RESPONSE message.] [FDD - If the *Primary CPICH Ec/No* IE is present, the DRNC should use the indicated value when deciding the Initial DL TX Power.] [TDD - If the *Primary CCPCH RSCP* IE [3.84Mcps TDD - and/or the *DL Time Slot ISCP Info* IE] [1.28Mcps TDD - and/or the *DL Time Slot ISCP Info LCR* IE] are present, the DRNC should use the indicated values when deciding the Initial DL TX Power for the Radio Link. The DRNS shall use the indicated DL Timeslot ISCP when determining the initial DL power per timeslot as specified in [22], i.e. it shall reduce the DL TX power in those downlink timeslots of the radio link where the interference is low, and increase the DL TX power in those timeslots where the interference is high, while keeping the total downlink power in the radio link unchanged.] [1.28McpsTDD - If the *TSTD Support Indicator* IE is present, the DRNS shall apply this information when configuring the transmit diversity for the new radio link..] [FDD – The DRNS shall start the DL transmission using the indicated DL TX power level (if received) or the decided DL TX power level on each DL channelisation code of a RL until UL synchronisation is achieved on the Uu interface for the concerned RLS or Power Balancing is activated. No inner loop power control or power balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[10] subclause 5.2.1.2) and the power control procedure (see 8.3.7).] [TDD – The DRNS shall start the DL transmission using the decided DL TX power level on each DL channelisation code and on each Time Slot of a RL until UL synchronisation is achieved on the Uu interface for the concerned RL. No inner loop power control shall be performed during this period. Then after UL synchronisation, the DL power shall vary according to the inner loop power control (see ref. [22] subclause 4.2.3.3).] [FDD – If the received *Inner Loop DL PC Status* IE is set to "Active", the DRNS shall activate the inner loop DL power control for all RLs. If *Inner Loop DL PC Status* IE is set to "Inactive", the DRNS shall deactivate the inner loop DL power control for all RLs according to ref. [10]. [FDD - If the *DPC Mode* IE is present in the RADIO LINK SETUP REQUEST message, the DRNC shall apply the DPC mode indicated in the message, and be prepared that the DPC mode may be changed during the life time of the RL. If the *DPC Mode* IE is not present in the RADIO LINK SETUP REQUEST message, DPC mode 0 shall be applied (see ref. [10]).] ### **Neighbouring Cell Handling:** If there are UMTS neighbouring cell(s) to the cell in which a Radio Link was established then: - The DRNC shall include in the RADIO LINK SETUP RESPONSE message the Neighbouring FDD Cell Information IE and/or Neighbouring TDD Cell Information IE in the Neighbouring UMTS Cell Information IE for each neighbouring FDD cell and/or TDD cell respectively. In addition, if the information is available, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the Frame Offset IE, Primary CPICH Power IE, Cell Individual Offset IE, STTD Support Indicator IE, Closed Loop Model Support Indicator IE and Closed Loop Mode2 Support Indicator IE in the Neighbouring FDD Cell Information IE, and the Frame Offset IE, Cell Individual Offset IE, DPCH Constant Value IE and the PCCPCH Power IE in the Neighbouring TDD Cell Information IE or the Neighbouring TDD Cell Information IE includes the Sync Case IE for the set to "Case1", the DRNC shall include the Time Slot For SCH IE in the Neighbouring TDD Cell Information IE. If the Neighbouring TDD Cell Information IE includes Sync Case IE set to "Case2", the DRNC shall include the SCH Time Slot IE in the Neighbouring TDD Cell Information IE. - If a UMTS neighbouring cell is not controlled by the same DRNC, the DRNC shall also include in the RADIO LINK SETUP RESPONSE message the *CN PS Domain Identifier* IE and/or *CN CS Domain Identifier* IE which are the identifiers of the CN nodes connected to the RNC controlling the UMTS neighbouring cell. - If the information is available, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *DPC Mode Change Support Indicator* IE for each neighbour cell in the *Neighbouring FDD Cell Information* IE . - For the UMTS neighbouring cells which are controlled by the DRNC, the DRNC shall report in the RADIO LINK SETUP RESPONSE message the restriction state of those cells, otherwise the *Restriction State Indicator* IE may be absent. The DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Restriction State Indicator* IE for the neighbouring cells which are controlled by the DRNC in the *Neighbouring FDD Cell Information* IE, the *Neighbouring TDD Cell Information* IE and the *Neighbouring TDD Cell Information LCR* IE. If there are GSM neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Neighbouring GSM Cell Information* IE for each of the GSM neighbouring cells. If available the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *GSM Cell Individual Offset* IE and/or the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. If the *GSM Cell Individual Offset* IE is included in the *Neighbouring GSM Cell Information* IE, then the DRNC shall include the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. # [1.28Mcps TDD – Uplink Synchronisation Parameters LCR]: [1.28Mcps TDD - If the *Uplink Synchronisation Parameters LCR* IE is present, the DRNC shall use the indicated values of *Uplink synchronisation stepsize* IE and *Uplink synchronisation frequency* IE when evaluating the timing of the UL synchronisation.] #### General: [FDD - If the RADIO LINK SETUP REQUEST message includes the SSDT Cell Identity IE and the S-Field Length IE, the DRNS shall activate SSDT, if supported, using the SSDT Cell Identity IE and SSDT Cell Identity Length IE.] [FDD - If the RADIO LINK SETUP REQUEST message includes the SSDT Cell Identity for EDSCHPC IE, the DRNS shall activate enhanced DSCH power control, if supported, using the SSDT Cell Identity for EDSCHPC IE and SSDT Cell Identity Length IE as well as Enhanced DSCH PC IE in accordance with ref. [10] subclause 5.2.2. If the RADIO LINK SETUP REQUEST message includes both SSDT Cell Identity IE and SSDT Cell Identity for EDSCHPC IE, then the DRNS shall ignore the SSDT Cell Identity for EDSCHPC IE.] [FDD - If the *DRAC Control* IE is set to "requested" in the RADIO LINK SETUP REQUEST message for at least one DCH and if the DRNS supports the DRAC, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Secondary CCPCH Info* IE for the FACH in which the DRAC information is sent, for each Radio Link established in a cell in which DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK SETUP RESPONSE message.] If no *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *D-RNTI* IE, the *CN PS Domain Identifier* IE and/or the *CN CS Domain Identifier* IE for the CN domains (using LAC and RAC of the current cell) to which the DRNC is connected. [FDD - If the *D-RNTI* IE was included the RADIO LINK SETUP REQUEST message the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Primary Scrambling Code* IE, the *UL UARFCN* IE and the *DL UARFCN*.] [TDD – If the *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *UARFCN* IE, the *Cell Parameter ID* IE and the *SCTD Indicator* IE.] [3.84Mcps TDD - If the *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Sync Case* IE and if the *Sync Case* IE is set to "Case 2", the DRNC shall also include the *SCH Time Slot* IE in the RADIO LINK SETUP RESPONSE message. If the included *Sync Case* IE is set to "Case1", the DRNC shall also include the *Time Slot For SCH* IE] [3.84Mcps TDD - The DRNC shall include the Secondary CCPCH Info TDD IE in the RADIO LINK SETUP RESPONSE message if at least one DSCH Information Response IE or USCH Information Response IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the Secondary CCPCH Info TDD IE in the RADIO LINK SETUP RESPONSE message if at least one DSCH Information Response IE or USCH Information Response IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] [1.28 Mcps TDD - The DRNC shall include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a
different secondary CCPCH than selected by the UE from system information.] For each Radio Link established in a cell in which at least one URA Identity is being broadcast, the DRNC shall include in the *URA Information* IE within the RADIO LINK SETUP RESPONSE message the URA Information for this cell including the *URA ID* IE, the *Multiple URAs Indicator* IE indicating whether or not multiple URA Identities are being broadcast in the cell, and the *RNC-ID* IEs of all other RNCs that have at least one cell within the URA identified by the *URA ID* IE. Depending on local configuration in the DRNS, the DRNC may include in the RADIO LINK SETUP RESPONSE message the *UTRAN Access Point Position* IE and the geographical co-ordinates of the cell, represented either by the *Cell GAI* IE or by the *Cell GA Additional Shapes* IE. If the DRNS need to limit the user rate in the uplink of a DCH due to congestion caused by the UL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Allowed UL Rate* IE in the *DCH Information Response* IE for this Radio Link. If the DRNS needs to limit the user rate in the downlink of a DCH due to congestion caused by the DL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Allowed DL Rate* IE in the *DCH Information Response* IE for this Radio Link. If the *Permanent NAS UE Identity* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS shall store the information for the considered UE Context for the life-time of the UE Context. If the RADIO LINK SETUP REQUEST message includes the *Permanent NAS UE Identity* IE and a *C-ID* IE corresponding to a cell reserved for operator use, the DRNS shall use this information to determine whether it can set up a Radio Link on this cell or not for the considered UE Context. The DRNS shall start receiving on the new RL(s) after the RLs are successfully established. ## [FDD - Radio Link Set Handling]: [FDD - The *First RLS Indicator* IE indicates if the concerned RL shall be considered part of the first RLS established towards this UE. The DRNS shall use the *First RLS Indicator* IE to determine the initial TPC pattern in the DL of the concerned RL and all RLs which are part of the same RLS, as described in [10], section 5.1.2.2.1.2. [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign to the RL a unique value for the *RL Set ID* IE which uniquely identifies the RL as an RL Set within the UE Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign to each RL the same value for the *RL Set ID* IE which uniquely identifies these RLs as members of the same RL Set within the UE Context.] [FDD –The UL out-of-sync algorithm defined in ref. [10] shall, for each of the established RL Set(s), use the maximum value of the parameters N_OUTSYNC_IND and T_RLFAILURE that are configured in the cells supporting the radio links of the RL Set. The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND, that are configured in the cells supporting the radio links of the RL Set.] # **Response Message:** Upon receipt of the RADIO LINK SETUP REQUEST message, the DRNS allocates the requested type of channelisation codes and other physical channel resources for each RL and assigns a binding identifier and a transport layer address for each DCH, for each set of co-ordinated DCHs and for each DSCH [TDD – and USCH]. This information shall be sent to the SRNC in the RADIO LINK SETUP RESPONSE message when all the RLs have been successfully established. After sending the RADIO LINK SETUP RESPONSE message the DRNS shall continuously attempt to obtain UL synchronisation on the Uu interface. [FDD - The DRNS shall start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4].] [TDD – The DRNS shall start transmission on the new RL immediately as specified in ref. [4].] # 8.3.2 Radio Link Addition # 8.3.2.1 General This procedure is used for establishing the necessary resources in the DRNS for one or more additional RLs towards a UE when there is already at least one RL established to the concerned UE via this DRNS. This procedure shall use the signalling bearer connection for the relevant UE Context. The Radio Link Addition procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1. [FDD – The Radio Link Addition procedure serves to establish one or more new Radio Links which do not contain the DSCH. If the DSCH shall be moved into a new Radio Link, the Radio Link reconfiguration procedure shall be applied.] [TDD – The Radio Link Addition procedure serves to establish a new Radio Link with the DSCH and USCH included, if they existed before.] # 8.3.2.2 Successful Operation Figure 7: Radio Link Addition procedure: Successful Operation The procedure is initiated with a RADIO LINK ADDITION REQUEST message sent from the SRNC to the DRNC. Upon receipt, the DRNS shall reserve the necessary resources and configure the new RL(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The DRNS shall prioritise resource allocation for the RL(s) to be established according to Annex A. ### **Transport Channel Handling:** [TDD - The DRNC shall include the *UL/DL DPCH Information* IE within the *UL/DL CCTrCH Information* IE for each CCTrCH that requires DPCHs.] ### DSCH: [TDD - If the radio link to be added includes a DSCH, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message a *DSCH Information Response* IE for each DSCH] ### [TDD - USCH:] [TDD - If the radio link to be added includes any USCHs, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message a *USCH Information Response* IE for each USCH.] ## **Physical Channels Handling:** ### [FDD-Compressed Mode:] [FDD - If the RADIO LINK ADDITION REQUEST message includes the *Active Pattern Sequence Information* IE, the DRNS shall use the information to activate the indicated (all ongoing) Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* IE refers to the latest passed CFN with that value. The DRNS shall treat the received *TGCFN* IEs as follows:] - [FDD If any received *TGCFN* IE has the same value as the received *CM Configuration Change CFN* IE, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD For all other Transmission Gap Pattern Sequences included in the *Active Pattern Sequence Information* IE, the DRNS shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE for the Transmission Gap Pattern Sequence.] [FDD - If the *Active Pattern Sequence Information* IE is not included, the DRNS shall not activate the ongoing compressed mode pattern in the new RLs, but the ongoing pattern in the existing RL shall be maintained.] [FDD - If some Transmission Gap Pattern sequences using SF/2 method are initialised in the DRNS, the DRNC shall include the *Transmission Gap Pattern Sequence Scrambling Code Information IE* in the *DL Code Information* IE in the RADIO LINK ADDITION RESPONSE message to indicate the Scrambling code change method that it selects for each channelisation code.] ### [FDD-DL Code Information]: [FDD – When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] ### General: [FDD - The DRNS shall use the provided Uplink SIR Target value as the current target for the inner-loop power control.] ### **Radio Link Handling:** ### **Diversity Combination Control:** The *Diversity Control Field* IE indicates for each RL whether the DRNS shall combine the new RL with existing RL(s) or not. - If the *Diversity Control Field* IE is set to "May" (be combined with another RL), the DRNS shall decide for any of the alternatives. - If the *Diversity Control Field* IE is set to "Must", the DRNS shall combine the RL with one of the other RL. - If the *Diversity Control Field* IE is set to "Must not", the DRNS shall not combine the RL with any other existing RL. When a new RL is to be combined, the DRNS shall choose the RL(s) with which to combine it. In the RADIO LINK ADDITION RESPONSE message, the DRNC shall indicate for each RL with the Diversity Indication in the *RL Information Response* IE whether the RL is combined or not: - In the case of combining a new RL with existing RL(s), the DRNC shall indicate with the Diversity Indication in the *RL Information Response* IE in the RADIO LINK ADDITION RESPONSE message that the RL is combined. In this case, the *RL ID* IE indicates one of the existing RLs with which the new RL is combined. - In the case of not combining, the DRNC shall include in the *DCH Information Response* IE in the RADIO LINK ADDITION RESPONSE message, the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DCH of the RL. [TDD – The DRNC shall always include in the RADIO LINK
ADDITION RESPONSE message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DSCH and USCH of the RL.] In the case of a set of co-ordinated DCHs, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Binding ID* IE and the *Transport Layer Address* IE for only one of the DCHs in the set of co-ordinated DCHs. If the DRNS needs to limit the user rate in the uplink of a DCH due to congestion caused by the UL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Allowed UL Rate* IE in the *DCH Information Response* IE for this Radio Link. If the DRNS needs to limit the user rate in the downlink of a DCH due to congestion caused by the DL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Allowed DL Rate* IE in the *DCH Information Response* IE for this Radio Link. ### [FDD-Transmit Diversity]: The DRNS shall activate any feedback mode diversity according to the received settings. [FDD – If the cell in which the RL is being added is capable to provide Close loop Tx diversity, the DRNC shall indicate the Closed loop timing adjustment mode of the cell by including the *Closed Loop Timing Adjustment Mode* IE in the RADIO LINK ADDITION RESPONSE message.] [FDD – When the *Transmit Diversity Indicator* IE is present the DRNS shall activate/deactivate the Transmit Diversity for each new Radio Link in accordance with the *Transmit Diversity Indicator* IE using the diversity mode of the existing Radio Link(s).] ### **DL Power Control:** [FDD - If the *Primary CPICH Ec/No* IE is included for an RL in the RADIO LINK ADDITION REQUEST message, the DRNS shall use this in the calculation of the Initial DL TX Power for this RL. If the *Primary CPICH Ec/No* IE is not present, the DRNS shall set the Initial DL TX Power based on the power relative to the Primary CPICH power used by the existing RLs.] [TDD - If the *Primary CCPCH RSCP* IE [3.84Mcps TDD - and/or the *DL Time Slot ISCP Info* IE] [1.28Mcps TDD - and/or the *DL Time Slot ISCP Info LCR* IE] are included in the RADIO LINK ADDITION REQUEST message, the DRNS shall use them in the calculation of the Initial DL TX Power. If the *Primary CCPCH RSCP* IE [3.84Mcps TDD - and *DL Time Slot ISCP Info IE*] [1.28Mcps TDD - and *DL Time Slot ISCP Info LCR* IE] are not present, the DRNS shall set the Initial DL TX Power based on the power relative to the Primary CCPCH power used by the existing RL.] [FDD - The Initial DL TX Power shall be applied until UL synchronisation is achieved on the Uu interface for that RLS or Power Balancing is activated. No inner loop power control or power balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref. [10] subclause 5.2.1.2) and the power control procedure (see 8.3.7)]. [TDD – The Initial DL TX Power shall be applied until UL synchronisation is achieved on the Uu interface for that RL. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref. [22] subclause 4.2.3.3).]. [FDD - If the *DPC Mode* IE is present in the RADIO LINK ADDITION REQUEST message, the DRNC shall apply the DPC mode indicated in the message, and be prepared that the DPC mode may be changed during the lifetime of the RL. If the *DPC Mode* IE is not present in the RADIO LINK ADDITION REQUEST message, DPC mode 0 shall be applied (see ref. [10]).] ### **UL Power Control:** The DRNC shall also provide the configured UL Maximum SIR and UL Minimum SIR for every new RL to the SRNC in the RADIO LINK ADDITION RESPONSE message. These values are taken into consideration by DRNS admission control and shall be used by the SRNC as limits for the UL inner-loop power control target. [FDD - The DRNS shall use the provided Uplink SIR Target value as the current target for the inner-loop power control.] The DRNC shall provide the configured *Maximum DL TX Power* IE and *Minimum DL TX Power* IE for every new RL to the SRNC in the RADIO LINK ADDITION RESPONSE message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IEor lower than indicated by the *Minimum DL TX Power* IEon any DL DPCH of the RL [FDD – except during compressed mode, when the δP_{curr} , as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power for the associated compressed frame.]. ### **Neighbouring Cell Handling:** If there are UMTS neighbouring cell(s) to the cell in which a Radio Link was established then: - The DRNC shall include in the RADIO LINK ADDITION RESPONSE message the Neighbouring FDD Cell Information IE and/or Neighbouring TDD Cell Information IE in the Neighbouring UMTS Cell Information IE for each neighbouring FDD cell and/or TDD cell respectively. In addition, if the information is available, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the Frame Offset IE, Primary CPICH Power IE, Cell Individual Offset IE, STTD Support Indicator IE, Closed Loop Model Support Indicator IE and Closed Loop Mode2 Support Indicator IE in the Neighbouring FDD Cell Information IE, and the Frame Offset IE, Cell Individual Offset IE, DPCH Constant Value IE and the PCCPCH Power IE in the Neighbouring TDD Cell Information IE or the Neighbouring TDD Cell Information LCR IE.If the Neighbouring TDD Cell Information IE includes the Sync Case IE set to "Case1", the DRNC shall include the Time SlotFor SCH IE in the Neighbouring TDD Cell Information IE. If the Neighbouring TDD Cell Information IE includes the Sync Case IE set to "Case2", the DRNC shall include the SCH Time Slot IE in the Neighbouring TDD Cell Information IE. - If a UMTS neighbouring cell is not controlled by the same DRNC, the DRNC shall also include in the RADIO LINK ADDITION RESPONSE message the *CN PS Domain Identifier* IE and/or *CN CS Domain Identifier* IE which are the identifiers of the CN nodes connected to the RNC controlling the UMTS neighbouring cell. - [FDD The DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *DPC Mode Change Support Indicator* IE for each neighbour cell in the *Neighbouring FDD Cell Information* IE if this information is available.] - For the UMTS neighbouring cells which are controlled by the DRNC, the DRNC shall report in the RADIO LINK ADDITION RESPONSE message the restriction state of those cells, otherwise *Restriction State Indicator* IE may be absent. The DRNC shall include the *Restriction State Indicator* IE for the neighbouring cells which are controlled by the DRNC in the *Neighbouring FDD Cell Information* IE, the *Neighbouring TDD Cell Information* IE and the *Neighbouring TDD Cell Information LCR* IE. If there are GSM neighbouring cells to the cell(s) in which a radio link is established, the DRNC shall include the *Neighbouring GSM Cell Information* IE in the RADIO LINK ADDITION RESPONSE message for each of the GSM neighbouring cells. If available, the DRNC shall include the *GSM Cell Individual Offset* IE and/or the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. If the *GSM Cell Individual Offset* IE is included in the *Neighbouring GSM Cell Information* IE, then the DRNC shall include the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. ### [1.28Mcps TDD – Uplink Synchronisation Parameters LCR]: [1.28Mcps TDD - If the *Uplink Synchronisation Parameters LCR* IE is present, the DRNC shall use the indicated values of *Uplink synchronisation stepsize* IE and *Uplink synchronisation frequency* IE when evaluating the timing of the UL synchronisation.] #### General: [FDD - If the RADIO LINK ADDITION REQUEST message contains an *SSDT Cell Identity* IE, the DRNS shall, if supported, activate SSDT for the concerned new RL using the indicated SSDT Cell Identity.] Depending on local configuration in the DRNS, the DRNC may include in the RADIO LINK ADDITION RESPONSE message the *UTRAN Access Point Position* IE and the geographical co-ordinates of the cell, represented either by the *Cell GAI* IE or by the *Cell GA Additional Shapes* IE. For each Radio Link established in a cell in which at least one URA Identity is being broadcast, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message a URA Information for this cell including the *URA ID* IE, the *Multiple URAs Indicator* IE indicating whether or not multiple URA Identities are being broadcast in the cell, and the *RNC-ID* IEs of all other RNCs that have at least one cell within the URA identified by the *URA ID* IE. [FDD - If the UE has been allocated one or several DCH controlled by DRAC and if the DRNS supports the DRAC, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Secondary CCPCH Info* IE for the FACH in which the DRAC information is sent, for each Radio Link established in a cell in which DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK ADDITION RESPONSE message.] [3.84 Mcps TDD - The DRNC shall include the *Secondary CCPCH Info TDD* IE in the RADIO LINK ADDITION RESPONSE message if at least one *DSCH Information Response* IE or *USCH Information Response* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD* IE in the RADIO LINK ADDITION RESPONSE message if at least one *DSCH Information Response* IE or *USCH Information Response* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] [1.28 Mcps TDD - The DRNC shall include the *Secondary CCPCH Info TDD LCR* IE in
