TSG RAN Meeting #18 RP-020765 New Orleans, Louisiana, USA, 3 - 6 December, 2002 Title CRs (Rel-5 only) to 25.423 and 25.433 on Clarification of the usage of HS- **DSCH-RNTI** Source TSG RAN WG3 Agenda Item 7.3.5 | RAN3 Tdoc | Spec | curr.
Vers. | new Vers. | REL | CR | Rev | Cat | Title | Work item | |-----------|--------|----------------|-----------|-------|-----|-----|-----|---|--------------| | R3-022566 | 25.423 | 5.3.0 | 5.4.0 | REL-5 | 744 | 1 | F | Clarfication of the usage of HS-DSCH-RNTI | HSDPA-lublur | | R3-022567 | 25.433 | 5.2.0 | 5.3.0 | REL-5 | 772 | 1 | F | Clarfication of the usage of HS-DSCH-RNTI | HSDPA-lublur | ## 3GPP TSG-RAN3 Meeting #33 Sophia Antipolis, France, 11th – 15th November 2002 | | | | CHANG | GE REQ | UES | Т | | CR-Form-\ | |------------------------|--------------|---|---|------------------|-------------|----------------|---|----------------------| | ж | 25. | <mark>423</mark> C | R <mark>744</mark> | жrev | 1 ** | Current ver | 5.3.0 | æ | | For <u>HELP</u> | on using t | his form, s | see bottom of | this page or | look at | the pop-up tex | t over the 光 sy | /mbols. | | Proposed char | nge affect | 's: UIC | C apps# | ME | Radio | Access Netwo | ork X Core N | letwork | | Title: | ₩ Cla | rification o | of the usage o | of HS-DSCH-I | RNTI | | | | | Source: | ₩ RAI | N WG3 | | | | | | | | Work item cod | e:# HSI | DPA-lublu | ır | | | Date: ₩ | 11/10/2002 | | | Category: | Detai | F (correcti
A (corresp
B (addition
C (function
D (editorial
led explan | following categon) conds to a correct of feature), nal modification I modification) ations of the atore TR 21.900. | ection in an ear | | 2 | Rel-5 f the following re (GSM Phase 2 (Release 1996 (Release 1996 (Release 1996 (Release 4) (Release 5) (Release 6) | ?)
5)
7)
8) | | Reason for cha | ange: Ж | the SYN | ICHRONISE | RADIO LIN | K RECC | | t should be cla
ON PREPARA
eted. | | | Summary of ch | nango: ¥ | The proc | redure text is | extended to | clarify th | e handling of | the HS-DSCH | .RNTI | | Reason for change: # | The usage of the HS-DSCH-RNTI is not clearly defined. It should be clarified in the SYNCHRONISED RADIO LINK RECONFIGURATION PREPARATION under which conditions the HS-DSCH-RNTI shall be deleted. | |---------------------------------|---| | Summary of change: ₩ | The procedure text is extended to clarify the handling of the HS-DSCH-RNTI. | | Summary or Ghange: 88 | Impact Analysis: Impact assessment towards the previous version of the specification (same release): This CR has isolated impact with the previous version of the specification (same release) because HSDPA only is affected. This CR has an impact under functional point of view. The impact can be considered isolated because the change affects one function namely HSDPA | | | • | | Consequences if # not approved: | If the CR would not be approved the handling of the HS-DSCH-RNTI would remain ambiguous. | | Clauses affected: | 8.3.4 , 8.3.4.2 | | |-----------------------|--|--------------------------| | Other specs affected: | Y N X Other core specifications Test specifications O&M Specifications | ₩ CR772 TS 25.433 v5.2.0 | | Other comments: | * | | #### How to create CRs using this form: Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary: - 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to. - 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. - 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. # 8.3.4 Synchronised Radio Link Reconfiguration Preparation #### 8.3.4.1 General The Synchronised Radio Link Reconfiguration Preparation procedure is used to prepare a new configuration of Radio Link(s) related to one UE-UTRAN connection within a DRNS. This procedure shall use the signalling bearer connection for the relevant UE Context. The Synchronised Radio Link Reconfiguration Preparation procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1. #### 8.3.4.2 Successful Operation Figure 10: Synchronised Radio Link Reconfiguration Preparation procedure, Successful Operation The Synchronised Radio Link Reconfiguration Preparation procedure is initiated by the SRNC by sending the RADIO LINK RECONFIGURATION PREPARE message to the DRNC. Upon reception, the DRNS shall reserve necessary resources for the new configuration of the Radio Link(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. If the RADIO LINK RECONFIGURATION PREPARE message includes the *Allowed Queuing Time* IE the DRNS may queue the request the time corresponding to the value of the *Allowed Queuing Time* IE before starting to execute the request. The DRNS shall prioritise resource allocation for the RL(s) to be modified according to Annex A. #### **DCH Modification:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs To Modify* IEs, the DRNS shall treat them each as follows: - If the *DCHs To Modify* IE includes multiple *DCH Specific Info* IEs then the DRNS shall treat the DCHs in the *DCHs To Modify* IE as a set of co-ordinated DCHs. The DRNS shall include these DCHs in the new configuration only if it can include all of them in the new configuration. - If the *DCHs To Modify* IE includes the *UL FP Mode* IE for a DCH or a set of co-ordinated DCHs to be modified, the DRNS shall apply