the RADIO LINK ADDITION RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK ADDITION RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] If the *Permanent NAS UE Identity* IE is present in the RADIO LINK ADDITION REQUEST message, the DRNS shall store the information for the considered UE Context for the life-time of the UE Context. If the RADIO LINK ADDITION REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the Permanent NAS UE Identity is available in the DRNC for the considered UE Context, the DRNC shall use this information to determine whether it can add the Radio Link on this cell or not The DRNS shall start receiving on the new RL(s) after the RLs are successfully established. ### [FDD-Radio Link Set Handling]: [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign to the RL a unique value for the *RL Set ID* IE which uniquely identifies the RL as an RL Set within the UE Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another new or existing RL, the DRNS shall assign to each RL the same value for the *RL Set ID* IE which uniquely identifies these RLs as members of the same RL Set within the UE Context.] [FDD – After addition of the new RL(s), the UL out-of-sync algorithm defined in ref. [10] shall, for each of the previously existing and newly established RL Set(s), use the maximum value of the parameters N_OUTSYNC_IND and T_RLFAILURE that are configured in the cells supporting the radio links of the RL Set The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND, that are configured in the cells supporting the radio links of the RL Set.] ### Response message: If all requested RLs are successfully added, the DRNC shall respond with a RADIO LINK ADDITION RESPONSE message. After sending the RADIO LINK ADDITION RESPONSE message the DRNS shall continuously attempt to obtain UL synchronisation on the Uu interface. [FDD - The DRNS shall start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4].] [TDD – The DRNS shall start transmission on the new RL immediately as specified in ref. [4].] # 8.3.2.3 Unsuccessful Operation Figure 8: Radio Link Addition procedure: Unsuccessful Operation If the establishment of at least one RL is unsuccessful, the DRNC shall respond with a RADIO LINK ADDITION FAILURE message. DRNC shall include in the RADIO LINK ADDITION FAILURE message a general *Cause* IE or a *Cause* IE for each failed radio link. The *Cause* IE indicates the reason for failure. [FDD - If some RL(s) were established successfully, the DRNC shall indicate this in the RADIO LINK ADDITION FAILURE message in the same way as in the RADIO LINK ADDITION RESPONSE message.] Typical cause values are: ### **Radio Network Layer Causes:** - DL Radio Resources not Available; - UL Radio Resources not Available; - Combining Resources not Available; - Combining not Supported - Cell not Available; - [FDD Requested Tx Diversity Mode not Supported]; - Power Level not Supported; - CM not Supported; - Reconfiguration CFN not Elapsed; - Number of DL Codes not Supported; - Number of UL codes not Supported; - [FDD DPC mode change not Supported]; - Cell reserved for operator use. ## **Transport Layer Causes:** - Transport Resource Unavailable. ### **Miscellaneous Causes:** - Control Processing Overload; - HW Failure; - Not enough User Plane Processing Resources. ## 8.3.2.4 Abnormal Conditions If the RADIO LINK ADDITION REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the Permanent NAS UE Identity is not available in the DRNC for the considered UE Context, the DRNC shall reject the procedure for this particular Radio Link and send the RADIO LINK ADDITION FAILURE message. [FDD – If the RADIO LINK ADDITION REQUEST message includes the *Transmission Gap Pattern Sequence Status* IEs in the *Active Pattern Sequence Information* IE and it does not address exactly all ongoing compressed mode patterns the DRNS shall reject the Radio Link Addition procedure and shall respond with a RADIO LINK ADDITION FAILURE message with the *Cause* IE value "Invalid CM settings".] [FDD - If the RADIO LINK ADDITION REQUEST message is used to establish a new RL without compressed mode when compressed mode is active for the existing RL(s) (as specified in subclause 8.3.2.2), and if at least one of the new RLs is to be established in a cell that has the same UARFCN (both UL and DL) as at least one cell with an already existing RL, the DRNS shall reject the Radio Link Addition procedure and shall respond with a RADIO LINK ADDITION FAILURE message with the cause value "Invalid CM settings".] # <<< Unchanged Text is Removed>>> ## 9.2.1.41C Neighbouring GSM Cell Information The Neighbouring GSM Cell Information IE provides information for all GSM Cells that are a neighbouring cell to a cell in the DRNC. | IE/Group Name | Presence | Range | IE Type
and
Reference | Semantics
Description | Criticality | Assigned
Criticality | |--------------------------------------|----------|---|--|---|--------------|-------------------------| | Neighbouring GSM Cell
Information | | 1 <maxno
ofGSMnei
ghbours></maxno
 | No. of the last | | GLOBAL | ignore | | >CGI | | 1 | | Cell Global
Identity as | - | | | s a l Al | | 1 | | defined in ref. [1]. | | | | >>LAI >>>PLMN Identity | M | 1 | OCTET
STRING (3) | - digits 0 to 9, two digits per octet, - each digit encoded 0000 to 1001, - 1111 used as filler - bit 4 to 1 of octet n encoding digit 2n-1 - bit 8 to 5 of octet n encoding digit 2n | - | | | | | | | -The PLMN Identity consists of 3 digits from MCC followed by either -a filler plus 2 digits from MNC (in case of 2 digit MNC) or -3 digits from MNC (in case of a 3 digit MNC). | | | | >>>LAC | М | | OCTET
STRING (2) | 0000 and FFFE
not allowed | - | | | >>Cl | М | | OCTET
STRING (2) | not anowed | _ | | | >Cell Individual Offset | 0 | | 9.2.1.7 | The Cell Individual Offset to be used for UEs using DCHs. Should be ignored if the GSM Cell Individual Offset IE is included | - | | | >BSIC | | 1 | | Base Station
Identity Code as
defined in ref. [1]. | - | | | >>NCC | M | | BIT
STRING(3) | Network Colour Code. | _ | | | >>BCC | M | | BIT
STRING(3) | Base Station Colour Code. | _ | | | >Band Indicator | M | | ENUMERA
TED (DCS
1800 band,
PCS 1900
band,) | Indicates whether or not the BCCH ARFCN belongs to the 1800 band or 1900 band of GSM frequencies. | - | | | >BCCH ARFCN | М | | INTEGER
(01023) | BCCH Frequency as defined in ref. [29]. | - | | | >GSM Cell Individual
Offset | <u>O</u> | | <u>9.2.1.x</u> | The GSM Cell Individual Offset to be used for | YES | <u>ignore</u> | | | UEs using DCHs. | | |--|-----------------|--| | | | | | | | | | Range bound | Explanation | | | |----------------------|--|--|--| | maxnoofGSMneighbours | Maximum number of neighbouring GSM cells for one cell. | | | # <<< Unchanged Text is Removed>>> # 9.2.1.x GSM Cell Individual Offset GSM Cell individual offset is an offset that will
be applied by UE to the measurement results for GSM carrier RSSI according to [16]. | IE/Group Name | Presence | <u>Range</u> | IE Type
and
Reference | Semantics Description | |----------------------------|----------|--------------|-----------------------------|-------------------------------| | GSM Cell Individual Offset | | | <u>INTEGER</u> (-50+50) | Unit in dB. Step size is 1 dB | <<< Unchanged Text is Removed>>> # 9.3.4 Information Element Definitions ``` -- Information Element Definitions RNSAP-IEs itu-t (0) identified-organization (4) etsi (0) mobileDomain (0) \, umts-Access (20) modules (3) rnsap (1) version1 (1) rnsap-IEs (2) } DEFINITIONS AUTOMATIC TAGS ::= BEGIN IMPORTS maxCodeNumComp-1, maxNrOfFACHs. maxFACHCountPlus1, maxIBSEG, maxNoOfDSCHs, maxNoOfDSCHs-1, maxNoOfUSCHs, maxNoTFCIGroups, maxNoCodeGroups, maxNrOfDCHs, maxNrOfDL-Codes, maxNrOfDLTs, maxNrOfDLTsLCR, maxNrOfDPCHs. maxNrOfDPCHsLCR. maxNrOfErrors, maxNrOfFDDNeighboursPerRNC, maxNrOfMACcshSDU-Length, maxNrOfNeighbouringRNCs, maxNrOfTDDNeighboursPerRNC, maxNrOfLCRTDDNeighboursPerRNC, maxNrOfTS, maxNrOfULTs, maxNrOfULTsLCR, maxNrOfGSMNeighboursPerRNC, maxRateMatching, maxNrOfPoints, maxNoOfRB, maxNrOfTFCs, maxNrOfTFs, maxCTFC. maxRNCinURA-1, maxNrOfSCCPCHs, maxTFCI1Combs, maxTFCI2Combs, maxTFCI2Combs-1 maxTGPS. maxTTI-Count, maxNoGPSTypes, maxNoSat, id-Allowed-Rate-Information, id-DPC-Mode-Change-SupportIndicator, id-DSCH-Specific-FDD-Additional-List, id-Guaranteed-Rate-Information, id-Load-Value, id-Load-Value-IncrDecrThres, id-Neighbouring-GSM-CellInformation, id-Neighbouring-UMTS-CellInformationItem, id-neighbouring-LCR-TDD-CellInformation, id-OnModification, id-Received-Total-Wideband-Power-Value, id-Received-Total-Wideband-Power-Value-IncrDecrThres, id-SFNSFNMeasurementThresholdInformation, id-Transmitted-Carrier-Power-Value, id-Transmitted-Carrier-Power-Value-IncrDecrThres, \verb|id-TUTRANGPSMeasurementThresholdInformation|,\\ id-UL-Timeslot-ISCP-Value, id-UL-Timeslot-ISCP-Value-IncrDecrThres, maxNrOfLevels, ``` ``` maxNrOfMeasNCell, maxNrOfMeasNCell-1, id-MessageStructure, id-EnhancedDSCHPC, id-RestrictionStateIndicator, id-Rx-Timing-Deviation-Value-LCR, id-TypeOfError, id-GSMCellIndividualOffset FROM RNSAP-Constants Criticality, ProcedureID, ProtocolIE-ID, TransactionID, TriggeringMessage FROM RNSAP-CommonDataTypes ProtocolIE-Single-Container{}, ProtocolExtensionContainer{}, RNSAP-PROTOCOL-IES, RNSAP-PROTOCOL-EXTENSION UNCHANGED TEXT IS REMOVED ::= INTEGER (1..14) GapLength -- Unit Slot GapDuration ::= INTEGER (1..144,...) -- Unit Frame GA-Cell ::= SEQUENCE (SIZE (1..maxNrOfPoints)) OF SEQUENCE { cell-GAIgeographicalCoordinate GeographicalCoordinate, iE-Extensions ProtocolExtensionContainer { {GA-Cell-ExtIEs} } OPTIONAL, GA-Cell-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-CellAdditionalShapes ::= CHOICE { GA-PointWithUnCertainty, pointWithUncertainty GA-PointWithUnCertaintyEllipse, {\tt pointWithUncertaintyEllipse} pointWithAltitude GA-PointWithAltitude, pointWithAltitudeAndUncertaintyEllipsoid GA-PointWithAltitudeAndUncertaintyEllipsoid, ellipsoidArc GA-EllipsoidArc, GA-AltitudeAndDirection ::= SEQUENCE { } GA-EllipsoidArc ::= SEQUENCE { geographicalCoordinates GeographicalCoording InnerRadius INTEGER (0..65535), uncertaintyRadius INTEGER (0..127), offsetAngle INTEGER (0..179), includedAngle INTEGER (0..179), confidence INTEGER (0..127), iE-Extensions ProtocolExtensionSIONAL, GeographicalCoordinate, ProtocolExtensionContainer { GA-EllipsoidArc-ExtIEs} } OPTIONAL, } GA-EllipsoidArc-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-PointWithAltitude ::= SEQUENCE { {\tt geographicalCoordinates} \qquad {\tt GeographicalCoordinate}\,, altitudeAndDirection GA-AltitudeAndDirection, ProtocolExtensionContainer { GA-PointWithAltitude-ExtIEs} } iE-Extensions OPTIONAL. ``` ``` GA-PointWithAltitude-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-PointWithAltitudeAndUncertaintyEllipsoid ::= SEQUENCE { geographicalCooruma altitudeAndDirection geographicalCoordinates GeographicalCoordinate, altitudeAndDirection GA-AltitudeAndDirection, GA-UncertaintyEllipse, ude INTEGER (0..127), INTEGER (0..127), uncertaintyAltitude confidence ProtocolExtensionContainer { { GA- iE-Extensions PointWithAltitudeAndUncertaintyEllipsoid-ExtIEs} } OPTIONAL, } GA-PointWithAltitudeAndUncertaintyEllipsoid-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { {\tt GA-PointWithUnCertaintyEllipse} ::= {\tt SEQUENCE} \ \big\{ geographicalCoordinates GeographicalCoordinate, GA-UncertaintyEllipse, INTEGER (0..127), confidence ProtocolExtensionContainer { { GA-PointWithUnCertaintyEllipse- ExtIEs } OPTIONAL, {\tt GA-PointWithUnCertaintyEllipse-ExtIEs\ RNSAP-PROTOCOL-EXTENSION\ ::=\ \{} GA-UncertaintyEllipse ::= SEQUENCE { uncertaintySemi-major INTEGER (0..127), uncertaintySemi-minor INTEGER (0..127), orientationOfMajorAxis INTEGER (0..179), GA-PointWithUnCertainty ::=SEQUENCE { {\tt geographicalCoordinates} \qquad {\tt GeographicalCoordinate}, uncertaintyCode INTEGER (0..127), iE-Extensions ProtocolExtensionContainer { {GA-PointWithUnCertainty-ExtIEs} } OPTIONAL, GA-PointWithUnCertainty-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-AccessPointPosition ::= SEQUENCE { geographicalCoordinate GeographicalCoordinate, ProtocolExtensionContainer { {GA-AccessPoint-ExtIEs} } OPTIONAL, iE-Extensions GA-AccessPoint-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GeographicalCoordinate ::= SEQUENCE { latitudeSign ENUMERATED { nort latitude INTEGER (0..8388607), ENUMERATED { north, south }, latitude INTEGER (0..8388607), longitude INTEGER (-8388608..8388607), iE-Extensions ProtocolExtensionContain ProtocolExtensionContainer { {GeographicalCoordinate-ExtIEs} } OPTIONAL, } GeographicalCoordinate-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GPS-Almanac ::= SEQUENCE { BIT STRING (SIZE (8)), wn,-alm satellite-Almanac-Information SEQUENCE (SIZE (1..maxNoSat)) OF ``` ``` SEQUENCE { data-id DATA-ID, sAT-ID SAT-ID, sAT-ID SAT-ID, gps-e-alm BIT STRING (SIZE (16)), gps-toa-alm BIT STRING (SIZE (8)), gps-delta-I-alm BIT STRING (SIZE (16)), omegadot-alm BIT STRING (SIZE (16)), svhealth-alm BIT STRING (SIZE (8)), gps-a-sqrt-alm BIT STRING (SIZE (24)), omegazero-alm BIT STRING (SIZE (24)), gps-omega-alm BIT STRING (SIZE (24)), gps-omega-alm BIT STRING (SIZE (24)), gps-omega-aim BIT STRING (SIZE (24)), gps-af-zero-alm BIT STRING (SIZE (11)), gps-af-one-alm BIT STRING (SIZE (11)), iE-Extensions ProtocolExtensionContainer { Satellite-Almanac-Information-OPTIONAL ExtIEs} } OPTIONAL, sVGlobalHealth-alm BIT STRING (SIZE (364)) OPTIONAL, iE-Extensions ProtocolExtensionContainer { { GPS-Almanac-ExtIEs} } } Satellite-Almanac-Information-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GPS-Almanac-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GPSInformation ::= SEQUENCE (SIZE (1..maxNoGPSTypes)) OF SEQUENCE { ENUMERATED { gPSInformationItem gPS-NavigationModel-and-TimeRecovery, gPS-Ionospheric-Model, gPS-UTC-Model, gPS-Almanac, gPS-RealTime-Integrity, iE-Extensions ProtocolExtensionContainer { { GPSInformation-ExtIEs} } OPTIONAL. -- This IE shall be present if the Information Type IE indicates 'GPS Information' {\tt GPSInformation-ExtIEs} \ {\tt RNSAP-PROTOCOL-EXTENSION} \ ::= \ \{ GPS-Ionospheric-Model ::= SEQUENCE { alpha-zero-ionos alpha-one-ionos BIT STRING (SIZE (8)), alpha-two-ionos BIT STRING (SIZE (8)), alpha-three-ionos BIT STRING (SIZE (8)), beta-zero-ionos BIT STRING (SIZE (8)), beta-one-ionos BIT STRING (SIZE (8)), beta-two-ionos BIT STRING (SIZE (8)), beta-three-ionos beta-two-ionos OPTIONAL, } GPS-Ionospheric-Model-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GPS-NavigationModel-and-TimeRecovery ::= SEQUENCE (SIZE (1..maxNoSat)) OF SEQUENCE { INTEGER (0..1048575), tx-tow-nav sAT-ID SAT-ID. BIT STRING (SIZE (14)), tlm-message-nav tlm-revd-c-nav BIT STRING (SIZE (2)), BIT STRING (SIZE (22)), ho-word-nav BIT STRING (SIZE (10)), w-n-nav ca-or-p-on-12-nav BIT STRING (SIZE (2)), user-range-accuracy-index-nav BIT STRING (SIZE (4)), ``` ``` sv-health-nav BIT STRING (SIZE (6)), BIT STRING (SIZE (10)), BIT STRING (SIZE (1)), BIT STRING (SIZE (87)), 12-p-dataflag-nav sfl-reserved-nav t-gd-nav iodc-nav t-gd-nav BIT STRING (SIZE (8)), BIT STRING (SIZE (16)), BIT STRING (SIZE (8)), a-f-2-nav BIT STRING (SIZE (6)), BIT STRING (SIZE (16)), BIT STRING (SIZE (22)), BIT STRING (SIZE (16)), BIT STRING (SIZE (16)), BIT STRING (SIZE (32)), a-f-1-nav a-f-zero-nav c-rs-nav delta-n-nav m-zero-nav BIT STRING (SIZE (16)), BIT STRING (SIZE (32)), c-uc-nav gps-e-nav BIT STRING (SIZE (16)), c-us-nav a-sqrt-nav BIT STRING (SIZE (32)), BIT STRING (SIZE (16)), t-oe-nav fit-interval-flag-nav BIT STRING (SIZE (1)), BIT STRING (SIZE (5)), aodo-nav BIT STRING (SIZE (16)), c-ic-nav omega-zero-nav BIT STRING (SIZE (32)), BIT STRING (SIZE (16)), c-is-nav i-zero-nav BIT STRING (SIZE (32)), c-rc-nav BIT STRING (SIZE (16)), c-rc-nav BIT STRING (SIZE (16)), gps-omega-nav BIT STRING (SIZE (32)), omegadot-nav BIT STRING (SIZE (24)), idot-nav BIT STRING (SIZE (24)), spare-zero-fill BIT STRING (SIZE (14)), iE-Extensions ProtocolExtensionContain TimeRecoveryItem-ExtIEs} } OPTIONAL, ProtocolExtensionContainer { { GPS-NavigationModel-and- GPS-NavigationModel-and-TimeRecoveryItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GPS-RealTime-Integrity ::= CHOICE { badSatellites BadSatellites, noBadSatellite NULL } GPS-RX-POS ::= SEOUENCE { geographicalCoordinate GeographicalCoordinate, altitudeAndDirection GA-AltitudeAndDirection iE-ExtensionS ProtocolExtensionContai GA-AltitudeAndDirection, iE-Extensions ProtocolExtensionContainer { GPS-RX-POS-ExtIEs} } OPTIONAL, } GPS-RX-POS-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GPS-Status-Health ::= ENUMERATED { udre-1-0, udre-0-75, udre-0-5, udre-0-3, udre-0-1, no-data, invalid-data GPSTOW ::= INTEGER (0..604799) GPS-UTC-Model ::= SEQUENCE { BIT STRING (SIZE (24)), a-one-utc a-zero-utc BIT STRING (SIZE (32)), BIT STRING (SIZE (8)), t-ot-utc BIT STRING (SIZE (8)), delta-t-ls-utc w-n-t-utc w-n-lsf-utc BIT STRING (SIZE (8)), BIT STRING (SIZE (8)), BIT STRING (SIZE (8)), dn-ut.c dn-utc
delta-t-lsf-utc BIT STRING (SIZE (8)), iE-Extensions ProtocolExtensionContainer { { GPS-UTC-Model-ExtlEs} } OPTIONAL, } GPS-UTC-Model-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { ``` ``` } \label{thm:condition} \mbox{Guaranteed-Rate-Information} \ ::= \ \mbox{SEQUENCE} \ \{ \mbox{} guaranteed-UL-Rate Guaranteed-Rate OPTIONAL, guaranteed-DL-Rate Guaranteed-Rate OPTIONAL, iE-Extensions ProtocolExtensionContainer { {Guaranteed-Rate-Information-ExtIEs} } OPTIONAL, } {\tt Guaranteed-Rate-Information-ExtIEs} \ {\tt RNSAP-PROTOCOL-EXTENSION} \ ::= \ \{ Guaranteed-Rate ::= INTEGER (1..maxNrOfTFs) -- "1": TFI 0, "2": TFI 1, "3": TFI 2, ... GSMCellIndividualOffset ::= INTEGER (-50..50) UNCHANGED TEXT IS REMOVED NCC ::= BIT STRING (SIZE (3)) Neighbouring-UMTS-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfNeighbouringRNCs)) OF ProtocolIE- Single-Container {{ Neighbouring-UMTS-CellInformationItemIE }} Neighbouring-UMTS-CellInformationItemIE RNSAP-PROTOCOL-IES ::= { UMTS-CellInformationItem PRESENCE mandatory } } Neighbouring-UMTS-CellInformationItem ::= SEQUENCE { rNC-ID RNC-ID, CN-PS-DomainIdentifier OPTIONAL, CN-CS-DomainIdentifier OPTIONAL, cN-PS-DomainIdentifier cN-CS-DomainIdentifier neighbouring-FDD-CellInformation Neighbouring-FDD-CellInformation OPTIONAL, neighbouring-TDD-CellInformation OPTIONAL. neighbouring-TDD-CellInformation Neighbouring-TDD-CellInformation OPTIONAL, ProtocolExtensionContainer { {Neighbouring-UMTS- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-UMTS-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { { ID id-neighbouring-LCR-TDD-CellInformation CRITICALITY ignore EXTENSION PRESENCE optional }, Neighbouring-LCR-TDD-CellInformation Neighbouring-FDD-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfFDDNeighboursPerRNC,...)) OF {\tt Neighbouring-FDD-CellInformationItem} Neighbouring-FDD-CellInformationItem ::= SEQUENCE { c-ID C-ID, uARFCNforNu UARFCN, uARFCNforNd UARFCN, FrameOffset frameOffset primaryScramblingCode PrimaryScramblingCode, primaryCPICH-Power PrimaryCPICH-Power OPTIONAL. cellIndividualOffset CellIndividualOffset OPTIONAL, {\tt txDiversityIndicator} TxDiversityIndicator, sTTD-SupportIndicator STTD-SupportIndicator OPTIONAL, closedLoopModel-SupportIndicator ClosedLoopModel-SupportIndicator OPTIONAL, closedLoopMode2-SupportIndicator ClosedLoopMode2-SupportIndicator OPTIONAL, ProtocolExtensionContainer { { Neighbouring-FDD- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, Neighbouring-FDD-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { CRITICALITY ignore { ID id-RestrictionStateIndicator EXTENSION RestrictionStateIndicator PRESENCE optional } | Change-SupportIndicator PRESENCE optional }, . . . } ``` ``` NeighbouringFDDCellMeasurementInformation ::= SEQUENCE { uARFCN UARFCN, primaryScramblingCode PrimaryScramblingCode, iE-Extensions ProtocolExtensionContainer { { NeighbouringFDDCellMeasurementInformationItem-ExtIEs} } OPTIONAL, NeighbouringFDDCellMeasurementInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { Neighbouring-GSM-CellInformation ::= ProtocolIE-Single-Container {{ Neighbouring-GSM- CellInformationIE }} \label{eq:neighbouring-GSM-CellInformationIE RNSAP-PROTOCOL-IES ::= \{ \\ CellInformationIEs PRESENCE mandatory } Neighbouring-GSM-CellInformationIEs ::= SEQUENCE (SIZE (1..maxNrOfGSMNeighboursPerRNC,...)) OF Neighbouring-GSM-CellInformationItem Neighbouring-GSM-CellInformationItem ::= SEQUENCE { CGI, cellIndividualOffset CellIndividualOffset OPTIONAL, bSIC BSIC, band-Indicator Band-Indicator. bcch-arfcn BCCH-ARFCN, iE\text{-}Extensions ProtocolExtensionContainer { { Neighbouring-GSM- CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-GSM-CellInformationItem-ExtlEs RNSAP-PROTOCOL-EXTENSION ::= { { ID id-GSMCellIndividualOffset CRITICALITY ignore EXTENSION GSMCellIndividualOffset PRESENCE optional }, Neighbouring-TDD-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfTDDNeighboursPerRNC,...)) OF {\tt Neighbouring-TDD-CellInformationItem} Neighbouring-TDD-CellInformationItem ::= SEQUENCE { c-ID C-TD. uARFCNforNt UARFCN, OPTIONAL, frameOffset FrameOffset cellParameterID CellParameterID, SyncCase, syncCase OPTIONAL timeSlot -- This IE shall be present if Sync Case = Casel -- , TimeSlot SCH-TimeSlot OPTIONAL sCH-TimeSlot -- This IE shall be present if Sync Case = Case2 -- , sCTD-Indicator SCTD-Indicator, CellIndividualOffset OPTIONAL, cellIndividualOffset dPCHConstantValue DPCHConstantValue OPTIONAL, pCCPCH-Power PCCPCH-Power OPTIONAL, ProtocolExtensionContainer { { Neighbouring-TDD- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, Neighbouring-TDD-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { EXTENSION RestrictionStateIndicator PRESENCE optional . . . } NeighbouringTDDCellMeasurementInformation ::= SEQUENCE { uARFCN UARFCN, cellParameterID CellParameterID, timeSlot TimeSlot OPTIONAL, midambleShiftAndBurstType MidambleShiftAndBurstType OPTIONAL, iE-Extensions ProtocolExtensionContainer { { NeighbouringTDDCellMeasurementInformationItem-ExtIEs} } OPTIONAL, } ``` ``` NeighbouringTDDCellMeasurementInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } Neighbouring-LCR-TDD-CellInformation ::= SEQUENCE (SIZE (1.. maxNrOfLCRTDDNeighboursPerRNC,...)) OF Neighbouring-LCR-TDD-CellInformationItem Neighbouring-LCR-TDD-CellInformationItem ::= SEQUENCE { C-ID, uARFCNforNt UARFCN, FrameOffset frameOffset OPTIONAL, cellParameterID CellParameterID, SCTD-Indicator, sCTD-Indicator CellIndividualOffset OPTIONAL, cellIndividualOffset dPCHConstantValue DPCHConstantValue OPTIONAL, pCCPCH-Power PCCPCH-Power OPTIOnationStateIndicator iE-Extensions ProtocolExtensions OPTIONAL, OPTIONAL, ProtocolExtensionContainer { { Neighbouring-LCR-TDD- CellInformationItem-ExtIEs} } OPTIONAL, Neighbouring-LCR-TDD-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } NrOfDLchannelisationcodes ::= INTEGER (1..8) NrOfTransportBlocks ::= INTEGER (0..512) ``` ### UNCHANGED TEXT IS REMOVED # 9.3.6 Constant Definitions ``` -- Constant definitions __ ******************************** RNSAP-Constants { itu-t (0) identified-organization (4) etsi (0) mobileDomain (0) umts-Access (20) modules (3) rnsap (1) version1 (1) rnsap-Constants (4) } DEFINITIONS AUTOMATIC TAGS ::= BEGIN IMPORTS ProcedureCode, ProtocolIE-ID FROM RNSAP-CommonDataTypes; __ ********************* -- Elementary Procedures __ ******************* id-commonTransportChannelResourcesInitialisation ProcedureCode ::= 0 ProcedureCode ::= 1 \verb|id-commonTransportChannelResourcesRelease|\\ \verb|id-compressed| Mode Command| ProcedureCode ::= 2 id-downlinkPowerControl ProcedureCode ::= 3 id-downlinkPowerTimeslotControl ProcedureCode ::= 4 \verb"id-downlinkSignallingTransfer" ProcedureCode ::= 5 id-errorIndication ProcedureCode ::= 6 id-dedicatedMeasurementFailure ProcedureCode ::= 7 \verb|id-dedicatedMeasurementInitiation|\\ ProcedureCode ::= 8 ProcedureCode ::= 9 id-dedicatedMeasurementReporting \verb|id-dedicatedMeasurementTermination|\\ ProcedureCode ::= 10 id-paging ProcedureCode ::= 11 \verb|id-physicalChannelReconfiguration|\\ ProcedureCode ::= 12 id-privateMessage ProcedureCode ::= 13 id-radioLinkAddition ProcedureCode ::= 14 id-radioLinkCongestion ProcedureCode ::= 34 id-radioLinkDeletion ProcedureCode ::= 15 ``` ``` id-radioLinkFailure ProcedureCode ::= 16 id-radioLinkPreemption ProcedureCode ::= 17 id-radioLinkRestoration ProcedureCode ::= 18 ProcedureCode ::= 19 id-radioLinkSetup id-relocationCommit ProcedureCode ::= 20 \verb|id-synchronisedRadioLinkReconfigurationCancellation|\\ ProcedureCode ::= 21 id-synchronisedRadioLinkReconfigurationCommit ProcedureCode ::= 22 id-synchronisedRadioLinkReconfigurationPreparation ProcedureCode ::= 23 ProcedureCode ::= 24 id-unSynchronisedRadioLinkReconfiguration id-uplinkSignallingTransfer ProcedureCode ::= 25 id-commonMeasurementFailure ProcedureCode ::= 26 ProcedureCode ::= 27 id-commonMeasurementInitiation id-commonMeasurementReporting ProcedureCode ::= 28 id-commonMeasurementTermination ProcedureCode ::= 29 id-informationExchangeFailure ProcedureCode ::= 30 id-informationExchangeInitiation ProcedureCode ::= 31 ProcedureCode ::= 32 {\tt id-information} \\ {\tt Reporting} \verb|id-informationExchangeTermination|\\ ProcedureCode ::= 33 __ ********************** -- Lists __ ********************************** INTEGER ::= 255 maxCodeNumComp-1 INTEGER ::= 256 maxRateMatching maxNoCodeGroups INTEGER ::= 256 maxNoOfDSCHs INTEGER ::= 10 {\tt maxNoOfDSCHsLCR} INTEGER ::= 10 INTEGER ::= 32 maxNoOfRB maxNoOfUSCHs INTEGER ::= 10 INTEGER ::= 10 maxNoOfUSCHsLCR INTEGER ::= 256 maxNoTFCIGroups INTEGER ::= 1024 maxNrOfTFCs INTEGER ::= 32 maxNrOfTFs maxNrOfCCTrCHs INTEGER ::= 16 maxNrOfCCTrCHsLCR INTEGER ::= 16 INTEGER ::= 128 maxNrOfDCHs INTEGER ::= 8 maxNrOfDL-Codes maxNrOfDPCHs INTEGER ::= 240 maxNrOfDPCHsLCR INTEGER ::= 240 INTEGER ::= 256 maxNrOfErrors maxNrOfMACcshSDU-Length INTEGER ::= 16 maxNrOfPoints INTEGER ::= 15 maxNrOfRLs INTEGER ::= 16 maxNrOfRLSets INTEGER ::= maxNrOfRLs INTEGER ::= 15 -- maxNrOfRLs - 1 maxNrOfRLs-1 maxNrOfRLs-2 INTEGER ::= 14 -- maxNrOfRLs - 2 maxNrOfULTs INTEGER ::= 15 INTEGER ::= 6 maxNrOfULTsLCR INTEGER ::= 15 maxNrOfDLTs maxNrOfDLTsLCR INTEGER ::= 6 maxRNCinURA-1 INTEGER ::= 15 INTEGER ::= 4 maxTTI-Count INTEGER ::= 16777215 maxCTFC INTEGER ::= 10 maxNrOfNeighbouringRNCs maxNrOfFDDNeighboursPerRNC INTEGER ::= 256 {\tt maxNrOfGSMNeighboursPerRNC} INTEGER ::= 256 maxNrOfTDDNeighboursPerRNC INTEGER ::= 256 INTEGER ::= 8 maxNrOfFACHs maxNrOfLCRTDDNeighboursPerRNC INTEGER ::= 256 maxFACHCountPlus1 INTEGER ::= 10 maxIBSEG INTEGER ::= 16 maxNrOfSCCPCHs INTEGER ::= 8 INTEGER ::= 512 maxTFCI1Combs maxTFCI2Combs INTEGER ::= 1024 maxTFCI2Combs-1 INTEGER ::= 1023 INTEGER ::= 6 maxTGPS maxNrOfTS INTEGER ::= 15 maxNrOfLevels INTEGER ::= 256 maxNoOfDSCHs-1 INTEGER ::= 9 maxNrOfTsLCR INTEGER ::= 6 INTEGER ::= 16 maxNoSat. maxNoGPSTypes INTEGER ::= 8 INTEGER ::= 96 maxNrOfMeasNCell maxNrOfMeasNCell-1 INTEGER ::= 95 -- maxNrOfMeasNCell - 1 ``` __
*********************************** -- IEs __ ********************* ProtocolIE-ID ::= 4 id-AllowedOueuingTime id-Allowed-Rate-Information ProtocolIE-ID ::= 42 ProtocolIE-ID ::= 5 id-BindingID id-C-ID ProtocolIE-ID ::= 6 id-C-RNTI ProtocolIE-ID ::= 7 id-CFN ProtocolIE-ID ::= 8 id-CN-CS-DomainIdentifier ProtocolIE-ID ::= 9 id-CN-PS-DomainIdentifier ProtocolTE-TD ::= 10 id-Cause ProtocolTE-TD ::= 11 id-CriticalityDiagnostics ProtocolIE-ID ::= 20 id-D-RNTI ProtocolIE-ID ::= 21 id-D-RNTI-ReleaseIndication ProtocolIE-ID ::= 22 id-DCHs-to-Add-FDD ProtocolIE-ID ::= 26 id-DCHs-to-Add-TDD ProtocolIE-ID ::= 27 ProtocolIE-ID ::= 30 id-DCH-DeleteList-RL-ReconfPrepFDD id-DCH-DeleteList-RL-ReconfPrepTDD ProtocolIE-ID ::= 31 ProtocolIE-ID ::= 32 id-DCH-DeleteList-RL-ReconfRqstFDD id-DCH-DeleteList-RL-ReconfRqstTDD ProtocolIE-ID ::= 33 ProtocolIE-ID ::= 34 id-DCH-FDD-Information id-DCH-TDD-Information ProtocolIE-ID ::= 35 ProtocolTE-TD ::= 39 id-FDD-DCHs-to-Modify ProtocolIE-ID ::= 40 id-TDD-DCHs-to-Modify ProtocolIE-ID ::= 43 id-DCH-InformationResponse id-DCH-Rate-InformationItem-RL-CongestInd ProtocolIE-ID ::= 38 $\verb|id-DL-CCTrCH-InformationAddItem-RL-ReconfPrepTDD|\\$ ProtocolIE-ID ::= 44 ProtocolIE-ID ::= 45 $\verb|id-DL-CCTrCH-InformationListIE-RL-ReconfReadyTDD|\\$ id-DL-CCTrCH-InformationDeleteItem-RL-ReconfRqstTDD ProtocolIE-ID ::= 46 id-DL-CCTrCH-InformationItem-RL-SetupRqstTDD ProtocolIE-ID ::= 47 id-DL-CCTrCH-InformationListIE-PhyChReconfRqstTDD ProtocolIE-ID ::= 48 ProtocolIE-ID ::= 49 id-DL-CCTrCH-InformationListIE-RL-AdditionRspTDD id-DL-CCTrCH-InformationListIE-RL-SetupRspTDD ProtocolIE-ID ::= 50 $\verb|id-DL-CCTrCH-InformationAddList-RL-ReconfPrepTDD|\\$ ProtocolIE-ID ::= 51 id-DL-CCTrCH-InformationDeleteList-RL-ReconfRqstTDD ProtocolIE-ID ::= 52 ProtocolIE-ID ::= 53 $\verb|id-DL-CCTrCH-InformationList-RL-SetupRqstTDD|\\$ $\verb|id-FDD-DL-CodeInformation||\\$ ProtocolIE-ID ::= 54 id-DL-DPCH-Information-RL-ReconfPrepFDD ProtocolIE-ID ::= 59 id-DL-DPCH-Information-RL-SetupRqstFDD ProtocolIE-ID ::= 60 ProtocolIE-ID ::= 61 id-DL-DPCH-Information-RL-ReconfRgstFDD $\verb"id-DL-DPCH-InformationItem-PhyChReconfRqstTDD"$ ProtocolIE-ID ::= 62 $\verb|id-DL-DPCH-InformationItem-RL-AdditionRspTDD|\\$ ProtocolIE-ID ::= 63 id-DL-DPCH-InformationItem-RL-SetupRspTDD ProtocolIE-ID ::= 64 ProtocolIE-ID ::= 67 id-DLReferencePower ProtocolTE-TD ::= 68 id-DLReferencePowerList-DL-PC-Rast id-DL-ReferencePowerInformation-DL-PC-Rqst ProtocolIE-ID ::= 69 ProtocolIE-ID ::= 12 id-DPC-Mode id-DRXCycleLengthCoefficient ProtocolIE-ID ::= 70 ProtocolIE-ID ::= 71 id-DedicatedMeasurementObjectType-DM-Rprt ProtocolIE-ID ::= 72 $\verb|id-Dedicated MeasurementObjectType-DM-Rqst|\\$ id-DedicatedMeasurementObjectType-DM-Rsp ProtocolIE-ID ::= 73 id-DedicatedMeasurementType ProtocolIE-ID ::= 74 id-FACH-InfoForUESelectedS-CCPCH-CTCH-ResourceRspFDD ProtocolIE-ID ::= 82 id-FACH-InfoForUESelectedS-CCPCH-CTCH-ResourceRspTDD ProtocolIE-ID ::= 83 id-Guaranteed-Rate-Information ProtocolIE-ID ::= 41 ProtocolIE-ID ::= 84 id-IMSI id-L3-Information ProtocolIE-ID ::= 85 ProtocolIE-ID ::= 90 id-AdjustmentPeriod id-MaxAdjustmentStep ProtocolIE-ID ::= 91 id-MeasurementFilterCoefficient ProtocolIE-ID ::= 92 id-MessageStructure ProtocolIE-ID ::= 57 ProtocolIE-ID ::= 93 id-Measurement.ID $\verb|id-Neighbouring-GSM-CellInformation|\\$ ProtocolIE-ID ::= 13 id-Neighbouring-UMTS-CellInformationItem ProtocolIE-ID ::= 95 id-PagingArea-PagingRqst ProtocolIE-ID ::= 102 ProtocolIE-ID ::= 103 id-FACH-FlowControlInformation id-Permanent-NAS-UE-Identity ProtocolTE-TD ::= 17id-PowerAdjustmentType ProtocolIE-ID ::= 107 id-RANAP-RelocationInformation ProtocolIE-ID ::= 109 id-RL-Information-PhyChReconfRqstFDD ProtocolIE-ID ::= 110 ProtocolIE-ID ::= 111 $\verb|id-RL-Information-PhyChReconfRqstTDD|\\$ $\verb"id-RL-Information-RL-AdditionRqstFDD"$ ProtocolIE-ID ::= 112 id-RL-Information-RL-AdditionRqstTDD ProtocolIE-ID ::= 113 id-RL-Information-RL-DeletionRqst ProtocolIE-ID ::= 114 id-RL-Information-RL-FailureInd ProtocolTE-ID ::= 115 ProtocolIE-ID ::= 116 id-RL-Information-RL-ReconfPrepFDD # CR page 29 | id-RL-Information-RL-RestoreInd | ProtocolIE-ID ::= 117 | |---|-------------------------| | id-RL-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 118 | | id-RL-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 119 | | id-RL-InformationItem-RL-CongestInd | ProtocolIE-ID ::= 55 | | id-RL-InformationItem-DM-Rprt | ProtocolIE-ID ::= 120 | | | | | id-RL-InformationItem-DM-Rqst | ProtocolIE-ID ::= 121 | | id-RL-InformationItem-DM-Rsp | ProtocolIE-ID ::= 122 | | id-RL-InformationItem-RL-PreemptRequiredInd | ProtocolIE-ID ::= 2 | | id-RL-InformationItem-RL-SetupRqstFDD | ProtocolIE-ID ::= 123 | | id-RL-InformationList-RL-CongestInd | ProtocolIE-ID ::= 56 | | id-RL-InformationList-RL-AdditionRqstFDD | ProtocolIE-ID ::= 124 | | | ProtocolIE-ID ::= 125 | | id-RL-InformationList-RL-DeletionRqst | | | id-RL-InformationList-RL-PreemptRequiredInd | ProtocolIE-ID ::= 1 | | id-RL-InformationList-RL-ReconfPrepFDD | ProtocolIE-ID ::= 126 | | id-RL-InformationResponse-RL-AdditionRspTDD | ProtocolIE-ID ::= 127 | | id-RL-InformationResponse-RL-ReconfReadyTDD | ProtocolIE-ID ::= 128 | | id-RL-InformationResponse-RL-SetupRspTDD | ProtocolIE-ID ::= 129 | | id-RL-InformationResponseItem-RL-AdditionRspFDD | ProtocolIE-ID ::= 130 | | | | | id-RL-InformationResponseItem-RL-ReconfReadyFDD | ProtocolIE-ID ::= 131 | | id-RL-InformationResponseItem-RL-ReconfRspFDD | ProtocolIE-ID ::= 132 | | id-RL-InformationResponseItem-RL-SetupRspFDD | ProtocolIE-ID ::= 133 | | id-RL-InformationResponseList-RL-AdditionRspFDD | ProtocolIE-ID ::= 134 | | id-RL-InformationResponseList-RL-ReconfReadyFDD | ProtocolIE-ID ::= 135 | | | | | id-RL-InformationResponseList-RL-ReconfRspFDD | ProtocolIE-ID ::= 136 | | id-RL-InformationResponse-RL-ReconfRspTDD | ProtocolIE-ID ::= 28 | | id-RL-InformationResponseList-RL-SetupRspFDD | ProtocolIE-ID ::= 137 | | id-RL-ReconfigurationFailure-RL-ReconfFail | ProtocolIE-ID ::= 141 | | id-RL-Set-InformationItem-DM-Rprt | ProtocolIE-ID ::= 143 | | - | | | id-RL-Set-InformationItem-DM-Rqst | ProtocolIE-ID ::= 144 | | id-RL-Set-InformationItem-DM-Rsp | ProtocolIE-ID ::= 145 | | id-RL-Set-Information-RL-FailureInd | ProtocolIE-ID ::= 146 | | id-RL-Set-Information-RL-RestoreInd | ProtocolIE-ID ::= 147 | | id-ReportCharacteristics | ProtocolIE-ID ::= 152 | | - | | | id-Reporting-Object-RL-FailureInd | ProtocolIE-ID ::= 153 | | id-Reporing-Object-RL-RestoreInd | ProtocolIE-ID ::= 154 | | id-S-RNTI | ProtocolIE-ID ::= 155 | | id-SAI | ProtocolIE-ID ::= 156 | | id-SRNC-ID | ProtocolIE-ID ::= 157 | | | | | id-SuccessfulRL-InformationResponse-RL-AdditionFailureFDD | ProtocolIE-ID ::= 159 | | id-SuccessfulRL-InformationResponse-RL-SetupFailureFDD | ProtocolIE-ID ::= 160 | | id-TransportBearerID | ProtocolIE-ID ::= 163 | | id-TransportBearerRequestIndicator | ProtocolIE-ID ::= 164 | | id-TransportLayerAddress | ProtocolIE-ID ::= 165 | | id-TypeOfError | ProtocolIE-ID ::= 140 | | | | | id-UC-ID | ProtocolIE-ID ::= 166 | | id-UL-CCTrCH-AddInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 167 | | id-UL-CCTrCH-InformationAddList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 169 | | id-UL-CCTrCH-InformationItem-RL-SetupRqstTDD | ProtocolIE-ID ::= 171 | | id-UL-CCTrCH-InformationList-RL-SetupRqstTDD | ProtocolIE-ID ::= 172 | | id-UL-CCTrCH-InformationListIE-PhyChReconfRqstTDD | ProtocolIE-ID ::= 173 | | | | | id-UL-CCTrCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 174 | | id-UL-CCTrCH-InformationListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 175 | | id-UL-CCTrCH-InformationListIE-RL-SetupRspTDD | ProtocolIE-ID ::= 176 | | id-UL-DPCH-Information-RL-ReconfPrepFDD | ProtocolIE-ID ::= 177 | | id-UL-DPCH-Information-RL-ReconfRqstFDD | ProtocolIE-ID ::= 178 | | id-UL-DPCH-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 179 | | | | | id-UL-DPCH-InformationItem-PhyChReconfRqstTDD | ProtocolIE-ID ::= 180 | | id-UL-DPCH-InformationItem-RL-AdditionRspTDD | ProtocolIE-ID ::= 181 | | id-UL-DPCH-InformationItem-RL-SetupRspTDD | ProtocolIE-ID ::= 182 | | id-UL-DPCH-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 183 | | id-UL-SIRTarget | ProtocolIE-ID ::= 184 | | | | | id-URA-Information | ProtocolIE-ID ::= 185 | | id-UnsuccessfulRL-InformationResponse-RL-AdditionFailureFDD | ProtocolIE-ID ::= 188 | | id-UnsuccessfulRL-InformationResponse-RL-SetupFailureFDD | ProtocolIE-ID ::= 189 | | id-UnsuccessfulRL-InformationResponse-RL-SetupFailureTDD | ProtocolIE-ID ::= 190 | | id-Active-Pattern-Sequence-Information | ProtocolIE-ID ::= 193 | | id-AdjustmentRatio | ProtocolIE-ID ::= 194 | | · · | | | id-CauseLevel-RL-AdditionFailureFDD | ProtocolIE-ID ::= 197 | | id-CauseLevel-RL-AdditionFailureTDD | ProtocolIE-ID ::= 198 | | id-CauseLevel-RL-ReconfFailure | ProtocolIE-ID ::= 199 | | id-CauseLevel-RL-SetupFailureFDD | ProtocolIE-ID ::= 200 | | id-CauseLevel-RL-SetupFailureTDD | ProtocolIE-ID ::= 201 | | | | | id-DL-CCTrCH-InformationDeleteItem-RL-ReconfPrepTDD | ProtocolIE-ID ::= 205 | | id-DL-CCTrCH-InformationModifyItem-RL-ReconfPrepTDD | ProtocolIE-ID ::= 206 | | id-DL-CCTrCH-InformationModifyItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 207 | | id-DL-CCTrCH-InformationDeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 208 | | id-DL-CCTrCH-InformationModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 209 | | id-DL-CCTrCH-InformationModifyList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 210 | | TO-DD-CCIICE-IIIIOIMACIONMOUILYLISU-KD-KECONIKQSTTDD | e.o.oco.lb.=10 ii= / () | | 11 pr ppgy r 6 | | | id-DL-DPCH-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 212 | | (2002 12) | on page or | |--|--| | id-DL-DPCH-InformationDeleteListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 213 |
| id-DL-DPCH-InformationModifyListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 214 | | id-DSCHs-to-Add-TDD | ProtocolIE-ID ::= 215 | | id-DSCHs-to-Add-FDD
id-DSCH-DeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 216 ProtocolIE-ID ::= 217 | | id-DSCH-Delete-RL-ReconfPrepFDD | ProtocoliE-ID ::= 218 | | id-DSCH-FDD-Information | ProtocolIE-ID ::= 219 | | id-DSCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 220 | | id-DSCH-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 221 | | id-DSCH-TDD-Information | ProtocolIE-ID ::= 222 | | id-DSCH-FDD-InformationResponse | ProtocolIE-ID ::= 223 | | <pre>id-DSCH-Information-RL-SetupRqstFDD id-DSCH-ModifyList-RL-ReconfPrepTDD</pre> | ProtocolIE-ID ::= 226 ProtocolIE-ID ::= 227 | | id-DSCH-Modify-RL-ReconfPrepFDD | ProtocolIE-ID ::= 228 | | id-DSCH-Specific-FDD-Additional-List | ProtocolIE-ID ::= 324 | | id-DSCHsToBeAddedOrModified-FDD | ProtocolIE-ID ::= 229 | | id-DSCHToBeAddedOrModifiedList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 230 | | id-EnhancedDSCHPC | ProtocolIE-ID ::= 29 | | id-EnhancedDSCHPCIndicator
id-GA-Cell | ProtocolIE-ID ::= 225 ProtocolIE-ID ::= 232 | | id-GA-CellAdditionalShapes | ProtocoliE-ID ::= 232 ProtocoliE-ID ::= 3 | | id-SSDT-CellIDforEDSCHPC | ProtocolIE-ID ::= 246 | | id-Transmission-Gap-Pattern-Sequence-Information | ProtocolIE-ID ::= 255 | | id-UL-CCTrCH-DeleteInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 256 | | id-UL-CCTrCH-ModifyInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 257 | | id-UL-CCTrCH-InformationModifyItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 258 | | <pre>id-UL-CCTrCH-InformationDeleteList-RL-ReconfPrepTDD id-UL-CCTrCH-InformationModifyList-RL-ReconfPrepTDD</pre> | ProtocolIE-ID ::= 259 ProtocolIE-ID ::= 260 | | id-UL-CCTrCH-InformationModifyList-RL-ReconfigstTDD | ProtocoliE-ID ::= 260 ProtocoliE-ID ::= 261 | | id-UL-CCTrCH-InformationDeleteItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 262 | | id-UL-CCTrCH-InformationDeleteList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 263 | | id-UL-DPCH-InformationDeleteListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 264 | | id-UL-DPCH-InformationModifyListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 265 | | id-UnsuccessfulRL-InformationResponse-RL-AdditionFailureTDD | ProtocolIE-ID ::= 266 | | <pre>id-USCHs-to-Add id-USCH-DeleteList-RL-ReconfPrepTDD</pre> | ProtocolIE-ID ::= 267 ProtocolIE-ID ::= 268 | | id-USCH-InformationListIE-RL-AdditionRspTDD | ProtocoliE-ID ::= 269 | | id-USCH-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 270 | | id-USCH-Information | ProtocolIE-ID ::= 271 | | id-USCH-ModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 272 | | id-USCHToBeAddedOrModifiedList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 273 | | id-DL-Physical-Channel-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 274 | | <pre>id-UL-Physical-Channel-Information-RL-SetupRqstTDD id-ClosedLoopModel-SupportIndicator</pre> | ProtocolIE-ID ::= 275 ProtocolIE-ID ::= 276 | | id-ClosedLoopMode2-SupportIndicator | ProtocolIE-ID ::= 277 | | id-STTD-SupportIndicator | ProtocolIE-ID ::= 279 | | id-CFNReportingIndicator | ProtocolIE-ID ::= 14 | | id-CNOriginatedPage-PagingRqst | ProtocolIE-ID ::= 23 | | id-InnerLoopDLPCStatus | ProtocolIE-ID ::= 24 | | id-PropagationDelay id-RxTimingDeviationForTA | ProtocolIE-ID ::= 25 ProtocolIE-ID ::= 36 | | id-timeSlot-ISCP | ProtocoliE-ID ::= 37 | | id-CCTrCH-InformationItem-RL-FailureInd | ProtocolIE-ID ::= 15 | | id-CCTrCH-InformationItem-RL-RestoreInd | ProtocolIE-ID ::= 16 | | id-CommonMeasurementAccuracy | ProtocolIE-ID ::= 280 | | id-CommonMeasurementObjectType-CM-Rprt | ProtocolIE-ID ::= 281 | | <pre>id-CommonMeasurementObjectType-CM-Rqst id-CommonMeasurementObjectType-CM-Rsp</pre> | ProtocolIE-ID ::= 282
ProtocolIE-ID ::= 283 | | id-CommonMeasurementType | ProtocoliE-ID ::= 284 | | id-CongestionCause | ProtocolIE-ID ::= 18 | | id-SFN | ProtocolIE-ID ::= 285 | | id-SFNReportingIndicator | ProtocolIE-ID ::= 286 | | id-InformationExchangeID | ProtocolIE-ID ::= 287 | | id-InformationExchangeObjectType-InfEx-Rprt | ProtocolIE-ID ::= 288 | | id-InformationExchangeObjectType-InfEx-Rqst
id-InformationExchangeObjectType-InfEx-Rsp | ProtocolIE-ID ::= 289 ProtocolIE-ID ::= 290 | | id-InformationReportCharacteristics | ProtocolIE-ID ::= 291 | | id-InformationType | ProtocolIE-ID ::= 292 | | id-neighbouring-LCR-TDD-CellInformation | ProtocolIE-ID ::= 58 | | id-DL-Timeslot-ISCP-LCR-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 65 | | id-RL-LCR-InformationResponse-RL-SetupRspTDD | ProtocolIE-ID ::= 66 | | id-UL-CCTrCH-LCR-InformationListIE-RL-SetupRspTDD | ProtocolIE-ID ::= 75 | | id-UL-DPCH-LCR-InformationItem-RL-SetupRspTDD | ProtocolIE-ID ::= 76 ProtocolIE-ID ::= 77 | | id-DL-CCTrCH-LCR-IntormationListIE-RL-SetupRspTDD | | | id-DL-CCTrCH-LCR-InformationListIE-RL-SetupRspTDD
id-DL-DPCH-LCR-InformationItem-RL-SetupRspTDD | ProtocoliE-ID ::= 78 | | <pre>id-DL-CCTrCH-LCR-InformationListIE-RL-SetupRspTDD id-DL-DPCH-LCR-InformationItem-RL-SetupRspTDD id-DSCH-LCR-InformationListIEs-RL-SetupRspTDD</pre> | | | <pre>id-DL-DPCH-LCR-InformationItem-RL-SetupRspTDD id-DSCH-LCR-InformationListIEs-RL-SetupRspTDD id-USCH-LCR-InformationListIEs-RL-SetupRspTDD</pre> | ProtocolIE-ID ::= 78 ProtocolIE-ID ::= 79 ProtocolIE-ID ::= 80 | | id-DL-DPCH-LCR-InformationItem-RL-SetupRspTDD
id-DSCH-LCR-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 78 ProtocolIE-ID ::= 79 | # 3GPP TS 25.423 v4.7.0 (2002-12) # CR page 31 | id-UL-CCTrCH-LCR-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 87 | |---|-----------------------| | id-UL-DPCH-LCR-InformationItem-RL-AdditionRspTDD | ProtocolIE-ID ::= 88 | | id-DL-CCTrCH-LCR-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 89 | | id-DL-DPCH-LCR-InformationItem-RL-AdditionRspTDD | ProtocolIE-ID ::= 94 | | id-DSCH-LCR-InformationListIEs-RL-AdditionRspTDD | ProtocolIE-ID ::= 96 | | id-USCH-LCR-InformationListIEs-RL-AdditionRspTDD | ProtocolIE-ID ::= 97 | | id-UL-DPCH-LCR-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 98 | | id-UL-Timeslot-LCR-InformationModifyList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 100 | | id-DL-DPCH-LCR-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 101 | | id-DL-Timeslot-LCR-InformationModifyList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 104 | | id-UL-Timeslot-LCR-InformationList-PhyChReconfRqstTDD | ProtocolIE-ID ::= 105 | | id-DL-Timeslot-LCR-InformationList-PhyChReconfRqstTDD | ProtocolIE-ID ::= 106 | | id-timeSlot-ISCP-LCR-List-DL-PC-Rqst-TDD | ProtocolIE-ID ::= 138 | | id-TSTD-Support-Indicator-RL-SetupRqstTDD | ProtocolIE-ID ::= 139 | | id-RestrictionStateIndicator | ProtocolIE-ID ::= 142 | | id-Load-Value | ProtocolIE-ID ::= 233 | | id-Load-Value-IncrDecrThres | ProtocolIE-ID ::= 234 | | id-OnModification | ProtocolIE-ID ::= 235 | | id-Received-Total-Wideband-Power-Value | ProtocolIE-ID ::= 236 | | id-Received-Total-Wideband-Power-Value-IncrDecrThres | ProtocolIE-ID ::= 237 | | ${\tt id-SFNSFNMeasurementThresholdInformation}$ | ProtocolIE-ID ::= 238 | | id-Transmitted-Carrier-Power-Value | ProtocolIE-ID ::= 239 | | id-Transmitted-Carrier-Power-Value-IncrDecrThres | ProtocolIE-ID ::= 240 | | ${\tt id-TUTRANGPSMeasurementThresholdInformation}$ | ProtocolIE-ID ::= 241 | | id-UL-Timeslot-ISCP-Value | ProtocolIE-ID ::= 242 | | id-UL-Timeslot-ISCP-Value-IncrDecrThres | ProtocolIE-ID ::= 243 | | id-Rx-Timing-Deviation-Value-LCR | ProtocolIE-ID ::= 293 | | id-DPC-Mode-Change-SupportIndicator | ProtocolIE-ID ::= 19 | | id-SplitType | ProtocolIE-ID ::= 247 | | id-LengthOfTFCI2 | ProtocolIE-ID ::= 295 | | id-PrimaryCCPCH-RSCP-RL-ReconfPrepTDD | ProtocolIE-ID ::= 202 | | id-DL-TimeSlot-ISCP-Info-RL-ReconfPrepTDD | ProtocolIE-ID ::= 203 | | id-DL-Timeslot-ISCP-LCR-Information-RL-ReconfPrepTDD | ProtocolIE-ID ::= 204 | | id-DSCH-RNTI | ProtocolIE-ID ::= 249 | | id-PDSCH-RL-ID | ProtocolIE-ID ::= 323 | | id-TimeSlot-RL-SetupRspTDD | ProtocolIE-ID ::= 325 | | id-UL-Synchronisation-Parameters-LCR | ProtocolIE-ID ::= 464 | | id-TDD-DL-DPCH-TimeSlotFormatModifyItem-LCR-RL-ReconfReadyTDD | ProtocolIE-ID ::= 481 | | id-TDD-UL-DPCH-TimeSlotFormatModifyItem-LCR-RL-ReconfReadyTDD | ProtocolIE-ID ::= 482 | | id-GSMCellIndividualOffset | ProtocolIE-ID ::= 514 | | | | END # <<< END OF THE CORRECTED SECTION>>> # 3GPP TSG-RAN3 Meeting #34 Sophia Antipolis, France, 17 – 21 February 2003 | | CHANGE RE | CR-Form-v7 | |-------------------------------|--|---| | * | <mark>25.423</mark> СR <mark>790</mark> ж ге | ev 2 [#] Current version: 5.4.0 [#] | | For <u>HELP</u> on usi | ng this form, see bottom of this page | ne or look at the pop-up text over the 業 symbols. | | Proposed change af | f ects: UICC apps第 <mark> ME</mark> | Radio Access Network X Core Network | | Title: 第 | Support of Cell Individual Offset in F | RNSAP | | Source: # | RAN WG3 | | | Work item code: 第 | TEI | Date: | | D | ## Juring radio link set up/addito the cell(s) where a radio linclude *Cell Individual Offset the RADIO LINK SETUP/A neighbouring cells. The value range used for Cell Inter RAT/GSM: -50 However, RNSAP supports of Fe (correction) ## Juring radio link set up/addito to the
cell(s) where a radio linclude *Cell Individual Offset the RADIO LINK SETUP/A neighbouring cells. | R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) gories can Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6) dition in a DRNS, if there are GSM neighbouring cells link is setup/added, the DRNC shall, if available, set IE in the Neighbouring GSM Cell Information IE in ADDITION RESPONSE message for each of the GSM ell Individual Offset in RRC is as follows: -10+10 dB -+50 dB s only a common Cell Individual Offset for Intra/Inter | | Summary of change: | Impact Analysis: Impact assessment towards the release): this CR has isolated in (same release) because only on This CR has an impact under the same release. | the protocol point of view. I as isolated as it affects only one function, namely | | Consequences if not approved: | RRC leading to undesirable be | re will exist inconsistencies between RNSAP and ehaviour in terms of Inter-RAT measurement event of CIO for GSM supported by RRC, and is required | by operators, cannot be used. | Clauses affected: | # 8.3.1.2, 8.3.2.2, 9.2.1.41c, New 9.2.1.x, 9.3.4 and 9.3.6 | | | | | |-------------------|---|---|---|-----------------------------|--------------------------| | | YN | | | | | | Other specs | \mathbb{H} | X | | Other core specifications # | CR788 on 25.423 v 3.12.0 | | | | | | | CR789 on 25.423 v 4.7.0 | | Affected: | | | X | Test specifications | | | | | | X | O&M Specifications | | | | | | | | | | Other comments: | \mathbb{H} | | | | | # **How to create CRs using this form:** Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary: - 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. - 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. # 8.3 DCH Procedures # 8.3.1 Radio Link Setup ## 8.3.1.1 General This procedure is used for establishing the necessary resources in the DRNS for one or more radio links. The connection-oriented service of the signalling bearer shall be established in conjunction with this procedure. # 8.3.1.2 Successful Operation Figure 5: Radio Link Setup procedure: Successful Operation When the SRNC makes an algorithmic decision to add the first cell or set of cells from a DRNS to the active set of a specific UE-UTRAN connection, the RADIO LINK SETUP REQUEST message is sent to the corresponding DRNC to request establishment of the radio link(s). The Radio Link Setup procedure is initiated with this RADIO LINK SETUP REQUEST message sent from the SRNC to the DRNC. Upon receipt of the RADIO LINK SETUP REQUEST message, the DRNS shall reserve the necessary resources and configure the new RL(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The DRNS shall prioritise resource allocation for the RL(s) to be established according to Annex A. If the RADIO LINK SETUP REQUEST message includes the *Allowed Queuing Time* IE the DRNS may queue the request for a time period not to exceed the value of the *Allowed Queuing Time* IE before starting to execute the request. ### **Transport Channels Handling:** ### DCH(s): [TDD - If the *DCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new DCHs according to the parameters given in the message.] If the RADIO LINK SETUP REQUEST message includes a *DCH Information* IE with multiple *DCH Specific Info* IEs, then the DRNS shall treat the DCHs in the *DCH Information* IE as a set of co-ordinated DCHs. [FDD - For each DCH which do not belong to a set of co-ordinated DCHs, and which includes a *QE-Selector* IE set to "selected", the DRNS shall use the Transport channel BER from that DCH for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the DRNS shall use the Physical channel BER for the QE, ref. [4]. If the *QE-Selector* IE is set to "non-selected", the DRNS shall use the Physical channel BER for the QE in the UL data frames, ref. [4].] For a set of co-ordinated DCHs, the DRNS shall use the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" for the QE in the UL data frames, ref. [4]. [FDD - If no Transport channel BER is available for the selected DCH, the DRNS shall use the Physical channel BER for the QE, ref. [4]. If all DCHs have *QE-Selector* IE set to "non-selected", the DRNS shall use the Physical channel BER for the QE, ref. [4].] [TDD - If no Transport channel BER is available for the selected DCH, the DRNS shall use 0 for the QE, ref. [4].] The DRNS shall use the included *UL DCH FP Mode* IE for a DCH or a set of co-ordinated DCHs as the DCH FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs. The DRNS shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs. The DRNS shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs. The *Frame Handling Priority* IE defines the priority level that should be used by the DRNS to prioritise between different frames of the data frames of the DCHs in the downlink on the radio interface in congestion situations once the new RL(s) have been activated. The *Traffic Class* IE should be used to determine the transport bearer characteristics to apply between DRNC and Node B for the related DCH or set of co-ordinated DCHs. If the *DCH Information* IE contains a *DCH Specific Info* IE which includes the *Guaranteed Rate Information* IE, the DRNS shall treat the included IEs according to the following: - If the *Guaranteed Rate Information* IE includes the *Guaranteed UL Rate* IE, the DRNS shall apply the Guaranteed Rate in the uplink of this DCH. The DRNS may decide to request the SRNC to limit the user rate of the uplink of the DCH at any point in time. The DRNS may request the SRNC to reduce the user rate of the uplink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to only reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *DCH Specific Info* IE in the *DCH Information* IE does not include the *Guaranteed UL Rate* IE, the DRNS shall not limit the user rate of the uplink of the DCH. - If the *Guaranteed Rate Information* IE includes the *Guaranteed DL Rate* IE, the DRNS shall apply the Guaranteed Rate in the uplink of this DCH. The DRNS may decide to request the SRNC to limit the user rate of the downlink of the DCH at any point in time. The DRNS may request the SRNC to reduce the user rate of the downlink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to only reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *DCH Specific Info* IE in the *DCH Information* IE does not include the *Guaranteed DL Rate* IE, the DRNS shall not limit the user rate of the downlink of the DCH. ### DSCH(s): If the *DSCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNC shall establish the requested DSCHs [FDD - on the RL indicated by the PDSCH RL ID IE]. If the *Transport Layer Address* IE and *Binding ID* IE are included in the *DSCH Information* IE the DRNC may use the transport layer address and the binding identifier received from the SRNC when establishing a transport bearer for the DSCH. In addition, the DRNC shall send a valid set of *DSCH Scheduling Priority* IE and *MAC-c/sh SDU Length* IE parameters to the SRNC in the RADIO LINK SETUP RESPONSE message. If the *PDSCH RL ID* IE indicates a radio link in the DRNS, then the DRNC shall allocate a DSCH-RNTI to the UE Context and include the *DSCH-RNTI* IE in the RADIO LINK SETUP RESPONSE message. If the *DSCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS may use the *Traffic Class* IE to determine the transport bearer characteristics to apply between DRNC and Node B for the related DSCHs. The DRNC shall include the *DSCH Initial Window Size* IE in the RADIO LINK SETUP RESPONSE message for each DSCH, if the DRNS allows the SRNC to start transmission of MAC-c/sh SDUs before the DRNS has allocated capacity on user plane as described in [32]. ### [TDD - USCH(s)]: [TDD – The DRNS shall use the list of RB Identities in the *RB Info* IE in the *USCH information* IE to map each *RB Identity* IE to the corresponding USCH. If the *Transport Layer Address* IE and *Binding ID* IE are included in the *USCH Information* IE the DRNC may use the transport layer address and the binding identifier received from the SRNC when establishing a transport bearer for the USCH.] [TDD – If the *USCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS may use the *Traffic Class* IE to determine the transport bearer characteristics to apply between DRNC and Node B for the related USCHs.] [TDD - If the *USCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS shall establish
the requested USCHs, and the DRNC shall provide the *USCH Information Response* IE in the RADIO LINK SETUP RESPONSE message.] ### [TDD - CCTrCH Handling]: [TDD – If the *UL CCTrCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new UL CCTrCH(s) according to the parameters given in the message.] [TDD – If the *DL CCTrCH Information* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the new DL CCTrCH(s) according to the parameters given in the message.] [TDD – If the *TPC CCTrCH List* IE is present in the RADIO LINK SETUP REQUEST message, the DRNS shall configure the identified UL CCTrCHs with TPC according to the parameters given in the message.] ### **HS-DSCH(s):** If the *HS-DSCH Information* IE is present, the DRNS shall establish the requested HS-DSCH resources on the RL indicated by the *HS-PDSCH RL ID* IE. In addition, if the *HS-PDSCH RL ID* IE indicates a radio link in the DRNS, then the DRNC shall allocate an HS-DSCH-RNTI to the UE Context and include the *HS-DSCH-RNTI* IE in the RADIO LINK SETUP RESPONSE message. The DRNS shall also include the *Binding ID* IE and *Transport Layer Address* IE for establishment of transport bearer(s) for the HS-DSCH MAC-d flows on this radio link. If the RADIO LINK SETUP REQUEST message includes the *Transport Layer Address* IE and *Binding ID* IE in the *HS-DSCH Information* IE for an HS-DSCH MAC-d flow, the DRNC may use the transport layer address and the binding identifier received from the SRNC when establishing a transport bearer for the concerned HS-DSCH MAC-d flow. If the *HS-DSCH Information* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS may use the *Traffic Class* IE to determine the transport bearer characteristics to apply between DRNC and Node B for the related MAC-d flows. [FDD – If the *HS-SCCH Power Offset* IE is included in the *HS-DSCH Information* IE, the DRNS may use this value to determine the HS-SCCH power. If there are multiple HS-SCCHs assigned for one UE then the same power offset is applied to each of the HS-SCCH channel.] The DRNC shall include the *HS-DSCH Initial Capacity Allocation* IE in the RADIO LINK SETUP RESPONSE message for each MAC-d flow, if the DRNS allows the SRNC to start transmission of MAC-d PDUs before the DRNS has allocated capacity on user plane as described in [32]. $[FDD-The\ DRNS\ shall\ set\ the\ Measurement\ Feedback\ Reporting\ Cycle\ to\ a\ default\ value\ equal\ to\ the\ largest\ of\ the\ k1\ and\ k2\ values.]$ [FDD – If RADIO LINK SETUP REQUEST message includes the *HS-DSCH Information* IE and the *PDSCH RL ID* IE indicates a Radio Link in the DRNS, then the DRNC shall include the *Measurement Power Offset* IE in the *HS-DSCH Information Response* IE in the RADIO LINK SETUP RESPONSE message.] ### **Physical Channels Handling:** ### [FDD - Compressed Mode]: [FDD - If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE, the DRNS shall store the information about the Transmission Gap Pattern Sequences to be used in the Compressed Mode Configuration. This Compressed Mode Configuration shall be valid in the DRNS until the next Compressed Mode Configuration is configured in the DRNS or the last Radio Link is deleted.] [FDD - If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE and the *Active Pattern Sequence Information* IE, the DRNS shall use the information to activate the indicated Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* IE refers to latest passed CFN with that value. The DRNS shall treat the received *TGCFN* IEs as follows:] - [FDD If any received *TGCFN* IE has the same value as the received *CM Configuration Change CFN* IE, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD For all other Transmission Gap Pattern Sequences included in the *Active Pattern Sequence Information* IE, the DRNS shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE for the Transmission Gap Pattern Sequence.] [FDD- If the *Downlink Compressed Mode Method* IE in one or more Transmission Gap Pattern Sequence is set to "SF/2" in the RADIO LINK SETUP REQUEST message, the DRNS shall include the *Transmission Gap Pattern Sequence Scrambling Code Information* IE in the RADIO LINK SETUP RESPONSE message indicating for each DL Channelisation Code whether the alternative scrambling code shall be used or not.] ### [FDD - DL Code Information]: [FDD – When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] ### General: [FDD - If the *Propagation Delay* IE is included, the DRNS may use this information to speed up the detection of UL synchronisation on the Uu interface.] [FDD – If the received *Limited Power Increase* IE is set to "Used", the DRNS shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control.] [FDD – If the RADIO LINK SETUP REQUEST message does not include the *Length of TFCI2* IE and the *Split type* IE is present with the value "Hard", then the DRNS shall assume the length of the TFCI (field 2) is 5 bits.] [FDD – If the RADIO LINK SETUP REQUEST message includes *Split Type* IE, then the DRNS shall apply this information to the new configuration of TFCI.] [FDD-If the RADIO LINK SETUP REQUEST message includes the *Length of TFC12* IE, the DRNS shall apply this information to the length of TFCI(field 2).] # Radio Link Handling: ### **Diversity Combination Control:** [FDD - The *Diversity Control Field* IE indicates for each RL except for the first RL whether the DRNS shall combine the RL with any of the other RLs or not. - If the *Diversity Control Field* IE is set to "May" (be combined with another RL), the DRNS shall decide for any of the alternatives. - If the *Diversity Control Field* IE is set to "Must", the DRNS shall combine the RL with one of the other RL. - If the *Diversity Control Field* IE is set to "Must not", the DRNS shall not combine the RL with any other existing RL. When an RL is to be combined, the DRNS shall choose which RL(s) to combine it with.] [FDD - In the RADIO LINK SETUP RESPONSE message, the DRNC shall indicate for each RL with the Diversity Indication in the *RL Information Response* IE whether the RL is combined or not. - In case of combining, the *RL ID* IE indicates one of the existing RLs that the concerned RL is combined with. - In case of not combining, the DRNC shall include in the *DCH Information Response* IE in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and *Transport Layer Address* IE for the transport bearer to be established for each DCH of this RL.] [TDD - The DRNC shall always include in the RADIO LINK SETUP RESPONSE message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DCH, DSCH and USCH of the RL.] In the case of a set of co-ordinated DCHs requiring a new transport bearer the *Binding ID* IE and the *Transport Layer Address* IE shall be included in the RADIO LINK SETUP RESPONSE message for only one of the DCHs in the set of co-ordinated DCHs. ### [FDD-Transmit Diversity]: [FDD – If the cell in which the RL is being set up is capable to provide Close loop Tx diversity, the DRNC shall include the *Closed Loop Timing Adjustment Mode* IE in the RADIO LINK SETUP RESPONSE message indicating the configured Closed loop timing adjustment mode of the cell.] [FDD – When the *Diversity Mode* IE is set to "STTD", "Closed loop mode1", or "Closed loop mode2", the DRNC shall activate/deactivate the Transmit Diversity for each Radio Link in accordance with the *Transmit Diversity Indicator* IE]. ### **DL Power Control:** [FDD - If both the *Initial DL TX Power* IE and *Uplink SIR Target* IE are included in the message, the DRNS shall use the indicated DL TX Power and Uplink SIR Target as initial value. If the value of the *Initial DL TX Power* IE is outside the configured DL TX power range, the DRNS shall apply these constrains when setting the initial DL TX power. The DRNS shall also include the configured DL TX power range defined by *Maximum DL TX Power* IE and *Minimum DL TX Power* IE in the RADIO LINK SETUP RESPONSE message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IE or lower than indicated by the *Minimum DL TX Power* IE on any DL DPCH of the RL except during compressed mode, when the δP_{curr} , as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power for the associated compressed frame.] [FDD - If both the *Initial DL TX Power* and the *Uplink SIR Target* IEs are not included in the RADIO LINK SETUP REQUEST message, then DRNC shall determine the initial Uplink SIR Target and include it in the *Uplink SIR Target* IE in the RADIO LINK SETUP RESPONSE message.] [TDD – The DRNC shall use the *Uplink SIR Target CCTrCH* IEs in the RADIO LINK SETUP RESPONSE message to indicate for any UL CCTrCH an Uplink SIR Target value in case this is deviating from the value included in the *Uplink SIR Target* IE specified for the Radio Link. If in any [3.84Mcps TDD - *UL
CCTrCH Information IE*] [1.28Mcps TDD - *UL CCTrCH Information LCR* IE] the *Uplink SIR Target CCTrCH* IE is not included, the value of the *Uplink SIR Target* IE shall apply to the respective UL CCTrCH.] [FDD - If the *Primary CPICH Ec/No* IE is present, the DRNC should use the indicated value when deciding the Initial DL TX Power. If the *Enhanced Primary CPICH Ec/No* IE is present, the DRNC should use the indicated value when deciding the Initial DL Tx Power.] [TDD - If the *Primary CCPCH RSCP* IE [3.84Mcps TDD -and/or the *DL Time Slot ISCP Info* IE] [1.28Mcps TDD - and/or the *DL Time Slot ISCP Info LCR* IE] are present, the DRNC should use the indicated values when deciding the Initial DL TX Power. for the Radio Link. The DRNS shall use the indicated DL Timeslot ISCP when determining the initial DL power per timeslot as specified in [22], i.e. it shall reduce the DL TX power in those downlink timeslots of the radio link where the interference is low, and increase the DL TX power in those timeslots where the interference is high, while keeping the total downlink power in the radio link unchanged.] [1.28McpsTDD - If the *TSTD Support Indicator* IE is present, the DRNS shall apply this information when configuring the transmit diversity for the new radio link.] [FDD – The DRNS shall start any DL transmission using the indicated DL TX power level (if received) or the decided DL TX power level on each DL channelisation code of a RL until UL synchronisation is achieved on the Uu interface for the concerned RLS or Power Balancing is activated. No inner loop power control or power balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[10] subclause 5.2.1.2) and the power control procedure (see 8.3.15).] [TDD – The DRNS shall start any DL transmission using the decided DL TX power level on each DL channelisation code and on each Time Slot of a RL until UL synchronisation is achieved on the Uu interface for the concerned RL. No inner loop power control shall be performed during this period. Then after UL synchronisation, the DL power shall vary according to the inner loop power control (see ref. [22] subclause 4.2.3.3).] [FDD – If the received *Inner Loop DL PC Status* IE is set to "Active", the DRNS shall activate the inner loop DL power control for all RLs. If *Inner Loop DL PC Status* IE is set to "Inactive", the DRNS shall deactivate the inner loop DL power control for all RLs according to ref. [10]. [FDD - If the *DPC Mode* IE is present in the RADIO LINK SETUP REQUEST message, the DRNC shall apply the DPC mode indicated in the message, and be prepared that the DPC mode may be changed during the life time of the RL. If the *DPC Mode* IE is not present in the RADIO LINK SETUP REQUEST message, DPC mode 0 shall be applied (see ref. [10]).] [FDD – If the RADIO LINK SETUP REQUEST message includes the *DL Power Balancing Information* IE and the *Power Adjustment Type* IE is set to "Common" or "Individual", the DRNS shall activate the power balancing, if activation of power balancing by the RADIO LINK SETUP REQUEST message is supported, according to subclause 8.3.15, using the *DL Power Balancing Information* IE. If the DRNS starts the DL transmission and the activation of the power balancing at the same CFN, the initial power of the power balancing i.e. *P*_{init} shall be set to the power level indicated by the *Initial DL TX Power* IE (if received) or the decided DL TX power level on each DL channelisation code of a RL based on the *Primary CPICH Ec/No* IE or the *Enhanced Primary CPICH Ec/No* IE.] [FDD – If activation of power balancing by the RADIO LINK SETUP REQUEST message is supported by the DRNS, the DRNC shall include the *DL Power Balancing Activation Indicator* IE in the *RL Information Response* IE in the RADIO LINK SETUP RESPONSE message.] ### **Neighbouring Cell Handling:** If there are UMTS neighbouring cell(s) to the cell in which a Radio Link was established then: - The DRNC shall include in the RADIO LINK SETUP RESPONSE message the Neighbouring FDD Cell Information IE and/or Neighbouring TDD Cell Information IE in the Neighbouring UMTS Cell Information IE for each neighbouring FDD cell and/or TDD cell respectively. In addition, if the information is available, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the Frame Offset IE, Primary CPICH Power IE, Cell Individual Offset IE, STTD Support Indicator IE, Closed Loop Model Support Indicator IE, Closed Loop Model Support Indicator IE, Coverage Indicator IE, Antenna Co-location Indicator IE and HCS Prio IE in the Neighbouring FDD Cell Information IE, and the Frame Offset IE, Cell Individual Offset IE, DPCH Constant Value IE, the PCCPCH Power IE, Coverage Indicator IE, Antenna Co-location Indicator IE and HCS Prio IE in the Neighbouring TDD Cell Information IE or the Neighbouring TDD Cell Information LCR IE.If the Neighbouring TDD Cell Information IE includes the Sync Case IE for the set to "Case1", the DRNC shall include the Time Slot For SCH IE in the Neighbouring TDD Cell Information IE. If the Neighbouring TDD Cell Information IE includes Sync Case IE set to "Case2", the DRNC shall include the SCH Time Slot IE in the Neighbouring TDD Cell Information IE. - If a UMTS neighbouring cell is not controlled by the same DRNC, the DRNC shall also include in the RADIO LINK SETUP RESPONSE message the *CN PS Domain Identifier* IE and/or *CN CS Domain Identifier* IE which are the identifiers of the CN nodes connected to the RNC controlling the UMTS neighbouring cell. - If the information is available, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *DPC Mode Change Support Indicator* IE for each neighbour cell in the *Neighbouring FDD Cell Information* IE - [FDD- The DRNC shall include the *Flexible Hard Split Support Indicator* IE if the DRNC is aware that the neighbouring cell supports *Flexible Hard Split* mode.] - The DRNC shall include the *Cell Capability Container FDD* IE, the *Cell Capability Container TDD* IE and/or the *Cell Capability Container TDD LCR* IE if the DRNC is aware that the neighbouring cell supports any functionalities listed in 9.2.2.D, 9.2.3.1a and 9.2.3.1b. - For the UMTS neighbouring cells which are controlled by the DRNC, the DRNC shall report in the RADIO LINK SETUP RESPONSE message the restriction state of those cells, otherwise the *Restriction StateIindicator* IE may be absent. The DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Restriction StateIindicator* IE for the neighbouring cells which are controlled by the DRNC in the *Neighbouring FDD Cell Information* IE, the *Neighbouring TDD Cell Information* IE and the *Neighbouring TDD Cell Information LCR* IE. - If available, the DRNC shall include the *SNA Information* IE for the concerned neighbouring cells in the *Neighbouring FDD Cell Information* IE, the *Neighbouring TDD Cell Information* IE and the *Neighbouring TDD Cell Information LCR* IE. If there are GSM neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Neighbouring GSM Cell Information* IE for each of the GSM neighbouring cells. If available the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *GSM Cell Individual Offset* IE and/or the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. If the *GSM Cell Individual Offset* IE is included in the *Neighbouring GSM Cell Information* IE, then the DRNC shall include the *Cell Individual Offset* IE, in the *Neighbouring GSM Cell Information* IE. If available the DRNC shall also include in the RADIO LINK SETUP RESPONSE message the *Coverage Indicator* IE, *Antenna Co-location Indicator* IE and *HCS Prio* IE in the *Neighbouring GSM Cell Information* IE. If available, the DRNC shall also include the *SNA Information* IE for the concerned neighbouring cells in the *Neighbouring GSM Cell Information* IE. When receiving the *SNA Information* IE in the RADIO LINK SETUP RESPONSE message, the SRNC should use it to restrict cell access based on SNA information. See also [40] for a broader description of the SNA access control. If there are GERAN neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include the *GERAN Cell Capability* IE in the *Neighbouring GSM Cell Information* IE that is included in the RADIO LINK SETUP RESPONSE message for each of the GERAN cells. If there are GERAN Iu-mode neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include, if available, the *GERAN Classmark* IE in the *Neighbouring GSM Cell Information* IE that is included in the RADIO LINK SETUP RESPONSE message for each of the GERAN Iu-mode neighbouring cells. Ref. [39] defines when the transmission of the *GERAN Classmark* IE will be required at the initiation of the Relocation Preparation procedure. # [1.28Mcps TDD – Uplink Synchronisation Parameters LCR]: [If the *Uplink Synchronisation Parameters LCR* IE is present, the DRNC shall use the indicated values of *Uplink synchronisation stepsize* IE and *Uplink synchronisation frequency* IE when evaluating the timing of the UL synchronisation.] # General: If the RADIO LINK SETUP REQUEST message includes the *RL Specific DCH Information* IE, the DRNC may use the transport layer address and the binding identifier received from the SRNC when establishing a transport bearer for the DCH or the set of co-ordinated DCHs. [FDD - If the RADIO LINK SETUP REQUEST message includes the SSDT Cell Identity IE and the S-Field Length IE, the DRNS shall activate SSDT, if supported, using the SSDT Cell Identity IE, S-Field Length IE and SSDT Cell Identity Length IE.] [FDD - If the RADIO LINK SETUP REQUEST message includes the *Qth Parameter* IE in addition to the *SSDT Cell Identity* IE, the DRNS shall use the *Qth Parameter* IE, if Qth signalling is
supported, when SSDT is activated in the concerned new RL.] [FDD - If the RADIO LINK SETUP REQUEST message includes the SSDT Cell Identity for EDSCHPC IE, the DRNS shall activate enhanced DSCH power control, if supported, using the SSDT Cell Identity for EDSCHPC IE and SSDT Cell Identity Length IE as well as Enhanced DSCH PC IE in accordance with ref. [10] subclause 5.2.2. If the RADIO LINK SETUP REQUEST message includes both SSDT Cell Identity IE and SSDT Cell Identity for EDSCHPC IE, then the DRNS shall ignore the SSDT Cell Identity for EDSCHPC IE. If the enhanced DSCH power control is activated and the TFCI PC Support Indicator IE is set to "TFCI PC Mode 2 Supported", the primary/secondary status determination in the enhanced DSCH power control shall be applied to the TFCI power control in DSCH hard split mode.] [FDD - If the *DRAC Control* IE is set to "requested" in the RADIO LINK SETUP REQUEST message for at least one DCH and if the DRNS supports the DRAC, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Secondary CCPCH Info* IE for the FACH in which the DRAC information is sent, for each Radio Link established in a cell where DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK SETUP RESPONSE message.] If no *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *D-RNTI* IE, the *CN PS Domain Identifier* IE and/or the *CN CS Domain Identifier* IE for the CN domains (using LAC and RAC of the current cell) to which the DRNC is connected. [FDD - If the D-RNTI IE was included the RADIO LINK SETUP REQUEST message the DRNC shall include in the RADIO LINK SETUP RESPONSE message the $Primary\ Scrambling\ Code$ IE, the $UL\ UARFCN$ IE and the $DL\ UARFCN$ IE.] [TDD – If the *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *UARFCN* IE, the *Cell Parameter ID* IE and the *SCTD Indicator* IE.] [3.84Mcps TDD - If the *D-RNTI* IE was included in the RADIO LINK SETUP REQUEST message the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Sync Case* IE and if the *Sync Case* IE is set to "Case 2", the DRNC shall also include the *SCH Time Slot* IE in the RADIO LINK SETUP RESPONSE message. If the included *Sync Case* IE is set to "Case1", the DRNC shall also include the *Time Slot For SCH* IE] [3.84Mcps TDD - The DRNC shall include the *Secondary CCPCH Info TDD* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response* IE or *USCH Information Response* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response* IE or *USCH Information Response* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] [1.28 Mcps TDD - The DRNC shall include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK SETUP RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] For each Radio Link established in a cell in which at least one URA Identity is being broadcast, the DRNC shall include in the *URA Information* IE within the RADIO LINK SETUP RESPONSE message URA Innformation for this cell including the *URA ID* IE, the *Multiple URAs Indicator* IE indicating whether or not multiple URA Identities are being broadcast in the cell, and the *RNC-ID* IEsof all other RNCs that have at least one cell within the URA identified by the *URA ID* IE. Depending on local configuration in the DRNS, the DRNC may include in the RADIO LINK SETUP RESPONSE message the *UTRAN Access Point Position* IE and the geographical co-ordinates of the cell, represented either by the *Cell GAI* IE or by the *Cell GA Additional Shapes* IE. If the DRNS need to limit the user rate in the uplink of a DCH due to congestion caused by the UL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Allowed UL Rate* IE in the *DCH Information Response* IE for this Radio Link. If the DRNS need to limit the user rate in the downlink of a DCH due to congestion caused by the DL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK SETUP RESPONSE message the *Allowed DL Rate* IE in the *DCH Information Response* IE for this Radio Link. If the *Permanent NAS UE Identity* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS shall store the information for the considered UE Context for the life-time of the UE Context. If the RADIO LINK SETUP REQUEST message includes the *Permanent NAS UE Identity* IE and a *C-ID* IE corresponding to a cell reserved for operator use, the DRNS shall use this information to determine whether it can set up a Radio Link on this cell or not for the considered UE Context. If the HCS priority information is available in the DRNS, it shall include the *HCS Prio* IE for each of the established RLs in the RADIO LINK SETUP RESPONSE message. [FDD - If the accessed cell supports TFCI power control, the DRNC shall include the *TFCI PC Support Indicator* IE in the RADIO LINK SETUP RESPONSE message.] The DRNS shall start receiving on the new RL(s) after the RLs are successfully established. ### [FDD - Radio Link Set Handling]: [FDD - The *First RLS Indicator* IE indicates if the concerned RL shall be considered part of the first RLS established towards this UE. The DRNS shall use the *First RLS Indicator* IE to determine the initial TPC pattern in the DL of the concerned RL and all RLs which are part of the same RLS, as described in [10], section 5.1.2.2.1.2. [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign to the RL a unique value for the *RL Set ID* IE which uniquely identifies the RL as an RLSet within the UE Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign to each RL the same value for the *RL Set ID* IE which uniquely identifies these RLs as members of the same RL Set within the UE Context.] [FDD –The UL oout-of-sync algorithm defined in ref. [10] shall, for each of the established RL Set(s), use the maximum value of the parameters N_OUTSYNC_IND and T_RLFAILURE that are configured in the cells supporting the radio links of the RL Set. The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND that are configured in the cells supporting the radio links of the RL Set.] # Response Message: Upon receipt of the RADIO LINK SETUP REQUEST message, the DRNS allocates the requested type of channelisation codes and other physical channel resources for each RL and assigns a binding identifier and a transport layer address for each DCH, for each set of co-ordinated DCHs and for each DSCH [TDD – and USCH]. This information shall be sent to the SRNC in the RADIO LINK SETUP RESPONSE message when all the RLs have been successfully established. After sending the RADIO LINK SETUP RESPONSE message the DRNS shall continuously attempt to obtain UL synchronisation on the Uu interface and start reception on the new RL. For each RL for which the *Delayed Activation* IE is not included in the RADIO LINK SETUP REQUEST message the DRNS shall: - [FDD start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4].] - [TDD start transmission on the new RL immediately as specified in ref. [4].] For each RL for which the *Delayed Activation* IE is included in the RADIO LINK SETUP REQUEST message, the DRNS shall: - if the *Delayed Activation* IE indicates "Separate Indication": - not start any DL transmission for the concerned RL on the Uu interface; - if the *Delayed Activation* IE indicates "CFN": - [FDD start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4], however never before the CFN indicated in the *Activation CFN* IE.] - [TDD start transmission on the new RL at the CFN indicated in the *Activation CFN* IE as specified in ref. [4].] # 8.3.1.3 Unsuccessful Operation Figure 6: Radio Link Setup procedure: Unsuccessful Operation If the establishment of at least one radio link is unsuccessful, the DRNC shall respond with a RADIO LINK SETUP FAILURE message. The DRNC shall include in the RADIO LINK SETUP FAILURE message a general *Cause* IE or a *Cause* IE for each failed radio link. The *Cause* IE indicates the reason for failure. [FDD - If some radio links were established successfully, the DRNC shall indicate this in the RADIO LINK SETUP FAILURE message in the same way as in the RADIO LINK SETUP RESPONSE message.] [FDD – If the RL identified by the *PDSCH RL ID* IE is a radio link in the DRNS and this RL is successfully established, then the DRNC shall allocate a DSCH-RNTI to the UE Context and include the *DSCH-RNTI* IE in the RADIO LINK SETUP FAILURE message.] If the RADIO LINK SETUP REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the *Permanent NAS UE Identity* IE is not present, the DRNC shall reject the procedure and send the RADIO LINK
SETUP FAILURE message. [FDD - If the accessed cell supports TFCI power control, the DRNC shall include the *TFCI PC Support Indicator* IE in the RADIO LINK SETUP FAILURE message.] Typical cause values are: ### **Radio Network Layer Causes:** - [FDD UL Scrambling Code Already in Use]; - DL Radio Resources not Available; - UL Radio Resources not Available; - [FDD Combining Resources not available]; - Combining not Supported - Requested Configuration not Supported; - Cell not Available; - [FDD Requested Tx Diversity Mode not Supported]; - Power Level not Supported; - Number of DL codes not supported; - Number of UL codes not supported; - Dedicated Transport Channel Type not Supported; - DL Shared Channel Type not Supported; - [TDD UL Shared Channel Type not Supported]; - [FDD UL Spreading Factor not Supported]; - [FDD DL Spreading Factor not Supported]; - CM not Supported; - [FDD DPC mode change not Supported]; - Cell reserved for operator use; - Delayed Activation not supported. ## **Transport Layer Causes:** - Transport Resource Unavailable. ### **Miscellaneous Causes:** - Control Processing Overload; - HW Failure: - Not enough User Plane Processing Resources. ### 8.3.1.4 Abnormal Conditions If the DRNC receives either an S-RNTI or a D-RNTI which already has RL(s) established the DRNC shall send the RADIO LINK SETUP FAILURE message to the SRNC, indicating the reason for failure. [FDD - If the RADIO LINK SETUP REQUEST message includes the *Active Pattern Sequence Information* IE, but the *Transmission Gap Pattern Sequence Information* IE is not present, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] [FDD – If the RADIO LINK SETUP REQUEST message includes both the *Initial DL TX Power* IE and the *Primary CPICH Ec/No* IE or does not include either of these IEs, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] If more than one DCH of a set of co-ordinated DCHs has the *QE-Selector* IE set to "selected" [TDD – or no DCH of a set of co-ordinated DCHs has the *QE-Selector* IE set to "selected"] the DRNS shall reject Radio Link Setup procedure and shall respond with a RADIO LINK SETUP FAILURE message. [FDD - If only the *Initial DL TX Power* IE or the *Uplink SIR Target* IE is included in the RADIO LINK SETUP REQUEST message, then DRNC shall reject the Radio Link Setup procedure and shall respond with the RADIO LINK SETUP FAILURE message.] If the RADIO LINK SETUP REQUEST message includes a *DCH Information* IE with multiple *DCH Specific Info* IEs, and if the DCHs in the *DCH Information* IE do not have the same *Transmission Time Interval* IE in the *Semistatic Transport Format Information* IE, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message. [FDD – If the RADIO LINK SETUP REQUEST message includes the *Enhanced Primary CPICH Ec/No* IE, but not the *Primary CPICH Ec/No* IE, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] [FDD - If the RADIO LINK SETUP REQUEST message does not include the *Split Type* IE but includes *TFCI Signalling Mode* IE set to "Split", then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] [FDD – If the RADIO LINK SETUP REQUEST message does not include the *Length of TFC12* IE but the *Split type* IE is set to "Logical", then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] [FDD - If the RADIO LINK SETUP REQUEST message includes the *Split Type* IE set to the value "Hard" and the *Length Of TFCI2* IE set to the value "1", "2", "5", "8", "9" or "10", then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] [FDD - If the RADIO LINK SETUP REQUEST message does not include the *Split Type* IE but includes the *Length* of *TFCI2* IE, then the DRNC shall reject the procedure using the RADIO LINK SETUP FAILURE message.] If the RADIO LINK SETUP REQUEST message includes the *Transport Layer Address* IE and the *Binding ID* IE in the *RL Specific DCH Information* IE included in the *RL Information* IE for a specific RL and the *Diversity Control Field* IE is set to "Must", the DRNC shall reject the Radio Link Setup procedure and the DRNC shall respond with the RADIO LINK SETUP FAILURE message. If the RADIO LINK SETUP REQUEST message includes the *Transport Layer Address* IE or the *Binding ID* IE, and not both are present for a transport bearer intended to be established, the DRNC shall reject the Radio Link Setup procedure and the DRNC shall respond with the RADIO LINK SETUP FAILURE message. # 8.3.2 Radio Link Addition #### 8.3.2.1 General This procedure is used for establishing the necessary resources in the DRNS for one or more additional RLs towards a UE when there is already at least one RL established to the concerned UE via this DRNS. This procedure shall use the signalling bearer connection for the relevant UE Context. The Radio Link Addition procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1. [FDD – The Radio Link Addition procedure serves to establish one or more new Radio Links which do not contain the DSCH. If the DSCH shall be moved into a new Radio Link, the Radio Link reconfiguration procedure shall be applied.] [TDD – The Radio Link Addition procedure serves to establish a new Radio Link with the DSCH and USCH included, if they existed before.] # 8.3.2.2 Successful Operation Figure 7: Radio Link Addition procedure: Successful Operation The procedure is initiated with a RADIO LINK ADDITION REQUEST message sent from the SRNC to the DRNC. Upon receipt, the DRNS shall reserve the necessary resources and configure the new RL(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The DRNS shall prioritise resource allocation for the RL(s) to be established according to Annex A. # **Transport Channel Handling:** [TDD - The DRNC shall include the *UL/DL DPCH Information* IE within the *UL/DL CCTrCH Information* IE for each CCTrCH that requires DPCHs.] #### DSCH: [TDD - If the radio link to be added includes a DSCH, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message a *DSCH Information Response* IE for each DSCH.] [TDD - USCH:] [TDD - If the radio link to be added includes any USCHs, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message a *USCH Information Response* IE for each USCH.] #### **Physical Channels Handling:** #### [FDD-Compressed Mode]: [FDD - If the RADIO LINK ADDITION REQUEST message includes the *Active Pattern Sequence Information* IE, the DRNS shall use the information to activate the indicated (all ongoing) Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* IE refers to the latest passed CFN with that value. The DRNS shall treat the received *TGCFN* IEs as follows:] - [FDD If any received *TGCFN* IE has the same value as the received *CM Configuration Change CFN* IE, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the DRNS shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD For all other Transmission Gap Pattern Sequences included in the *Active Pattern Sequence Information* IE, the DRNS shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE for the Transmission Gap Pattern Sequence.] FDD - If the *Active Pattern Sequence Information* IE is not included, the DRNS shall not activate the ongoing compressed mode pattern in the new RLs, but the ongoing pattern in the existing RL shall be maintained.] [FDD - If some Transmission Gap Pattern sequences using SF/2 method are initialised in the DRNS, the DRNC shall include the *Transmission Gap Pattern Sequence Scrambling Code Information* IE in the *DL Code Information* IE in the RADIO LINK ADDITION RESPONSE message to indicate the Scrambling code change method that it selects for each channelisation code.] ### [FDD-DL Code Information]: [FDD – When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] #### General: [FDD - The DRNS shall use the provided Uplink SIR Target value as the current target for the inner-loop power control.] #### **Radio Link Handling:** ## **Diversity Combination Control:** The *Diversity Control Field* IE indicates for each RL whether the DRNS shall combine the new RL with existing RL(s) or not on the Iur. - If the *Diversity Control Field* IE is set to "May" (be combined with another RL), the DRNS shall decide for any of the alternatives. - If the *Diversity Control Field* IE is set to "Must", the DRNS shall combine the RL with one of the other RL. When a new RL is to be combined the DRNS shall choose which RL(s) to combine it with. - If the *Diversity Control Field* IE is set to "Must not", the DRNS shall not combine the RL with any other existing RL. In the RADIO LINK ADDITION RESPONSE message, the DRNC shall indicate for each RL with the Diversity Indication in the *RL Information Response* IE whether the RL is combined or not: - In the case of combining a new RL with existing RL(s), the DRNC shall indicate with the Diversity Indication in the *RL Information Response* IE in the RADIO LINK ADDITION RESPONSE message that the RL is combined. In this case,
the *RL ID* IE indicates one of the existing RLs with which the new RL is combined. - In the case of not combining, the DRNC shall include in the *DCH Information Response* IE in the RADIO LINK ADDITION RESPONSE message, the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DCH, of the RL. [TDD – The DRNC shall always include in the RADIO LINK ADDITION RESPONSE message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DSCH and USCH of the RL.] In the case of a set of co-ordinated DCHs, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Binding ID* IE and the *Transport Layer Address* IE for only one of the DCHs in the set of co-ordinated DCHs. If the DRNS needs to limit the user rate in the uplink of a DCH due to congestion caused by the UL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Allowed UL Rate* IE in the *DCH Information Response* IE for this Radio Link. If the DRNS needs to limit the user rate in the downlink of a DCH due to congestion caused by the DL UTRAN Dynamic Resources (see subclause 9.2.1.79) when starting to utilise a new Radio Link, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Allowed DL Rate* IE in the *DCH Information Response* IE for this Radio Link. #### [FDD-Transmit Diversity]: The DRNS shall activate any feedback mode diversity according to the received settings. [FDD – If the cell in which the RL is being added is capable to provide Close loop Tx diversity, the DRNC shall indicate the Closed loop timing adjustment mode of the cell by including the *Closed Loop Timing Adjustment Mode* IE in the RADIO LINK ADDITION RESPONSE message.] [FDD – When the *Transmit Diversity Indicator* IE is present the DRNS shall activate/deactivate the Transmit Diversity for each new Radio Link in accordance with the *Transmit Diversity Indicator* IE using the diversity mode of the existing Radio Link(s).] # **DL Power Control:** [FDD - If the *Primary CPICH Ec/No* IE or the *Primary CPICH Ec/No* IE and the *Enhanced Primary CPICH Ec/No* IE measured by the UE are included for an RL in the RADIO LINK ADDITION REQUEST message, the DRNS shall use this in the calculation of the Initial DL TX Power for this RL. If the *Primary CPICH Ec/No* IE is not present, the DRNS shall set the Initial DL TX Power based on the power relative to the Primary CPICH power used by the existing RLs.] [TDD - If the *Primary CCPCH RSCP* IE [3.84Mcps TDD - and/or the *DL Time Slot ISCP Info* IE] [1.28Mcps TDD - and/or the *DL Time Slot ISCP Info LCR* IE] are included in the RADIO LINK ADDITION REQUEST message, the DRNS shall use them in the calculation of the Initial DL TX Power. If the *Primary CCPCH RSCP* IE [3.84Mcps TDD – and *DL Time Slot ISCP Info* IE] [1.28Mcps TDD – and *DL Time Slot ISCP Info LCR* IE] are not present, the DRNS shall set the Initial DL TX Power based on the power relative to the Primary CCPCH power used by the existing RL.] [FDD - The Initial DL TX Power shall be applied until UL synchronisation is achieved on the Uu interface for that RLS or Power Balancing is activated. No inner loop power control or power balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref. [10] subclause 5.2.1.2) and the power control procedure (see 8.3.7)]. [TDD – The Initial DL TX Power shall be applied until UL synchronisation is achieved on the Uu interface for that RL. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref. [22] subclause 4.2.3.3).]. [FDD - If the *DPC Mode* IE is present in the RADIO LINK ADDITION REQUEST message, the DRNC shall apply the DPC mode indicated in the message, and be prepared that the DPC mode may be changed during the lifetime of the RL. If the *DPC Mode* IE is not present in the RADIO LINK ADDITION REQUEST message, DPC mode 0 shall be applied (see ref. [10]).] #### **UL Power Control:** The DRNC shall also provide the configured UL Maximum SIR and UL Minimum SIR for every new RL to the SRNC in the RADIO LINK ADDITION RESPONSE message. These values are taken into consideration by DRNS admission control and shall be used by the SRNC as limits for the UL inner-loop power control target. [FDD - The DRNS shall use the provided Uplink SIR Target value as the current target for the inner-loop power control.] The DRNC shall provide the configured *Maximum DL TX Power* IE and *Minimum DL TX Power* IE for every new RL to the SRNC in the RADIO LINK ADDITION RESPONSE message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IE or lower than indicated by the *Minimum DL TX Power* IE on any DL DPCH of the RL [FDD – except during compressed mode, when the δP_{curr} , as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power for the associated compressed frame.] [FDD – If the power balancing is active with the Power Balancing Adjustment Type of the UE Context set to "Individual" in the existing RL(s) and the RADIO LINK ADDITION REQUEST message includes the *DL Reference Power* IE, the DRNS shall activate the power balancing and use the *DL Reference Power* IE for the power balancing procedure in the new RL(s), if activation of power balancing by the RADIO LINK ADDITION REQUEST message is supported, according to subclause 8.3.15. If the DRNS starts the DL transmission and the activation of the power balancing at the same CFN, the initial power of the power balancing, i.e. *P*_{init} shall be set to the power level which is calculated based on the *Primary CPICH Ec/No* IE (if received), or to the power level which is calculated based on the power relative to the Primary CPICH power used by the existing RLs.] [FDD – If activation of power balancing by the RADIO LINK ADDITION REQUEST message is supported by the DRNS, the DRNC shall include the *DL Power Balancing Activation Indicator* IE in the *RL Information Response* IE in the RADIO LINK ADDITION RESPONSE message.] ### **Neighbouring Cell Handling:** If there are UMTS neighbouring cell(s) to the cell in which a Radio Link was established then: - The DRNC shall include in the RADIO LINK ADDITION RESPONSE message the Neighbouring FDD Cell Information IE and/or Neighbouring TDD Cell Information IE in the Neighbouring UMTS Cell Information IE for each neighbouring FDD cell and/or TDD cell respectively. In addition, if the information is available, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the Frame Offset IE, Primary CPICH Power IE, Cell Individual Offset IE, STTD Support Indicator IE, Closed Loop Mode1 Support Indicator IE, Closed Loop Mode2 Support Indicator IE, Coverage Indicator IE, Antenna Co-location Indicator IE and HCS Prio IE in the Neighbouring FDD Cell Information IE, and the Frame Offset IE, Cell Individual Offset IE, DPCH Constant Value IE and the PCCPCH Power IE, Coverage Indicator IE, Antenna Co-location Indicator IE and HCS Prio IE in the Neighbouring TDD Cell Information IE. or the Neighbouring TDD Cell Information LCR IE.If the Neighbouring TDD Cell Information IE includes the Sync Case IE set to "Case1", the DRNC shall include the Time SlotFor SCH IE in the Neighbouring TDD Cell Information IE. If the Neighbouring TDD Cell Information IE includes the Sync Case IE set to "Case2", the DRNC shall include the SCH Time Slot IE in the Neighbouring TDD Cell Information IE. - If a UMTS neighbouring cell is not controlled by the same DRNC, the DRNC shall also include in the RADIO LINK ADDITION RESPONSE message the *CN PS Domain Identifier* IE and/or *CN CS Domain Identifier* IE which are the identifiers of the CN nodes connected to the RNC controlling the UMTS neighbouring cell. - [FDD The DRNC shall include in the RADIO LINK ADDITION RESPONSE message the DPC Mode Change Support Indicator IE for each neighbour cell in the Neighbouring FDD Cell Information IE if this information is available.] - [FDD The DRNC shall include the *Flexible Hard Split Support Indicator* IE if the DRNC is aware that the neighbouring cell supports *Flexible Hard Split* mode.] - The DRNC shall include the *Cell Capability Container FDD* IE, the *Cell Capability Container TDD* IE and/or the *Cell Capability Container TDD LCR* IE if the DRNC is aware that the neighbouring cell supports any functionalities listed in 9.2.2.D, 9.2.3.1a and 9.2.3.1b. - For the UMTS neighbouring cells which are controlled by the DRNC, the DRNC shall report in the RADIO LINK SETUP RESPONSE message the restriction state of those cells, otherwise *Restriction Statelindicator* IE may be absent. The DRNC shall include the *Restriction State Indicator* IE for the neighbouring cells which are controlled by the DRNC in the *Neighbouring FDD Cell Information* IE, the *Neighbouring TDD Cell Information* IE and the *Neighbouring TDD Cell Information LCR* IE. - If available, the DRNC shall include the *SNA Information* IE for the concerned neighbouring cells in the *Neighbouring FDD Cell Information* IE, the *Neighbouring TDD Cell Information* IE and the *Neighbouring TDD Cell Information LCR* IE. If there are GSM neighbouring cells to the cell(s) in which a radio link is established, the DRNC shall include the *Neighbouring GSM Cell Information* IE in the RADIO LINK ADDITION RESPONSE message for each of the GSM neighbouring cells. If available the DRNC shall include the *GSM Cell Individual Offset* IE in the *Neighbouring GSM Cell Information* IE. If the *GSM Cell Individual Offset* IE is included in the *Neighbouring GSM Cell Information* IE, then the DRNC shall include the *Cell Individual Offset* IE in the *Neighbouring GSM Cell Information IE*., If available the DRNC
shall also include the *Coverage Indicator* IE, *Antenna Co-location Indicator* IE and *HCS Prio* IE in the *Neighbouring GSM Cell Information* IE. If available, the DRNC shall also include the *SNA Information* IE for the concerned neighbouring cells in the *Neighbouring GSM Cell Information* IE. When receiving the *SNA Information* IE in the RADIO LINK ADDITION RESPONSE message, the SRNC should use it to restrict cell access based on SNA information. See also [40] for a broader description of the SNA access control. If there are GERAN neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include the *GERAN Cell Capability* IE in the *Neighbouring GSM Cell Information* IE that is included in the RADIO LINK ADDITION RESPONSE message for each of the GERAN cells. If there are GERAN Iu-mode neighbouring cells to the cell(s) where a radio link is established, the DRNC shall include, if available, the *GERAN Classmark* IE in the *Neighbouring GSM Cell Information* IE that is included in the RADIO LINK ADDITION RESPONSE message for each of the GERAN Iu-mode neighbouring cells. Ref. [39] defines when the transmission of the *GERAN Classmark* IE will be required at the initiation of the Relocation Preparation procedure. #### [1.28Mcps TDD – Uplink Synchronisation Parameters LCR]: [1.28Mcps TDD - If the *Uplink Synchronisation Parameters LCR* IE is present, the DRNC shall use the indicated values of *Uplink synchronisation stepsize* IE and *Uplink synchronisation frequency* IE when evaluating the timing of the UL synchronisation.] ## General: If the RADIO LINK ADDITION REQUEST message includes the *RL Specific DCH Information* IE, the DRNC may use the transport layer address and the binding identifier received from the SRNC when establishing a transport bearer for the DCH or the set of co-ordinated DCHs. [FDD - If the RADIO LINK ADDITION REQUEST message contains an *SSDT Cell Identity* IE, the DRNSshall, if supported, activate SSDT for the concerned new RLusing the indicated SSDT Cell Identity.] [FDD - If the RADIO LINK ADDITION REQUEST message includes the *Qth Parameter* IE in addition to the *SSDT Cell Identity* IE, the DRNS shall use the *Qth Parameter* IE, if Qth signalling is supported, when SSDT is activated in the concerned new RL.] Depending on local configuration in the DRNS, the DRNC may include in the RADIO LINK ADDITION RESPONSE message the *UTRAN Access Point Position* IE and the geographical co-ordinates of the cell, represented either by the *Cell GAI* IE or by the *Cell GA Additional Shapes* IE. For each Radio Link established in a cell in whichat least one URA Identity is being broadcast, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message a URA Information for this cell including the *URA ID* IE, the *Multiple URAs Indicator* IE indicating whether or not multiple URA Identities are being broadcast in the cell, and the *RNC-ID* IEsof all other RNCs that have at least one cell within the URA identified by the *URA ID* IE. [FDD - If the UE has been allocated one or several DCH controlled by DRAC and if the DRNS supports the DRAC, the DRNC shall include in the RADIO LINK ADDITION RESPONSE message the *Secondary CCPCH Info* IE for the FACH in which the DRAC information is sent, for each Radio Link established in a cell in which DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK ADDITION RESPONSE message.] [3.84Mcps TDD - The DRNC shall include the Secondary CCPCH Info TDD IE in the RADIO LINK ADDITION RESPONSE message if at least one DSCH Information Response IE or USCH Information Response IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the Secondary CCPCH Info TDD IE in the RADIO LINK ADDITION RESPONSE message if at least one DSCH Information Response IE or USCH Information Response IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] [1.28 Mcps TDD - The DRNC shall include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK ADDITION RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and at least one DCH is configured for the radio link. The DRNC shall also include the *Secondary CCPCH Info TDD LCR* IE in the RADIO LINK ADDITION RESPONSE message if at least one *DSCH Information Response LCR* IE or *USCH Information Response LCR* IE is included in the message and the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] If the *Permanent NAS UE Identity* IE is present in the RADIO LINK ADDITION REQUEST message, the DRNS shall store the information for the considered UE Context for the life-time of the UE Context. If the RADIO LINK ADDITION REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the Permanent NAS UE Identity is available in the DRNC for the considered UE Context, the DRNC shall use this information to determine whether it can add the Radio Link on this cell or not. If the HCS priority information is available in the DRNS, it shall include the *HCS Prio* IE for each of the established RLs in the RADIO LINK ADDITION RESPONSE message. [FDD - If the accessed cell supports TFCI power control, the DRNC shall include the *TFCI PC Support Indicator* IE in the RADIO LINK ADDITION RESPONSE message.] The DRNS shall start receiving on the new RL(s) after the RLs are successfully established. ### [FDD-Radio Link Set Handling]: [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the DRNS shall assign to the RL a unique value for the *RL Set ID* IE which uniquely identifies the RL as an RL Set within the UE Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another new or existing RL, the DRNS shall assign to each RL the same value for the *RL Set ID* IE which uniquely identifies these RLs as members of the same RL Set within the UE Context.] [FDD – After addition of the new RL(s), the UL out-of-sync algorithm defined in ref. [10] shall, for each of the previously existing and newly established RL Set(s), use the maximum value of the parameters $N_OUTSYNC_IND$ and $T_RLFAILURE$ that are configured in the cells supporting the radio links of the RL Set. The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND that are configured in the cells supporting the radio links of the RL Set.] ### Response message: If all requested RLs are successfully added, the DRNC shall respond with a RADIO LINK ADDITION RESPONSE message. After sending the RADIO LINK ADDITION RESPONSE message the DRNS shall continuously attempt to obtain UL synchronisation on the Uu interface. For each RL for which the *Delayed Activation* IE is not included in the RADIO LINK ADDITION REQUEST message the DRNS shall: - [FDD -start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4].] - [TDD start transmission on the new RL immediately as specified in ref. [4].] For each RL for which the *Delayed Activation* IE is included in the RADIO LINK ADDITION REQUEST message, the DRNS shall: - if the *Delayed Activation* IE indicates "Separate Indication": - not start any DL transmission for the concerning RL on the Uu interface; - if the *Delayed Activation* IE indicates "CFN": - [FDD start transmission on the DL DPDCH(s) of the new RL as specified in ref. [4], however never before the CFN indicated in the *Activation CFN* IE.] - [TDD start transmission on the new RL at the CFN indicated in the *Activation CFN* IE as specified in ref. [4].] # 8.3.2.3 Unsuccessful Operation Figure 8: Radio Link Addition procedure: Unsuccessful Operation If the establishment of at least one RL is unsuccessful, the DRNC shall respond with RADIO LINK ADDITION FAILURE message. DRNC shall include in the RADIO LINK ADDITION FAILURE message a general *Cause* IE or a *Cause* IE for each failed radio link. The *Cause* IE indicates the reason for failure. [FDD - If some RL(s) were established successfully, the DRNC shall indicate this in the RADIO LINK ADDITION FAILURE message in the same way as in the RADIO LINK ADDITION RESPONSE message. [FDD - If the accessed cell supports TFCI power control, the DRNC shall include the *TFCI PC Support Indicator* IE in the RADIO LINK ADDITION FAILURE message.] Typical cause values are: ### **Radio Network Layer Causes:** - DL Radio Resources not Available; - UL Radio Resources not Available; - Combining Resources not Available; - Combining not Supported - Cell not Available; - [FDD Requested Tx Diversity Mode not Supported]; - Power Level not Supported; - CM not Supported; - Reconfiguration CFN not Elapsed; - Number of DL Codes not Supported; - Number of UL codes not Supported; - [FDD DPC mode change not Supported]; - Cell reserved for operator use; - Delayed Activation not supported. #### **Transport Layer Causes:** - Transport Resource Unavailable. #### **Miscellaneous Causes:** - Control Processing Overload; - HW Failure; - Not enough User Plane Processing Resources. #### 8.3.2.4 Abnormal Conditions If the RADIO LINK ADDITION REQUEST message includes a *C-ID* IE corresponding to a cell reserved for operator use and the Permanent NAS UE Identity is not available in the DRNC for the considered UE Context, the DRNC shall reject the procedure for this particular Radio Link and send the RADIO LINK ADDITION FAILURE message. [FDD – If the RADIO LINK ADDITION REQUEST message includes the *Transmission Gap Pattern Sequence Status* IEs in the *Active Pattern Sequence Information* IE and it does not address exactly all ongoing compressed mode patterns the DRNS shall reject the Radio
Link Addition procedure and shall respond with a RADIO LINK ADDITION FAILURE message with the *Cause* IE value "Invalid CM settings".] [FDD - If the RADIO LINK ADDITION REQUEST message is used to establish a new RL without compressed mode when compressed mode is active for the existing RL(s) (as specified in subclause 8.3.2.2), and if at least one of the new RLs is to be established in a cell that has the same UARFCN (both UL and DL) as at least one cell with an already existing RL, the DRNS shall reject the Radio Link Addition procedure and shall respond with a RADIO LINK ADDITION FAILURE message with the cause value "Invalid CM settings".] [FDD - If the power balancing is active with the Power Balancing Adjustment Type of the UE Context set to "Individual" in the existing RL(s) and if the *DL Reference Power* IEs are included in the *RL Information* IE but the *DL Reference Power* IE is not present for each RL in the *RL Information* IE, the DRNC shall reject the Radio Link Addition procedure and shall respond with a RADIO LINK ADDITION FAILURE message.] [FDD - If the RADIO LINK ADDITION REQUEST message includes the *DL Reference Power* IEs in the *RL Information* IE but the power balancing is not active in the existing RL(s) or the power balancing is active with the Power Balancing Adjustment Type of the UE Context set to "Common" in the existing RL(s), the DRNC shall reject the Radio Link Addition procedure and shall respond with a RADIO LINK ADDITION FAILURE message with the cause value "Power Balancing status not compatible".] [FDD – If the RADIO LINK ADDITION REQUEST message includes the *Enhanced Primary CPICH Ec/No* IE, but not the *Primary CPICH Ec/No* IE, then the DRNC shall reject the procedure using the RADIO LINK ADDITION FAILURE message.] If the RADIO LINK ADDITION REQUEST message includes the *Transport Layer Address* IE and the *Binding ID* IE in the *RL Specific DCH Information* IE included in the *RL Information* IE for a specific RL and the *Diversity Control Field* IE is set to "Must", the DRNC shall reject the Radio Link Addition procedure and respond with the RADIO LINK ADDITION FAILURE message. If the RADIO LINK ADDITION REQUEST message includes the *Transport Layer Address* IE or the *Binding ID* IE, and not both are present for a transport bearer intended to be established, the DRNC shall reject the Radio Link Addition procedure and respond with the RADIO LINK ADDITION FAILURE message. # 9.2.1.41C Neighbouring GSM Cell Information The *Neighbouring GSM Cell Information* IE provides information for all GSM Cells that are a neighbouring cell to a cell in the DRNC. | IE/Group Name | Presence | Range | IE Type and Reference | Semantics
Description | Criticality | Assigned
Criticality | |--------------------------------------|----------|--|--|---|-------------|-------------------------| | Neighbouring GSM Cell
Information | | 1 <max
noofGS
Mneighb
ours></max
 | | | GLOBAL | ignore | | >CGI | | 1 | | Cell Global Identity as defined in ref. [1]. | _ | | | >>LAI | | 1 | | | _ | | | >>>PLMN Identity | M | | OCTET
STRING (3) | - digits 0 to 9, two digits per octet, - each digit encoded 0000 to 1001, - 1111 used as filler - bit 4 to 1 of octet n encoding digit 2n-1 - bit 8 to 5 of octet n encoding digit 2n -The PLMN Identity consists of 3 digits from MCC followed by either -a filler plus 2 digits from MNC (in case of 2 digit MNC) or -3 digits from MNC (in case of a 3 digit MNC). | - | | | >>>LAC | М | | OCTET
STRING (2) | 0000 and FFFE not allowed | _ | | | >>CI | М | | OCTET
STRING (2) | | _ | | | >Cell Individual Offset | 0 | | 9.2.1.7 | The Cell Individual Offset to be used for UEs using DCHs. Should be ignored if the GSM Cell Individual Offset IE is included | | | | >BSIC | | 1 | | Base Station Identity
Code as defined in
ref. [1]. | 1 | | | >>NCC | M | | BIT
STRING(3) | Network Colour
Code. | _ | | | >>BCC | M | | BIT
STRING(3) | Base Station Colour Code. | _ | | | >Band Indicator | М | | ENUMERAT
ED(DCS
1800 band,
PCS 1900
band,) | Indicates whether or
not the BCCH
ARFCN belongs to
the 1800 band or
1900 band of GSM
frequencies. | _ | | | >BCCH ARFCN | М | | INTEGER(01023) | BCCH Frequency as defined in ref. [29]. | _ | | | >Coverage Indicator | 0 | | 9.2.1.12G | | YES | ignore | | >Antenna Co-location
Indicator | 0 | | 9.2.1.2C | | YES | ignore | | >HCS Prio | 0 | | 9.2.1.30N | | YES | ignore | | > SNA Information | 0 | | 9.2.1.52Ca | | YES | ignore | | >GERAN Cell Capability | 0 | | 9.2.1.30Fa | | YES | ignore | | >GERAN Classmark | 0 | | 9.2.1.30Fb | | YES | ignore | | >GSM Cell Individual Offset | <u>O</u> | | 9.2.1.x | The GSM Cell
Individual Offset to
be used for UEs
using DCHs. | YES | ignore | # 3GPP TS 25.423 v5.4.0 (2002-12) CR page 24 | Range bound | Explanation | |----------------------|--| | maxnoofGSMneighbours | Maximum number of neighbouring GSM cells for one cell. | # <<< Unchanged Text is Removed>>> # 9.2.1.x GSM Cell Individual Offset GSM Cell individual offset is an offset that will be applied by UE to the measurement results for GSM carrier RSSI according to [16]. | IE/Group Name | Presence | <u>Range</u> | IE Type
and
Reference | Semantics Description | |----------------------------|----------|--------------|-----------------------------|-------------------------------| | GSM Cell Individual Offset | | | INTEGER
(-50,,+50) | Unit in dB. Step size is 1 dB | <<< Unchanged Text is Removed>>> # 9.3.4 Information Element Definitions ``` -- Information Element Definitions RNSAP-IEs itu-t (0) identified-organization (4) etsi (0) mobileDomain (0) umts-Access (20) modules (3) rnsap (1) version1 (1) rnsap-IEs (2) } DEFINITIONS AUTOMATIC TAGS ::= BEGIN IMPORTS maxCodeNumComp-1, maxNrOfFACHs, maxFACHCountPlus1, maxIBSEG, maxNoOfDSCHs, maxNoOfDSCHs-1, maxNoOfUSCHs, maxNoTFCIGroups, maxNoCodeGroups, maxNrOfDCHs, maxNrOfDL-Codes, maxNrOfDLTs, maxNrOfDLTsLCR, maxNrOfDPCHs. maxNrOfDPCHsLCR. maxNrOfErrors, maxNrOfFDDNeighboursPerRNC, maxNrOfMACcshSDU-Length, maxNrOfNeighbouringRNCs, maxNrOfTDDNeighboursPerRNC, maxNrOfLCRTDDNeighboursPerRNC, maxNrOfTS, maxNrOfULTs, maxNrOfULTsLCR, maxNrOfGSMNeighboursPerRNC, maxRateMatching, maxNrOfPoints, maxNoOfRB, maxNrOfRLs, maxNrOfTFCs, maxNrOfTFs. maxCTFC. maxRNCinURA-1, maxNrOfSCCPCHs, maxTFCI1Combs, maxTFCI2Combs, maxTFCI2Combs-1. maxTGPS, maxTTI-Count, {\tt maxNoGPSTypes}, maxNoSat, maxNrOfSNAs, maxNrOfHARQProc, maxNrOfHSSCCHCodes, maxNrOfMACdFlows, maxNrOfMACdFlows-1, maxNrOfPDUIndexes, maxNrOfPDUIndexes-1, maxNrOfPrioOueues. maxNrOfPrioQueues-1, id-Allowed-Rate-Information, id-AntennaColocationIndicator, id-BindingID, id-Cell-Capacity-Class-Value, id-CellCapabilityContainer-FDD, id-CellCapabilityContainer-TDD, id-CellCapabilityContainer-TDD-LCR, id-CoverageIndicator, id-DPC-Mode-Change-SupportIndicator, ``` ``` id-DSCH-Specific-FDD-Additional-List, id-GERAN-Cell-Capability, id-GERAN-Classmark, id-Guaranteed-Rate-Information, id-HCS-Prio, id-Load-Value, id-Load-Value-IncrDecrThres, id-Neighbouring-GSM-CellInformation, id-Neighbouring-UMTS-CellInformationItem, \verb|id-neighbouring-LCR-TDD-CellInformation|,\\ id-NRT-Load-Information-Value, id-NRT-Load-Information-Value-IncrDecrThres, id-OnModification, id-Received-Total-Wideband-Power-Value, id-Received-Total-Wideband-Power-Value-IncrDecrThres, id-RT-Load-Value, id-RT-Load-Value-IncrDecrThres, id-SFNSFNMeasurementThresholdInformation, id-SNA-Information, id-TrafficClass, id-Transmitted-Carrier-Power-Value, id-Transmitted-Carrier-Power-Value-IncrDecrThres, id-TUTRANGPSMeasurementThresholdInformation, id-UL-Timeslot-ISCP-Value, id-UL-Timeslot-ISCP-Value-IncrDecrThres, maxNrOfLevels. maxNrOfMeasNCell, maxNrOfMeasNCell-1, id-MessageStructure, id-EnhancedDSCHPC, id-RestrictionStateIndicator, id-Rx-Timing-Deviation-Value-LCR, id-TransportLayerAddress, id-TypeOfError, id-Angle-Of-Arrival-Value-LCR, id-IPDL-TDD-ParametersLCR. id-DSCH-InitialWindowSize, id-GSMCellIndividualOffset FROM RNSAP-Constants Criticality, ProcedureID, ProtocolIE-ID, TransactionID, TriggeringMessage FROM RNSAP-CommonDataTypes ProtocolIE-Single-Container{}, ProtocolExtensionContainer{}, RNSAP-PROTOCOL-IES, RNSAP-PROTOCOL-EXTENSION FROM RNSAP-Containers; UNCHANGED TEXT IS REMOVED ::= INTEGER (1..14) GapLength -- Unit Slot GapDuration ::= INTEGER (1..144,...) - Unit Frame GA-Cell ::= SEQUENCE (SIZE (1..maxNrOfPoints)) OF SEQUENCE { cell-GAIgeographicalCoordinate GeographicalCoordinate, iE-Extensions ProtocolExtensionContainer { {GA-Cell-ExtIEs} } OPTIONAL, GA-Cell-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GA-CellAdditionalShapes ::= CHOICE { pointWithUncertainty GA-PointWithUnCertainty, GA-PointWithUnCertaintyEllipse, pointWithUncertaintyEllipse pointWithAltitude GA-PointWithAltitude, \verb"pointWithAltitudeAndUncertaintyEllipsoid" {\tt GA-PointWithAltitudeAndUncertaintyEllipsoid,} ellipsoidArc GA-EllipsoidArc, ``` ``` GA-AltitudeAndDirection ::= SEQUENCE { directionOfAltitude ENUMERATED {height, depth}, altitude INTEGER (0..32767), } GA-EllipsoidArc ::= SEQUENCE { geographicalCoordinates GeographicalCoordinate, innerRadius INTEGER (0..65535), uncertaintyRadius INTEGER (0..127), INTEGER (0.179), INTEGER (0.179), offsetAngle includedAngle INTEGER (0..127), confidence iE-Extensions ProtocolExtensionContainer { { GA-EllipsoidArc-ExtIEs} } OPTIONAL, } GA-EllipsoidArc-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-PointWithAltitude ::= SEQUENCE
{ {\tt geographicalCoordinates} \qquad {\tt GeographicalCoordinate}\,, altitudeAndDirection GA-AltitudeAndDirection, ProtocolExtensionContainer { GA-PointWithAltitude-ExtIEs} } iE-Extensions OPTIONAL, } GA-PointWithAltitude-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-PointWithAltitudeAndUncertaintyEllipsoid ::= SEQUENCE { {\tt geographicalCoordinates} \qquad {\tt GeographicalCoordinate} \,, altitudeAndDirection GA-AltitudeAndDirectio uncertaintyEllipse GA-UncertaintyEllipse, uncertaintyAltitude INTEGER (0..127), confidence INTEGER (0..127), ProtocolExtensionConta GA-AltitudeAndDirection, ProtocolExtensionContainer { { GA- iE-Extensions {\tt PointWithAltitudeAndUncertaintyEllipsoid-ExtIEs} \ \} \ {\tt OPTIONAL}, } GA-PointWithAltitudeAndUncertaintyEllipsoid-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { {\tt GA-PointWithUnCertaintyEllipse} \ ::= \ {\tt SEQUENCE} \ \{ geographicalCoordinates uncertaintyEllipse GeographicalCoordinate, GA-UncertaintyEllipse, uncertaintyEllipse confidence INTEGER (0..127), ProtocolExtensionContainer { { GA-PointWithUnCertaintyEllipse- iE-Extensions ExtIEs } OPTIONAL, GA-PointWithUnCertaintyEllipse-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GA-UncertaintyEllipse ::= SEQUENCE { uncertaintySemi-major INTEGER (0..127), uncertaintySemi-minor INTEGER (0..127), uncertaintySemi-minor orientationOfMajorAxis INTEGER (0..179), } GA-PointWithUnCertainty ::=SEQUENCE { geographicalCoordinates GeographicalCoordinate, uncertaintyCode INTEGER (0..127), iE-Extensions ProtocolExtensionContainer { GA-PointWithUnCertainty-ExtIEs} } OPTIONAL, . . . } ``` ``` GA-PointWithUnCertainty-ExtlEs RNSAP-PROTOCOL-EXTENSION ::= { GA-AccessPointPosition ::= SEQUENCE { geographicalCoordinate GeographicalCoordinate, ProtocolExtensionContainer { {GA-AccessPoint-ExtIEs} } OPTIONAL, iE-Extensions } GA-AccessPoint-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GeographicalCoordinate ::= SEQUENCE { graphicarcools ENUMERALED (- latitudeSign ENUMERALED (- INTEGER (0..8388607), - / 0288608..83 ENUMERATED { north, south }, latitude INTEGER (0..8388607), longitude INTEGER (-8388608..8388607), iE-Extensions ProtocolExtensionContainer { {GeographicalCoordinate-ExtIEs} } OPTIONAL, } GeographicalCoordinate-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GERAN-Cell-Capability ::= BIT STRING (SIZE (16)) -- First bit: A/Gb mode -- -- Second bit: Iu mode -- -- Note: undefined bits are considered as a spare bit and spare bits shall be set to 0 by the transmitter and shall be ignored by the receiver. - GERAN-Classmark ::= OCTET STRING -- GERAN Classmark as defined in (38) -- GPS-Almanac ::= SEQUENCE { BIT STRING (SIZE (8)), wn_a-alm satellite-Almanac-Information SEQUENCE (SIZE (1..maxNoSat)) OF SEQUENCE { DATA-ID, data-id SAT-ID SAT-ID, gps-e-alm BIT STRING (SIZE (16)), gps-delta-I-alm BIT STRING (SIZE (16)), omegadot-alm BIT STRING (SIZE (16)), svhealth-alm BIT STRING (SIZE (16)), svhealth-alm BIT STRING (SIZE (8)), gps-a-sqrt-alm BIT STRING (SIZE (24)), omegazero-alm BIT STRING (SIZE (24)), m-zero-alm BIT STRING (SIZE (24)), gps-omega-alm BIT STRING (SIZE (24)), gps-af-zero-alm BIT STRING (SIZE (24)), gps-af-zero-alm BIT STRING (SIZE (11)), gps-af-one-alm BIT STRING (SIZE (11)), iE-Extensions ProtocolExtensionContainer { Satellite-Almanac-Information-OPTIONAL, sAT-ID SAT-ID, ExtIEs} } OPTIONAL, sVGlobalHealth-alm BIT STRING (SIZE (364)) OPTIONAL, iE-Extensions ProtocolExtensionContainer { { GPS-Almanac-ExtIEs} } } Satellite-Almanac-Information-ExtlEs RNSAP-PROTOCOL-EXTENSION ::= { GPS-Almanac-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GPSInformation ::= SEQUENCE (SIZE (1..maxNoGPSTypes)) OF gPSInformationItem ENUMERATED { gPS-NavigationModel-and-TimeRecovery, gPS-Ionospheric-Model, gPS-UTC-Model, gPS-Almanac, gPS-RealTime-Integrity, ``` ``` iE-Extensions ProtocolExtensionContainer { { GPSInformation-ExtIEs} } OPTIONAL, -- This IE shall be present if the Information Type IE indicates 'GPS Information' GPSInformation-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } GPS-Ionospheric-Model ::= SEQUENCE { alpha-zero-ionos BIT STRING (SIZE (8)), alpha-one-ionos BIT STRING (SIZE (8)), alpha-two-ionos BIT STRING (SIZE (8)), alpna-one-ionos alpha-two-ionos BIT STRING (SIZE (8)), alpha-three-ionos BIT STRING (SIZE (8)), beta-zero-ionos BIT STRING (SIZE (8)), beta-one-ionos BIT STRING (SIZE (8)), beta-two-ionos BIT STRING (SIZE (8)), beta-three-ionos BIT STRING (SIZE (8)), beta-three-ionos BIT STRING (SIZE (8)), beta-three-ionos BIT STRING (SIZE (8)), iE-Extensions ProtocolExtensionContainer { GPS-Ionospheric-Model-ExtIEs} } OPTIONAL, } GPS-Ionospheric-Model-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GPS-NavigationModel-and-TimeRecovery ::= SEQUENCE (SIZE (1..maxNoSat)) OF SEQUENCE { tx-tow-nav INTEGER (0..1048575), sAT-ID SAT-ID, tlm-message-nav BIT STRING (SIZE (14)), tlm-revd-c-nav BIT STRING (SIZE (2)), ho-word-nav BIT STRING (SIZE (22)), w-n-nav BIT STRING (SIZE (10)), BIT STRING (SIZE (2)), ca-or-p-on-12-nav \verb"user-range-accuracy-index-nav" \verb"BIT STRING" (SIZE (4))", BIT STRING (SIZE (10)), BIT STRING (SIZE (10)), sv-health-nav iodc-nav 12-p-dataflag-nav sf1-reserved-nav BIT STRING (SIZE (1)), BIT STRING (SIZE (87)), t-qd-nav BIT STRING (SIZE (8)), t-oc-nav BIT STRING (SIZE (16)), BIT STRING (SIZE (8)), a-f-2-nav BIT STRING (SIZE (6)), BIT STRING (SIZE (16)), BIT STRING (SIZE (22)), BIT STRING (SIZE (16)), BIT STRING (SIZE (16)), BIT STRING (SIZE (32)), a-f-1-nav a-f-zero-nav c-rs-nav delta-n-nav m-zero-nav BIT STRING (SIZE (16)), c-uc-nav gps-e-nav BIT STRING (SIZE (32)), BIT STRING (SIZE (16)), c-us-nav BIT STRING (SIZE (32)), a-sgrt-nav BIT STRING (SIZE (16)), t-oe-nav fit-interval-flag-nav BIT STRING (SIZE (1)), BIT STRING (SIZE (5)), aodo-nav BIT STRING (SIZE (16)), c-ic-nav omega-zero-nav BIT STRING (SIZE (32)), BIT STRING (SIZE (16)), c-is-nav i-zero-nav BIT STRING (SIZE (32)), c-rc-nav BIT STRING (SIZE (16)), gps-omega-nav BIT STRING (SIZE (32)), BIT STRING (SIZE (24)), omegadot-nav idot-nav BIT STRING (SIZE (14)), spare-zero-fill iE-Extensions BIT STRING (SIZE (20)), ProtocolExtensionContainer { { GPS-NavigationModel-and- iE-Extensions TimeRecoveryItem-ExtIEs} } OPTIONAL, GPS-NavigationModel-and-TimeRecoveryItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GPS-RealTime-Integrity ::= CHOICE { badSatellites BadSatellites, noBadSatellite NULL ``` ``` 3GPP TS 25.423 v5.4.0 (2002-12) ``` CR page 30 ``` GPS-RX-POS ::= SEQUENCE { geographicalCoordinate GeographicalCoordinate, altitudeAndDirection GA-AltitudeAndDirection, ProtocolExtensionContainer { { GPS-RX-POS-ExtIEs} } OPTIONAL, iE-Extensions } GPS-RX-POS-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { GPS-Status-Health ::= ENUMERATED { udre-1-0, udre-0-75, udre-0-5. udre-0-3 udre-0-1, no-data, invalid-data } GPSTOW ::= INTEGER (0..604799) GPS-UTC-Model ::= SEQUENCE { BIT STRING (SIZE (24)), a-one-utc BIT STRING (SIZE (32)), a-zero-utc t-ot-utc BIT STRING (SIZE (8)), delta-t-ls-utc BIT STRING (SIZE (8)), w-n-t-utc BIT STRING (SIZE (8)), w-n-t-utc w-n-lsf-utc BIT STRING (SIZE (8)), dn-utc BIT STRING (SIZE (8)), delta-t-lsf-utc BIT STRING (SIZE (8)), iE-Extensions ProtocolExtensionContainer { { GPS-UTC-Model-ExtIEs} } OPTIONAL, } GPS-UTC-Model-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } \label{eq:Guaranteed-Rate-Information} \mbox{ ::= SEQUENCE } \{ guaranteed-UL-Rate Guaranteed-Rate OPTIONAL, guaranteed-DL-Rate Guaranteed-Rate OPTIONAL, iE-Extensions ProtocolExtensionContaine ProtocolExtensionContainer { {Guaranteed-Rate-Information-ExtIEs} } OPTIONAL, } Guaranteed-Rate-Information-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { Guaranteed-Rate ::= INTEGER (1..maxNrOfTFs) -- "1": TFI 0, "2": TFI 1, "3": TFI 2, ... GSMCellIndividualOffset ::= INTEGER (-50..50) UNCHANGED TEXT IS REMOVED Nack-Power-Offset ::= INTEGER (0..8,...) -- According to mapping in ref. [21] subclause 4.2.1 NCC ::= BIT STRING (SIZE (3)) Neighbouring-UMTS-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfNeighbouringRNCs)) OF ProtocolIE- Single-Container {{ Neighbouring-UMTS-CellInformationItemIE }} \label{lem:neighbouring-UMTS-CellInformationItemIE RNSAP-PROTOCOL-IES ::= \{ \\ UMTS-CellInformationItem PRESENCE mandatory } Neighbouring-UMTS-CellInformationItem ::= SEQUENCE { RNC-ID CN-PS-DomainIdentifier OPTIONAL, CN-CS-DomainIdentifier OPTIONAL, cN-PS-DomainIdentifier cN-CS-DomainIdentifier neighbouring-FDD-CellInformation Neighbouring-FDD-CellInformation OPTIONAL, ``` ``` neighbouring-TDD-CellInformation Neighbouring-TDD-CellInformation OPTIONAL, ProtocolExtensionContainer { {Neighbouring-UMTS- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-UMTS-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { { ID id-neighbouring-LCR-TDD-CellInformation CRITICALITY ignore EXTENSION PRESENCE optional }, Neighbouring-LCR-TDD-CellInformation } Neighbouring-FDD-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfFDDNeighboursPerRNC,...)) OF Neighbouring-FDD-CellInformationItem Neighbouring-FDD-CellInformationItem ::= SEQUENCE { c-ID uARFCNforNu UARFCN, uARFCNforNd UARFCN, frameOffset FrameOffset OPTIONAL. primaryScramblingCode PrimaryScramblingCode, primaryCPICH-Power PrimaryCPICH-Power OPTIONAL, cellIndividualOffset CellIndividualOffset OPTIONAL, txDiversityIndicator TxDiversityIndicator, sTTD-SupportIndicator STTD-SupportIndicator OPTIONAL, closedLoopModel-SupportIndicator ClosedLoopModel-SupportIndicator OPTIONAL. closedLoopMode2-SupportIndicator ClosedLoopMode2-SupportIndicator OPTIONAL, iE\text{-}Extensions ProtocolExtensionContainer { { Neighbouring-FDD- CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-FDD-CellInformationItem-ExtlEs RNSAP-PROTOCOL-EXTENSION ::= { { ID id-RestrictionStateIndicator CRITICALITY ignore EXTENSION } | PRESENCE optional RestrictionStateIndicator { ID id-DPC-Mode-Change-SupportIndicator CRITICALITY ignore EXTENSION DPC-Mode- Change-SupportIndicator PRESENCE optional } { ID id-CoverageIndicator CRITICALITY ignore EXTENSION PRESENCE optional } | CoverageIndicator { ID id-AntennaColocationIndicator CRITICALITY ignore EXTENSION
AntennaColocationIndicator PRESENCE optional }| { ID id-HCS-Prio CRITICALITY ignore EXTENSION HCS-Prio PRESENCE optional } | { ID id-CellCapabilityContainer-FDD CRITICALITY ignore EXTENSION CellCapabilityContainer-FDD PRESENCE optional } | { ID id-SNA-Information CRITICALITY ignore EXTENSION SNA-Information PRESENCE optional }, } NeighbouringFDDCellMeasurementInformation ::= SEQUENCE { uC-ID UC-ID. uARFCN UARFCN, primaryScramblingCode PrimaryScramblingCode, iE-Extensions ProtocolExtensionContainer { { NeighbouringFDDCellMeasurementInformationItem-ExtIEs} } OPTIONAL, NeighbouringFDDCellMeasurementInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { Neighbouring-GSM-CellInformation ::= ProtocolIE-Single-Container {{ Neighbouring-GSM- CellInformationIE }} Neighbouring-GSM-CellInformationIE RNSAP-PROTOCOL-IES ::= { { ID id-Neighbouring-GSM-CellInformation CRITICALITY ignore TYPE Neighbouring-GSM- CellInformationIEs PRESENCE mandatory } Neighbouring-GSM-CellInformationIEs ::= SEQUENCE (SIZE (1..maxNrOfGSMNeighboursPerRNC,...)) OF Neighbouring-GSM-CellInformationItem Neighbouring-GSM-CellInformationItem ::= SEQUENCE { cGI CGI, cellIndividualOffset CellIndividualOffset OPTIONAL, bSIC BSIC. band-Indicator Band-Indicator, ``` ``` bcch-arfcn BCCH-ARFCN, ProtocolExtensionContainer { { Neighbouring-GSM- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-GSM-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { CRITICALITY ignore EXTENSION CoverageIndicator } | CRITICALITY ignore { ID id-AntennaColocationIndicator EXTENSION AntennaColocationIndicator PRESENCE optional } | { ID id-HCS-Prio CRITICALITY ignore EXTENSION HCS-Prio PRESENCE optional { ID id-SNA-Information CRITICALITY ignore EXTENSION SNA-Information PRESENCE optional } | { ID id-GERAN-Cell-Capability CRITICALITY ignore EXTENSION GERAN-Cell- Capability PRESENCE optional { ID id-GERAN-Classmark CRITICALITY ignore EXTENSION GERAN-Classmark PRESENCE optional ID id-GSMCellIndividualOffset CRITICALITY ignore EXTENSION GSMCellIndividualOffset PRESENCE optional } Neighbouring-TDD-CellInformation ::= SEQUENCE (SIZE (1..maxNrOfTDDNeighboursPerRNC,...)) OF Neighbouring-TDD-CellInformationItem Neighbouring-TDD-CellInformationItem ::= SEQUENCE { C-ID. uARFCNforNt. UARFCN, frameOffset FrameOffset OPTIONAL. cellParameterID CellParameterID, SyncCase, syncCase timeSlot TimeSlot OPTIONAL -- This IE shall be present if Sync Case = Casel -- , SCH-TimeSlot OPTIONAL -- This IE shall be present if Sync Case = Case2 -- , sCTD-Indicator SCTD-Indicator, cellIndividualOffset CellIndividualOffset OPTIONAL, dPCHConstantValue DPCHConstantValue OPTIONAL, pCCPCH-Power PCCPCH-Power OPTIONAL, ProtocolExtensionContainer { { Neighbouring-TDD- iE-Extensions CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-TDD-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { CRITICALITY ignore { ID id-RestrictionStateIndicator EXTENSION RestrictionStateIndicator PRESENCE optional } | { ID id-CoverageIndicator CRITICALITY ignore EXTENSION PRESENCE optional CoverageIndicator } | { ID id-AntennaColocationIndicator CRITICALITY ignore EXTENSION AntennaColocationIndicator PRESENCE optional } | { ID id-HCS-Prio CRITICALITY ignore EXTENSION HCS-Prio } | PRESENCE optional { ID id-CellCapabilityContainer-TDD CRITICALITY ignore EXTENSION CellCapabilityContainer-TDD PRESENCE optional } CRITICALITY ignore EXTENSION SNA-Information { ID id-SNA-Information PRESENCE optional }, } NeighbouringTDDCellMeasurementInformation ::= SEQUENCE { uC-ID UC-ID. UARFCN UARFCN. cellParameterID CellParameterID, timeSlot TimeSlot OPTIONAL, midambleShiftAndBurstType MidambleShiftAndBurstType OPTIONAL, iE-Extensions ProtocolExtensionContainer { { NeighbouringTDDCellMeasurementInformationItem-ExtIEs} } OPTIONAL, } NeighbouringTDDCellMeasurementInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } NeighbouringTDDCellMeasurementInformationLCR ::= SEQUENCE { ``` ``` uC-ID UC-ID, uARFCN UARFCN, cellParameterID CellParameterID, OPTIONAL. timeSlotLCR TimeSlotLCR MidambleShiftLCR midambleShiftLCR OPTIONAL, ProtocolExtensionContainer { { iE-Extensions NeighbouringTDDCellMeasurementInformationLCRItem-ExtIEs} } OPTIONAL, } NeighbouringTDDCellMeasurementInformationLCRItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { } Neighbouring-LCR-TDD-CellInformation ::= SEQUENCE (SIZE (1.. maxNrOfLCRTDDNeighboursPerRNC,...)) OF Neighbouring-LCR-TDD-CellInformationItem Neighbouring-LCR-TDD-CellInformationItem ::= SEQUENCE { uARFCNforNt UARFCN, OPTIONAL, frameOffset FrameOffset cellParameterID sCTD-Indicator CellParameterID, SCTD-Indicator, cellIndividualOffset CellIndividualOffset OPTIONAL, OPTIONAL, pCCPCH-Power PCCPCH-Power OPTIONAL, restrictionStateIndicator RestrictionStateIndicator OPTIONAL, iE-Extensions ProtocolExtensionContainer { Neighbouring-LCR-TDD- pCCPCH-Power CellInformationItem-ExtIEs} } OPTIONAL, } Neighbouring-LCR-TDD-CellInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= { { ID id-CellCapabilityContainer-TDD-LCR CRITICALITY ignore EXTENSION CellCapabilityContainer-TDD-LCR PRESENCE optional } { ID id-SNA-Information CRITICALITY ignor { ID id-SNA-Information CRITICALITY ignore EXTENSION SNA-Information PRESENCE optional }, } NrOfDLchannelisationcodes ::= INTEGER (1..8) NrOfTransportBlocks ::= INTEGER (0..512) NRT-Load-Information-Value-IncrDecrThres ::= INTEGER(0..3) NRT-Load-Information-Value ::= INTEGER(0..3) NRTLoadInformationValue ::= SEQUENCE { uplinkNRTLoadInformationValue INTEGER(0..3), } UNCHANGED TEXT IS REMOVED ``` #### 9.3.6 Constant Definitions ``` __ ******************************** -- Constant definitions __ ******************** RNSAP-Constants { itu-t (0) identified-organization (4) etsi (0) mobileDomain (0) umts-Access (20) modules (3) rnsap (1) version1 (1) rnsap-Constants (4) } DEFINITIONS AUTOMATIC TAGS ::= BEGIN TMPORTS ProcedureCode, ProtocolIE-ID FROM RNSAP-CommonDataTypes; ``` ``` -- Elementary Procedures __ ******************************** id-commonTransportChannelResourcesInitialisation ProcedureCode ::= 0 id-commonTransportChannelResourcesRelease ProcedureCode ::= 1 \verb|id-compressedModeCommand|\\ ProcedureCode ::= 2 id-downlinkPowerControl ProcedureCode ::= 3 ProcedureCode ::= 4 id-downlinkPowerTimeslotControl id-downlinkSignallingTransfer ProcedureCode ::= 5 id-errorIndication ProcedureCode ::= 6 id-dedicatedMeasurementFailure ProcedureCode ::= 7 id-dedicatedMeasurementInitiation ProcedureCode ::= 8 id-dedicatedMeasurementReporting ProcedureCode ::= 9 id-dedicatedMeasurementTermination ProcedureCode ::= 10 ProcedureCode ::= 11 id-paging id-physicalChannelReconfiguration ProcedureCode ::= 12 id-privateMessage ProcedureCode ::= 13 id-radioLinkAddition ProcedureCode ::= 14 id-radioLinkCongestion ProcedureCode ::= 34 id-radioLinkDeletion ProcedureCode ::= 15 id-radioLinkFailure ProcedureCode ::= 16 id-radioLinkPreemption ProcedureCode ::= 17 id-radioLinkRestoration ProcedureCode ::= 18 id-radioLinkSetup ProcedureCode ::= 19 ProcedureCode ::= 20 id-relocationCommit id-synchronisedRadioLinkReconfigurationCancellation ProcedureCode ::= 21 id-synchronisedRadioLinkReconfigurationCommit ProcedureCode ::= 22 id-synchronisedRadioLinkReconfigurationPreparation ProcedureCode ::= 23 id-unSynchronisedRadioLinkReconfiguration ProcedureCode ::= 24 id-uplinkSignallingTransfer ProcedureCode ::= 25 id-commonMeasurementFailure ProcedureCode ::= 26 \verb"id-commonMeasurementInitiation" ProcedureCode ::= 27 id-commonMeasurementReporting ProcedureCode ::= 28 ProcedureCode ::= 29 id-commonMeasurementTermination id-informationExchangeFailure ProcedureCode ::= 30 id-informationExchangeInitiation ProcedureCode ::= 31 id-informationReporting ProcedureCode ::= 32 ProcedureCode ::= 33 \verb"id-informationExchangeTermination" id-reset ProcedureCode ::= 35 id-radioLinkActivation ProcedureCode ::= 36 id-gERANuplinkSignallingTransfer ProcedureCode ::= 37 id-radioLinkParameterUpdate ProcedureCode ::= 38 __ ********************* -- Lists __ ******************* maxCodeNumComp-1 INTEGER ::= 255 INTEGER ::= 256 maxRateMatching INTEGER ::= 256 {\tt maxNoCodeGroups} maxNoOfDSCHs INTEGER ::= 10 INTEGER ::= 10 maxNoOfDSCHsLCR INTEGER ::= 32 maxNoOfRB maxNoOfUSCHs INTEGER ::= 10 maxNoOfUSCHsLCR INTEGER ::= 10 maxNoTFCIGroups INTEGER ::= 256 maxNrOfTFCs INTEGER ::= 1024 INTEGER ::= 32 maxNrOfTFs maxNrOfCCTrCHs INTEGER ::= 16 INTEGER ::= 16 maxNrOfCCTrCHsLCR maxNrOfDCHs INTEGER ::= 128 maxNrOfDL-Codes INTEGER ::= 8 INTEGER ::= 240 maxNrOfDPCHs maxNrOfDPCHsLCR INTEGER ::= 240 maxNrOfErrors INTEGER ::= 256 maxNrOfMACcshSDU-Length INTEGER ::= 16 maxNrOfPoints INTEGER ::= 15 maxNrOfRLs INTEGER ::= 16 INTEGER ::= maxNrOfRLs maxNrOfRLSets maxNrOfRLSets-1 INTEGER ::= 15 -- maxNrOfRLSets - 1 INTEGER ::= 15 -- maxNrOfRLs - 1 maxNrOfRLs-1 maxNrOfRLs-2 INTEGER ::= 14 -- maxNrOfRLs - 2 maxNrOfULTs INTEGER ::= 15 {\tt maxNrOfULTsLCR} INTEGER ::= 6 INTEGER ::= 15 maxNrOfDLTs maxNrOfDLTsLCR INTEGER ::= 6 ``` ``` maxRNCinURA-1 INTEGER ::= 15 maxTTI-Count INTEGER ::= 4 maxCTFC INTEGER ::= 16777215 INTEGER ::= 10 maxNrOfNeighbouringRNCs INTEGER ::= 256 maxNrOfFDDNeighboursPerRNC maxNrOfGSMNeighboursPerRNC INTEGER ::= 256 INTEGER ::= 256 maxNrOfTDDNeighboursPerRNC maxNrOfFACHs INTEGER ::= 8 INTEGER ::= 256 maxNrOfLCRTDDNeighboursPerRNC maxFACHCountPlus1 INTEGER ::= 10 maxIBSEG INTEGER ::= 16 maxNrOfSCCPCHs INTEGER ::= 8 maxTFCT1Combs INTEGER ::= 512 INTEGER ::= 1024 maxTFCT2Combs maxTFCI2Combs-1 INTEGER ::= 1023 INTEGER ::= 6 maxTGPS INTEGER ::= 15 maxNrOfTS maxNrOfLevels INTEGER ::= 256 maxNoOfDSCHs-1 INTEGER ::= 9 maxNrOfTsLCR INTEGER ::= 6 INTEGER ::= 16 maxNoSat INTEGER ::= 8 maxNoGPSTypes maxNrOfMeasNCell INTEGER ::= 96 INTEGER ::= 95 -- maxNrOfMeasNCell - 1 maxNrOfMeasNCell-1 maxResetContext INTEGER ::= 250 maxNrOfHAROProc INTEGER ::= 8 maxNrOfHSSCCHCodes INTEGER ::= 4 INTEGER ::= 8 maxNrOfMACdFlows maxNrOfMACdFlows-1 INTEGER ::= 7 -- maxNrOfMACdFlows - 1 INTEGER ::= 8 maxNrOfPDUIndexes maxNrOfPDUIndexes-1 INTEGER ::= 7 -- maxNrOfPDUIndexes - 1
maxNrOfPrioQueues INTEGER ::= 8 INTEGER ::= 7 -- maxNrOfPrioQueues - 1 maxNrOfPrioQueues-1 maxNrOfSNAs INTEGER ::= 65535 __ ********************************* id-AllowedQueuingTime ProtocolIE-ID ::= 4 ProtocolIE-ID ::= 42 id-Allowed-Rate-Information ProtocolIE-ID ::= 309 \verb|id-AntennaColocationIndicator|\\ id-BindingID ProtocolIE-ID ::= 5 id-C-ID ProtocolIE-ID ::= 6 id-C-RNTI ProtocolIE-ID ::= 7 id-Cell-Capacity-Class-Value ProtocolTE-TD ::= 303 id-CFN ProtocolIE-ID ::= 8 ProtocolIE-ID ::= 9 id-CN-CS-DomainIdentifier id-CN-PS-DomainIdentifier ProtocolIE-ID ::= 10 ProtocolIE-ID ::= 11 id-Cause ProtocolIE-ID ::= 310 id-CoverageIndicator id-CriticalityDiagnostics ProtocolIE-ID ::= 20 id-ContextInfoItem-Reset ProtocolIE-ID ::= 211 ProtocolIE-ID ::= 21 id-D-RNTI id-D-RNTI-ReleaseIndication ProtocolIE-ID ::= 22 id-DCHs-to-Add-FDD ProtocolIE-ID ::= 26 id-DCHs-to-Add-TDD ProtocolIE-ID ::= 27 id-DCH-DeleteList-RL-ReconfPrepFDD ProtocolIE-ID ::= 30 ProtocolIE-ID ::= 31 id-DCH-DeleteList-RL-ReconfPrepTDD id-DCH-DeleteList-RL-ReconfRqstFDD ProtocolIE-ID ::= 32 id-DCH-DeleteList-RL-ReconfRqstTDD ProtocolIE-ID ::= 33 id-DCH-FDD-Information ProtocolIE-ID ::= 34 id-DCH-TDD-Information ProtocolIE-ID ::= 35 ProtocolIE-ID ::= 39 id-FDD-DCHs-to-Modify id-TDD-DCHs-to-Modify ProtocolIE-ID ::= 40 id-DCH-InformationResponse ProtocolIE-ID ::= 43 ProtocolIE-ID ::= 38 id-DCH-Rate-InformationItem-RL-CongestInd \verb|id-DL-CCTrCH-InformationAddItem-RL-ReconfPrepTDD|\\ ProtocolIE-ID ::= 44 id-DL-CCTrCH-InformationListIE-RL-ReconfReadyTDD ProtocolIE-ID ::= 45 \verb|id-DL-CCTrCH-InformationDelete]| tem-RL-Reconf \\ \verb|RqstTDD|| ProtocolIE-ID ::= 46 id-DL-CCTrCH-InformationItem-RL-SetupRgstTDD ProtocolIE-ID ::= 47 ProtocolIE-ID ::= 48 id-DL-CCTrCH-InformationListIE-PhyChReconfRqstTDD \verb|id-DL-CCTrCH-InformationListIE-RL-AdditionRspTDD|\\ ProtocolIE-ID ::= 49 \verb|id-DL-CCTrCH-InformationListIE-RL-SetupRspTDD|\\ ProtocolIE-ID ::= 50 \verb|id-DL-CCTrCH-InformationAddList-RL-ReconfPrepTDD|\\ ProtocolIE-ID ::= 51 ProtocolTE-TD ::= 52 id-DL-CCTrCH-InformationDeleteList-RL-ReconfRqstTDD \verb|id-DL-CCTrCH-InformationList-RL-SetupRqstTDD|\\ ProtocolIE-ID ::= 53 ``` | 3311 13 23.423 43.4.0 (2002-12) | On page 30 | |--|---| | id-FDD-DL-CodeInformation | ProtocolIE-ID ::= 54 | | id-DL-DPCH-Information-RL-ReconfPrepFDD | ProtocolIE-ID ::= 59 | | id-DL-DPCH-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 60 | | id-DL-DPCH-Information-RL-ReconfRqstFDD | ProtocolIE-ID ::= 61 | | id-DL-DPCH-InformationItem-PhyChReconfRqstTDD | ProtocolIE-ID ::= 62 | | id-DL-DPCH-InformationItem-RL-AdditionRspTDD | ProtocolIE-ID ::= 63 | | id-DL-DPCH-InformationItem-RL-SetupRspTDD | ProtocolIE-ID ::= 64 | | id-DL-DPCH-TimingAdjustment | ProtocolIE-ID ::= 278 | | id-DLReferencePower | ProtocolIE-ID ::= 67 | | id-DLReferencePowerList-DL-PC-Rqst | ProtocolIE-ID ::= 68 | | id-DL-ReferencePowerInformation-DL-PC-Rqst | ProtocolIE-ID ::= 69 | | id-DPC-Mode | ProtocolIE-ID ::= 12 | | id-DRXCycleLengthCoefficient | ProtocolIE-ID ::= 70 | | id-DedicatedMeasurementObjectType-DM-Fail-Ind | ProtocolIE-ID ::= 470 | | id-DedicatedMeasurementObjectType-DM-Fail | ProtocolIE-ID ::= 471 | | id-DedicatedMeasurementObjectType-DM-Rprt | ProtocolIE-ID ::= 71 | | id-DedicatedMeasurementObjectType-DM-Rqst | ProtocolIE-ID ::= 72 | | id-DedicatedMeasurementObjectType-DM-Rsp | ProtocolIE-ID ::= 73 | | id-DedicatedMeasurementType | ProtocolIE-ID ::= 74 | | id-FACH-InfoForUESelectedS-CCPCH-CTCH-ResourceRspFDD | ProtocolIE-ID ::= 82 | | id-FACH-InfoForUESelectedS-CCPCH-CTCH-ResourceRspTDD | ProtocolIE-ID ::= 83 | | id-Guaranteed-Rate-Information | ProtocolIE-ID ::= 41 | | id-IMSI | ProtocolIE-ID ::= 84 | | id-HCS-Prio | ProtocolIE-ID ::= 311 | | id-L3-Information | ProtocolIE-ID ::= 85 | | id-AdjustmentPeriod | ProtocolIE-ID ::= 90 | | id-MaxAdjustmentStep | ProtocolIE-ID ::= 91 | | id-MeasurementFilterCoefficient | ProtocolIE-ID ::= 92 | | id-MessageStructure | ProtocolIE-ID ::= 57 | | id-MeasurementID | ProtocolIE-ID ::= 93 | | id-Neighbouring-GSM-CellInformation | ProtocolIE-ID ::= 13 | | id-Neighbouring-UMTS-CellInformationItem | ProtocolIE-ID ::= 95 | | id-NRT-Load-Information-Value | ProtocolIE-ID ::= 305 | | id-NRT-Load-Information-Value-IncrDecrThres | ProtocolIE-ID ::= 306 | | id-PagingArea-PagingRqst | ProtocolIE-ID ::= 102 | | id-FACH-FlowControlInformation | ProtocolIE-ID ::= 103 | | id-PartialReportingIndicator | ProtocolIE-ID ::= 472 | | id-Permanent-NAS-UE-Identity | ProtocolIE-ID ::= 17 | | id-PowerAdjustmentType | ProtocolIE-ID ::= 107 | | id-RANAP-RelocationInformation | ProtocolIE-ID ::= 109 | | id-RL-Information-PhyChReconfRqstFDD | ProtocolIE-ID ::= 110 | | id-RL-Information-PhyChReconfRqstTDD | ProtocolIE-ID ::= 111 | | id-RL-Information-RL-AdditionRqstFDD | ProtocolIE-ID ::= 112 | | id-RL-Information-RL-AdditionRqstTDD | ProtocolIE-ID ::= 113 | | id-RL-Information-RL-DeletionRqst | ProtocolIE-ID ::= 114 | | id-RL-Information-RL-FailureInd | ProtocolIE-ID ::= 115 | | id-RL-Information-RL-ReconfPrepFDD | ProtocolIE-ID ::= 116 | | id-RL-Information-RL-RestoreInd | ProtocolIE-ID ::= 117 | | id-RL-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 118 | | id-RL-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 119 | | id-RL-InformationItem-RL-CongestInd | ProtocoliE-ID ::= 55 | | id-RL-InformationItem-DM-Rprt | ProtocolIE-ID ::= 120 | | id-RL-InformationItem-DM-Rqst | ProtocolIE-ID ::= 121 | | id-RL-InformationItem-DM-Rsp | ProtocolIE-ID ::= 122 | | id-RL-InformationItem-RL-PreemptRequiredInd | ProtocolIE-ID ::= 2 | | id-RL-InformationItem-RL-SetupRqstFDD | ProtocolIE-ID ::= 123 | | id-RL-InformationList-RL-CongestInd | ProtocoliE-ID ::= 56 | | id-RL-InformationList-RL-AdditionRgstFDD | ProtocolIE-ID ::= 124 | | id-RL-InformationList-RL-DeletionRgst | ProtocolIE-ID ::= 125 | | id-RL-InformationList-RL-PreemptRequiredInd | ProtocolIE-ID ::= 1 | | id-RL-InformationList-RL-ReconfPrepFDD | ProtocolIE-ID ::= 126 | | id-RL-InformationResponse-RL-AdditionRspTDD | ProtocolIE-ID ::= 127 | | id-RL-InformationResponse-RL-ReconfReadyTDD | ProtocolIE-ID ::= 128 | | id-RL-InformationResponse-RL-SetupRspTDD | ProtocolIE-ID ::= 129 | | id-RL-InformationResponseItem-RL-AdditionRspFDD | ProtocolIE-ID ::= 130 | | id-RL-InformationResponseItem-RL-ReconfReadyFDD | ProtocolIE-ID ::= 131 | | id-RL-InformationResponseItem-RL-ReconfRspFDD | ProtocoliE-ID ::= 132 | | id-RL-InformationResponseItem-RL-SetupRspFDD | ProtocoliE-ID ::= 132 ProtocoliE-ID ::= 133 | | id-RL-InformationResponseList-RL-AdditionRspFDD | ProtocoliE-ID ::= 133 ProtocoliE-ID ::= 134 | | id-RL-InformationResponseList-RL-ReconfReadyFDD | ProtocoliE-ID ::= 134 ProtocoliE-ID ::= 135 | | id-RL-InformationResponseList-RL-ReconfRspFDD | ProtocoliE-ID ::= 136 | | id-RL-InformationResponseLISt-REConfRspTDD | ProtocoliE-ID ::= 136 ProtocoliE-ID ::= 28 | | id-RL-InformationResponseList-RL-SetupRspFDD | ProtocolIE-ID ::= 28 ProtocolIE-ID ::= 137 | | id-RL-ReconfigurationFailure-RL-ReconfFail | ProtocoliE-ID ::= 137 | | id-RL-Set-InformationItem-DM-Rprt | ProtocolIE-ID ::= 141 ProtocolIE-ID ::= 143 | | id-RL-Set-InformationItem-DM-Rqst | ProtocolIE-ID ::= 143 ProtocolIE-ID ::= 144 | | id-RL-Set-InformationItem-DM-Rqst
id-RL-Set-InformationItem-DM-Rsp | ProtocolIE-ID ::= 144 ProtocolIE-ID ::= 145 | | id-RL-Set-InformationItem-DM-Rsp
id-RL-Set-Information-RL-FailureInd | ProtocolIE-ID ::= 145 ProtocolIE-ID ::= 146 | | id-RL-Set-Information-RL-FallureInd
id-RL-Set-Information-RL-RestoreInd | ProtocollE-ID ::= 146 ProtocollE-ID ::= 147 | | TO NA SECTIMOLISHED NATIONAL N | IIOCOCOIIE-ID ··= I4/ | | 3311 13 23.423 43.4.0 (2002-12) | On page 37 | |--|---| | id-RL-Set-Successful-InformationItem-DM-Fail | ProtocolIE-ID ::= 473 | |
id-RL-Set-Unsuccessful-InformationItem-DM-Fail | ProtocolIE-ID ::= 474 | | id-RL-Set-Unsuccessful-InformationItem-DM-Fail-Ind | ProtocolIE-ID ::= 475 | | id-RL-Successful-InformationItem-DM-Fail | ProtocolIE-ID ::= 476 | | id-RL-Unsuccessful-InformationItem-DM-Fail | ProtocolIE-ID ::= 477 | | id-RL-Unsuccessful-InformationItem-DM-Fail-Ind | ProtocolIE-ID ::= 478 | | id-ReportCharacteristics | ProtocolIE-ID ::= 152 | | id-Reporting-Object-RL-FailureInd | ProtocolIE-ID ::= 153 | | id-Reporing-Object-RL-RestoreInd | ProtocolIE-ID ::= 154 | | id-RT-Load-Value | ProtocolIE-ID ::= 307 | | id-RT-Load-Value-IncrDecrThres | ProtocolIE-ID ::= 308 | | id-S-RNTI
id-ResetIndicator | ProtocolIE-ID ::= 155 ProtocolIE-ID ::= 244 | | id-RNC-ID | ProtocoliE-ID ::= 244 ProtocolIE-ID ::= 245 | | id-SAI | ProtocolIE-ID ::= 156 | | id-SRNC-ID | ProtocolIE-ID ::= 157 | | id-SuccessfulRL-InformationResponse-RL-AdditionFailureFDD | ProtocolIE-ID ::= 159 | | id-SuccessfulRL-InformationResponse-RL-SetupFailureFDD | ProtocolIE-ID ::= 160 | | id-TransportBearerID | ProtocolIE-ID ::= 163 | | id-TransportBearerRequestIndicator | ProtocolIE-ID ::= 164 | | id-TransportLayerAddress | ProtocolIE-ID ::= 165 | | id-TypeOfError | ProtocolIE-ID ::= 140 | | id-UC-ID | ProtocolIE-ID ::= 166 | | id-UL-CCTrCH-AddInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 167 | | id-UL-CCTrCH-InformationAddList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 169 | | id-UL-CCTrCH-InformationItem-RL-SetupRqstTDD | ProtocolIE-ID ::= 171 | | id-UL-CCTrCH-InformationList-RL-SetupRqstTDD | ProtocolIE-ID ::= 172 | | id-UL-CCTrCH-InformationListIE-PhyChReconfRqstTDD | ProtocolIE-ID ::= 173 ProtocolIE-ID ::= 174 | | <pre>id-UL-CCTrCH-InformationListIE-RL-AdditionRspTDD id-UL-CCTrCH-InformationListIE-RL-ReconfReadyTDD</pre> | ProtocoliE-ID ::= 174 ProtocolIE-ID ::= 175 | | id-UL-CCTrCH-InformationListIE-RL-SetupRspTDD | ProtocoliE-ID ::= 175 ProtocolIE-ID ::= 176 | | id-UL-DPCH-Information-RL-ReconfPrepFDD | ProtocolIE-ID ::= 177 | | id-UL-DPCH-Information-RL-ReconfigstFDD | ProtocolIE-ID ::= 178 | | id-UL-DPCH-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 179 | | id-UL-DPCH-InformationItem-PhyChReconfRqstTDD | ProtocolIE-ID ::= 180 | | id-UL-DPCH-InformationItem-RL-AdditionRspTDD | ProtocolIE-ID ::= 181 | | id-UL-DPCH-InformationItem-RL-SetupRspTDD | ProtocolIE-ID ::= 182 | | id-UL-DPCH-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 183 | | id-UL-SIRTarget | ProtocolIE-ID ::= 184 | | id-URA-Information | ProtocolIE-ID ::= 185 | | id-UnsuccessfulRL-InformationResponse-RL-AdditionFailureFDD | ProtocolIE-ID ::= 188 | | id-UnsuccessfulRL-InformationResponse-RL-SetupFailureFDD | ProtocolIE-ID ::= 189 | | id-UnsuccessfulRL-InformationResponse-RL-SetupFailureTDD | ProtocolIE-ID ::= 190 | | id-Active-Pattern-Sequence-Information | ProtocolIE-ID ::= 193 | | id-AdjustmentRatio
id-CauseLevel-RL-AdditionFailureFDD | ProtocolIE-ID ::= 194 ProtocolIE-ID ::= 197 | | id-CauseLevel-RL-AdditionFailureTDD | ProtocoliE-ID ::= 197 | | id-CauseLevel-RL-ReconfFailure | ProtocoliE-ID ::= 198 | | id-CauseLevel-RL-SetupFailureFDD | ProtocolIE-ID ::= 200 | | id-CauseLevel-RL-SetupFailureTDD | ProtocolIE-ID ::= 201 | | id-DL-CCTrCH-InformationDeleteItem-RL-ReconfPrepTDD | ProtocolIE-ID ::= 205 | | id-DL-CCTrCH-InformationModifyItem-RL-ReconfPrepTDD | ProtocolIE-ID ::= 206 | | id-DL-CCTrCH-InformationModifyItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 207 | | id-DL-CCTrCH-InformationDeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 208 | | id-DL-CCTrCH-InformationModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 209 | | id-DL-CCTrCH-InformationModifyList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 210 | | id-DL-DPCH-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 212 | | id-DL-DPCH-InformationDeleteListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 213 | | id-DL-DPCH-InformationModifyListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 214 | | id-DSCHs-to-Add-TDD
id-DSCHs-to-Add-FDD | ProtocolIE-ID ::= 215 ProtocolIE-ID ::= 216 | | id-DSCH-DeleteList-RL-ReconfPrepTDD | ProtocoliE-ID ::= 217 | | id-DSCH-Delete-RL-ReconfPrepFDD | ProtocoliE-ID ::= 218 | | id-DSCH-FDD-Information | ProtocolIE-ID ::= 219 | | id-DSCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 220 | | id-DSCH-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 221 | | id-DSCH-TDD-Information | ProtocolIE-ID ::= 222 | | id-DSCH-FDD-InformationResponse | ProtocolIE-ID ::= 223 | | id-DSCH-Information-RL-SetupRqstFDD | ProtocolIE-ID ::= 226 | | id-DSCH-ModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 227 | | id-DSCH-Modify-RL-ReconfPrepFDD | ProtocolIE-ID ::= 228 | | id-DSCH-Specific-FDD-Additional-List | ProtocolIE-ID ::= 324 | | id-DSCHsToBeAddedOrModified-FDD | ProtocolIE-ID ::= 229 | | id-DSCHTOBeAddedOrModifiedList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 230 | | id-EnhancedDSCHPC | ProtocolIE-ID ::= 29 | | id-EnhancedDSCHPCIndicator
id-GA-Cell | ProtocolIE-ID ::= 225 ProtocolIE-ID ::= 232 | | id-GA-CellAdditionalShapes | ProtocoliE-ID ::= 232 ProtocolIE-ID ::= 3 | | id-SSDT-CellIDforEDSCHPC | ProtocoliE-ID ::= 3 | | | | | (average) | on page co | |---|---| | id-Transmission-Gap-Pattern-Sequence-Information | ProtocolIE-ID ::= 255 | | id-UL-CCTrCH-DeleteInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 256 | | id-UL-CCTrCH-ModifyInformation-RL-ReconfPrepTDD | ProtocolIE-ID ::= 257 | | id-UL-CCTrCH-InformationModifyItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 258 | | id-UL-CCTrCH-InformationDeleteList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 259 | | id-UL-CCTrCH-InformationModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 260 | | id-UL-CCTrCH-InformationModifyList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 261 | | id-UL-CCTrCH-InformationDeleteItem-RL-ReconfRqstTDD | ProtocolIE-ID ::= 262 | | id-UL-CCTrCH-InformationDeleteList-RL-ReconfRqstTDD | ProtocolIE-ID ::= 263 | | id-UL-DPCH-InformationDeleteListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 264 ProtocolIE-ID ::= 265 | | <pre>id-UL-DPCH-InformationModifyListIE-RL-ReconfReadyTDD id-UnsuccessfulRL-InformationResponse-RL-AdditionFailureTDD</pre> | ProtocoliE-ID ::= 266 | | id-USCHs-to-Add | ProtocoliE-ID ::= 267 | | id-USCH-DeleteList-RL-ReconfPrepTDD | ProtocoliE-ID ::= 268 | | id-USCH-InformationListIE-RL-AdditionRspTDD | ProtocolIE-ID ::= 269 | | id-USCH-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 270 | | id-USCH-Information | ProtocolIE-ID ::= 271 | | id-USCH-ModifyList-RL-ReconfPrepTDD | ProtocolIE-ID ::= 272 | | id-USCHToBeAddedOrModifiedList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 273 | | id-DL-Physical-Channel-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 274 | | id-UL-Physical-Channel-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 275 | | id-ClosedLoopModel-SupportIndicator | ProtocolIE-ID ::= 276 | | id-ClosedLoopMode2-SupportIndicator | ProtocolIE-ID ::= 277 | | id-STTD-SupportIndicator | ProtocolIE-ID ::= 279 | | id-CFNReportingIndicator | ProtocolIE-ID ::= 14 | | id-CNOriginatedPage-PagingRqst | ProtocolIE-ID ::= 23 | | id-InnerLoopDLPCStatus | ProtocolIE-ID ::= 24 | | id-PropagationDelay | ProtocolIE-ID ::= 25 | | id-RxTimingDeviationForTA | ProtocolIE-ID ::= 36 | | id-timeSlot-ISCP | ProtocolIE-ID ::= 37 | | id-CCTrCH-InformationItem-RL-FailureInd | ProtocolIE-ID ::= 15 | | id-CCTrCH-InformationItem-RL-RestoreInd | ProtocolIE-ID ::= 16 | | id-CommonMeasurementAccuracy | ProtocolIE-ID ::= 280 | | id-CommonMeasurementObjectType-CM-Rprt | ProtocolIE-ID ::= 281 | | id-CommonMeasurementObjectType-CM-Rqst | ProtocolIE-ID ::= 282 ProtocolIE-ID ::= 283 | | <pre>id-CommonMeasurementObjectType-CM-Rsp id-CommonMeasurementType</pre> | ProtocoliE-ID ::= 284 | | id-CongestionCause | ProtocoliE-ID ::= 18 | | id-SFN | ProtocoliE-ID ::= 285 | | id-SFNReportingIndicator | ProtocolIE-ID ::= 286 | | id-InformationExchangeID | ProtocolIE-ID ::= 287 | | id-InformationExchangeObjectType-InfEx-Rprt | ProtocolIE-ID ::= 288 | | id-InformationExchangeObjectType-InfEx-Rqst | ProtocolIE-ID ::= 289 | | id-InformationExchangeObjectType-InfEx-Rsp | ProtocolIE-ID ::= 290 | | id-InformationReportCharacteristics | ProtocolIE-ID ::= 291 | | id-InformationType | ProtocolIE-ID ::= 292 | | id-neighbouring-LCR-TDD-CellInformation | ProtocolIE-ID ::= 58 | | id-DL-Timeslot-ISCP-LCR-Information-RL-SetupRqstTDD | ProtocolIE-ID ::= 65 | | id-RL-LCR-InformationResponse-RL-SetupRspTDD | ProtocolIE-ID ::= 66 | | id-UL-CCTrCH-LCR-InformationListIE-RL-SetupRspTDD | ProtocolIE-ID ::= 75 | | id-UL-DPCH-LCR-InformationItem-RL-SetupRspTDD | ProtocolIE-ID ::= 76 | | id-DL-CCTrCH-LCR-InformationListIE-RL-SetupRspTDD | ProtocolIE-ID ::= 77 | | id-DL-DPCH-LCR-InformationItem-RL-SetupRspTDD | ProtocolIE-ID ::= 78 | | id-DSCH-LCR-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 79 | | id-USCH-LCR-InformationListIEs-RL-SetupRspTDD | ProtocolIE-ID ::= 80 | | id-DL-Timeslot-ISCP-LCR-Information-RL-AdditionRqstTDD | ProtocolIE-ID ::= 81 | | id-RL-LCR-InformationResponse-RL-AdditionRspTDD | ProtocolIE-ID ::= 86 ProtocolIE-ID ::= 87 | | id-UL-CCTrCH-LCR-InformationListIE-RL-AdditionRspTDD
id-UL-DPCH-LCR-InformationItem-RL-AdditionRspTDD | ProtocoliE-ID ::= 87 | | id-DL-CCTrCH-LCR-InformationListIE-RL-AdditionRspTDD | ProtocoliE-ID ::= 88 ProtocolIE-ID ::= 89 | | id-DL-DPCH-LCR-InformationItem-RL-AdditionRspTDD | ProtocoliE-ID ::= 89 | | id-DSCH-LCR-InformationListIEs-RL-AdditionRspTDD | ProtocoliE-ID ::= 96 | | id-USCH-LCR-InformationListIEs-RL-AdditionRspTDD | ProtocoliE-ID ::= 97 | | id-UL-DPCH-LCR-InformationAddListIE-RL-ReconfReadyTDD | ProtocoliE-ID ::= 98 | | id-UL-Timeslot-LCR-InformationModifyList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 100 | | id-DL-DPCH-LCR-InformationAddListIE-RL-ReconfReadyTDD | ProtocolIE-ID ::= 101 | | id-DL-Timeslot-LCR-InformationModifyList-RL-ReconfReadyTDD | ProtocolIE-ID ::= 104 | | id-UL-Timeslot-LCR-InformationList-PhyChReconfRgstTDD
| ProtocolIE-ID ::= 105 | | id-DL-Timeslot-LCR-InformationList-PhyChReconfRqstTDD | ProtocolIE-ID ::= 106 | | id-timeSlot-ISCP-LCR-List-DL-PC-Rqst-TDD | ProtocolIE-ID ::= 138 | | id-TSTD-Support-Indicator-RL-SetupRqstTDD | ProtocolIE-ID ::= 139 | | id-RestrictionStateIndicator | ProtocolIE-ID ::= 142 | | id-Load-Value | ProtocolIE-ID ::= 233 | | id-Load-Value-IncrDecrThres | ProtocolIE-ID ::= 234 | | id-OnModification | ProtocolIE-ID ::= 235 | | id-Received-Total-Wideband-Power-Value | ProtocolIE-ID ::= 236 | | id-Received-Total-Wideband-Power-Value-IncrDecrThres | ProtocolIE-ID ::= 237 | | id-SFNSFNMeasurementThresholdInformation | ProtocolIE-ID ::= 238 | | id-Transmitted-Carrier-Power-Value | ProtocolIE-ID ::= 239 | | | | # 3GPP TS 25.423 v5.4.0 (2002-12) # CR page 39 | id-Transmitted-Carrier-Power-Value-IncrDecrThres | ProtocolIE-ID ::= 240 | |---|---| | ${ t id} ext{-TUTRANGPSMeasurementThresholdInformation}$ | ProtocolIE-ID ::= 241 | | id-UL-Timeslot-ISCP-Value | ProtocolIE-ID ::= 242 | | id-UL-Timeslot-ISCP-Value-IncrDecrThres | ProtocolIE-ID ::= 243 | | id-Rx-Timing-Deviation-Value-LCR | ProtocolIE-ID ::= 293 | | id-DPC-Mode-Change-SupportIndicator | ProtocolIE-ID ::= 19 | | id-SplitType | ProtocolIE-ID ::= 247 | | id-LengthOfTFCI2 | ProtocolIE-ID ::= 295 | | id-PrimaryCCPCH-RSCP-RL-ReconfPrepTDD | ProtocolIE-ID ::= 202 | | id-DL-TimeSlot-ISCP-Info-RL-ReconfPrepTDD | ProtocolIE-ID ::= 203 | | id-DL-Timeslot-ISCP-LCR-Information-RL-ReconfPrepTDD | ProtocolIE-ID ::= 204 | | id-DSCH-RNTI | ProtocolIE-ID ::= 249 | | id-DL-PowerBalancing-Information | ProtocolIE-ID ::= 296 | | id-DL-PowerBalancing-ActivationIndicator | ProtocolIE-ID ::= 297 | | id-DL-PowerBalancing-UpdatedIndicator | ProtocolIE-ID ::= 298 | | id-DL-ReferencePowerInformation | ProtocolIE-ID ::= 299 | | id-Enhanced-PrimaryCPICH-EcNo | ProtocolIE-ID ::= 224 | | id-IPDL-TDD-ParametersLCR | ProtocolIE-ID ::= 252 | | id-CellCapabilityContainer-FDD | ProtocolIE-ID ::= 300 | | id-CellCapabilityContainer-TDD | ProtocolIE-ID ::= 301 | | id-CellCapabilityContainer-TDD-LCR | ProtocolIE-ID ::= 302 | | id-RL-Specific-DCH-Info | ProtocolIE-ID ::= 317 | | id-RL-ReconfigurationRequestFDD-RL-InformationList | ProtocolIE-ID ::= 318 | | id-RL-ReconfigurationRequestFDD-RL-Information-IEs | ProtocolIE-ID ::= 319 | | id-RL-ReconfigurationReadyTDD-RL-Information | ProtocolIE-ID ::= 320 | | id-RL-ReconfigurationRequestTDD-RL-Information | ProtocolIE-ID ::= 321 | | id-CommonTransportChannelResourcesInitialisationNotRequired | ProtocolIE-ID ::= 250 | | id-DelayedActivation | ProtocolIE-ID ::= 312 | | id-DelayedActivationList-RL-ActivationCmdFDD | ProtocolIE-ID ::= 313 | | id-DelayedActivationInformation-RL-ActivationCmdFDD | ProtocolIE-ID ::= 314 | | id-DelayedActivationList-RL-ActivationCmdTDD | ProtocolIE-ID ::= 315 | | id-DelayedActivationInformation-RL-ActivationCmdTDD | ProtocolIE-ID ::= 316 | | id-neighbouringTDDCellMeasurementInformationLCR | ProtocolIE-ID ::= 251 | | id-UL-SIR-Target-CCTrCH-InformationItem-RL-SetupRspTDD | ProtocoliE-ID ::= 251 ProtocoliE-ID ::= 150 | | | ProtocoliE-ID ::= 150 | | <pre>id-UL-SIR-Target-CCTrCH-LCR-InformationItem-RL-SetupRspTDD id-PrimCCPCH-RSCP-DL-PC-RqstTDD</pre> | ProtocoliE-ID ::= 451 | | | | | id-HSDSCH-FDD-Information
id-HSDSCH-FDD-Information-Response | ProtocolIE-ID ::= 452 ProtocolIE-ID ::= 453 | | _ | | | id-HSDSCH-FDD-Information-to-Add | ProtocolIE-ID ::= 454 | | id-HSDSCH-FDD-Information-to-Delete | ProtocolIE-ID ::= 455 | | id-HSDSCH-FDD-Update-Information | ProtocolIE-ID ::= 466 | | id-HSDSCH-Information-to-Modify | ProtocolIE-ID ::= 456 | | id-HSDSCH-RNTI | ProtocolIE-ID ::= 457 | | id-HSDSCH-TDD-Information | ProtocolIE-ID ::= 458 | | id-HSDSCH-TDD-Information-Response | ProtocolIE-ID ::= 459 | | id-HSDSCH-TDD-Information-Response-LCR | ProtocolIE-ID ::= 460 | | id-HSDSCH-TDD-Information-to-Add | ProtocolIE-ID ::= 461 | | id-HSDSCH-TDD-Information-to-Delete | ProtocolIE-ID ::= 462 | | id-HSDSCH-TDD-Update-Information | ProtocolIE-ID ::= 467 | | id-HSPDSCH-RL-ID | ProtocolIE-ID ::= 463 | | id-Angle-Of-Arrival-Value-LCR | ProtocolIE-ID ::= 148 | | id-TrafficClass | ProtocolIE-ID ::= 158 | | id-TFCI-PC-SupportIndicator | ProtocolIE-ID ::= 248 | | id-Qth-Parameter | ProtocolIE-ID ::= 253 | | | | | id-PDSCH-RL-ID | ProtocolIE-ID ::= 323 | | id-TimeSlot-RL-SetupRspTDD | ProtocolIE-ID ::= 325 | | id-TimeSlot-RL-SetupRspTDD
id-GERAN-Cell-Capability | ProtocolIE-ID ::= 325
ProtocolIE-ID ::= 468 | | id-TimeSlot-RL-SetupRspTDD
id-GERAN-Cell-Capability
id-GERAN-Classmark | ProtocolIE-ID ::= 325
ProtocolIE-ID ::= 468
ProtocolIE-ID ::= 469 | | id-TimeSlot-RL-SetupRspTDD
id-GERAN-Cell-Capability
id-GERAN-Classmark
id-DSCH-InitialWindowSize | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 | | <pre>id-TimeSlot-RL-SetupRspTDD id-GERAN-Cell-Capability id-GERAN-Classmark id-DSCH-InitialWindowSize id-UL-Synchronisation-Parameters-LCR</pre> | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 ProtocolIE-ID ::= 464 | | <pre>id-TimeSlot-RL-SetupRspTDD id-GERAN-Cell-Capability id-GERAN-Classmark id-DSCH-InitialWindowSize id-UL-Synchronisation-Parameters-LCR id-SNA-Information</pre> | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 ProtocolIE-ID ::= 464 ProtocolIE-ID ::= 479 | | <pre>id-TimeSlot-RL-SetupRspTDD id-GERAN-Cell-Capability id-GERAN-Classmark id-DSCH-InitialWindowSize id-UL-Synchronisation-Parameters-LCR id-SNA-Information id-MAChs-ResetIndicator</pre> | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 ProtocolIE-ID ::= 464 ProtocolIE-ID ::= 479 ProtocolIE-ID ::= 465 | | <pre>id-TimeSlot-RL-SetupRspTDD id-GERAN-Cell-Capability id-GERAN-Classmark id-DSCH-InitialWindowSize id-UL-Synchronisation-Parameters-LCR id-SNA-Information id-MAChs-ResetIndicator id-TDD-DL-DPCH-TimeSlotFormatModifyItem-LCR-RL-ReconfReadyTDD</pre> | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 ProtocolIE-ID ::= 464 ProtocolIE-ID ::= 479 ProtocolIE-ID ::= 465 ProtocolIE-ID ::= 481 | | <pre>id-TimeSlot-RL-SetupRspTDD id-GERAN-Cell-Capability id-GERAN-Classmark id-DSCH-InitialWindowSize id-UL-Synchronisation-Parameters-LCR id-SNA-Information id-MAChs-ResetIndicator id-TDD-DL-DPCH-TimeSlotFormatModifyItem-LCR-RL-ReconfReadyTDD id-TDD-UL-DPCH-TimeSlotFormatModifyItem-LCR-RL-ReconfReadyTDD</pre> | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 ProtocolIE-ID ::= 464 ProtocolIE-ID ::= 465 ProtocolIE-ID ::= 481 ProtocolIE-ID ::= 482 | | <pre>id-TimeSlot-RL-SetupRspTDD id-GERAN-Cell-Capability id-GERAN-Classmark id-DSCH-InitialWindowSize id-UL-Synchronisation-Parameters-LCR id-SNA-Information id-MAChs-ResetIndicator id-TDD-DL-DPCH-TimeSlotFormatModifyItem-LCR-RL-ReconfReadyTDD</pre> | ProtocolIE-ID ::= 325 ProtocolIE-ID ::= 468 ProtocolIE-ID ::= 469 ProtocolIE-ID ::= 480 ProtocolIE-ID ::= 464 ProtocolIE-ID ::= 479 ProtocolIE-ID ::= 465 ProtocolIE-ID ::= 481 | END