the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCHs To Modify* IE includes the *ToAWS* IE for a DCH or a set of co-ordinated DCHs to be modified, the DRNS shall apply the new ToAWS in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCHs To Modify* IE includes the *ToAWE* IE for a DCH or a set of co-ordinated DCHs to be modified, the DRNS shall apply the new ToAWE in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCH Specific Info* IE includes the *Frame Handling Priority* IE for a DCH to be modified, the DRNS should store this information for this DCH in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the radio interface in congestion situations within the DRNS once the new configuration has been activated. - If the *DCH Specific Info* IE includes the *Traffic Class* IE for a DCH to be modified, the DRNS should store this information for this DCH in the new configuration. The *Traffic Class* IE should be used to determine the transport bearer characteristics to apply between DRNC and Node B for the related DCH or set of co-ordinated DCHs. - If the *DCH Specific Info* IE includes the *Transport Format Set* IE for the UL of a DCH to be modified, the DRNS shall apply the new Transport Format Set in the Uplink of this DCH in the new configuration. - If the *DCH Specific Info* IE includes the *Transport Format Set* IE for the DL of a DCH to be modified, the DRNS shall apply the new Transport Format Set in the Downlink of this DCH in the new configuration. - [FDD If, in the DCH Specific Info IE, the DRAC Control IE is present and set to "requested" for at least one DCH and if the DRNS supports the DRAC, the DRNC shall indicate in the RADIO LINK RECONFIGURATION READY message the Secondary CCPCH Info IE for the FACH where the DRAC information is sent, for each Radio Link established in a cell where DRAC is active. If the DRNS does not support DRAC, DRNC shall not provide these IEs in the RADIO LINK RECONFIGURATION READY message.] - [TDD If the *DCH Specific Info* IE includes the *CCTrCH ID* IE for the UL, the DRNS shall map the DCH onto the referenced UL CCTrCH.] - [TDD If the *DCH Specific Info* IE includes the *CCTrCH ID* IE for the DL, the DRNS shall map the DCH onto the referenced DL CCTrCH.] - If the *DCH Specific Info* IE includes the *Guaranteed Rate Information* IE, the DRNS shall treat the included IEs according to the following: - If the *Guaranteed Rate Information* IE includes the *Guaranteed UL Rate* IE, the DRNS shall apply the new Guaranteed Rate in the uplink of this DCH in the new configuration. The DRNS may decide to request the SRNC to limit the user rate in the uplink of the DCH at any point
in time after activating the new configuration. The DRNS may request the SRNC to reduce the user rate of the uplink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *Guaranteed Rate Information* IE includes the *Guaranteed DL Rate* IE, the DRNS shall apply the new Guaranteed Rate in the downlink of this DCH in the new configuration. The DRNS may decide to request the SRNC to limit the user rate in the downlink of the DCH at any point in time after activating the new configuration. The DRNS may request the SRNC to reduce the user rate of the downlink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to reduce the user rate between the maximum bit rate and the guaranteed bit rate. #### **DCH Addition:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs To Add* IEs, the DRNS shall treat them each as follows: - The DRNS shall reserve necessary resources for the new configuration of the Radio Link(s) according to the parameters given in the message and include these DCH in the new configuration. - If the *DCHs To Add* IE includes a *DCHs To Add* IE with multiple *DCH Specific Info* IEs, the DRNS shall treat the DCHs in the *DCHs To Add* IE as a set of co-ordinated DCHs. The DRNS shall include these DCHs in the new configuration only if it can include all of them in the new configuration. - [FDD For DCHs which do not belong to a set of co-ordinated DCHs with the *QE-Selector* IE set to "selected", the Transport channel BER from that DCH shall be the base for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH the Physical channel BER shall be used for the QE, ref. [4]. If the *QE-Selector* IE is set to "non-selected", the Physical channel BER shall be used for the QE in the UL data frames, ref. [4].] - [FDD For a set of co-ordinated DCHs the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" shall be used for the QE in the UL data frames, ref. [4]. [FDD If no Transport channel BER is available for the selected DCH the Physical channel BER shall be used for the QE, ref. [4]. If all DCHs have the *QE-Selector* IE set to "non-selected" the Physical channel BER shall be used for the QE, ref. [4].] - The DRNS should store the *Frame Handling Priority* IE received for a DCH to be added in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the radio interface in congestion situations within the DRNS once the new configuration has been activated. - The DRNS should store the *Traffic Class* IE received for a DCH to be added in the new configuration. The *Traffic Class* IE should be used to determine the transport bearer characteristics to apply between DRNC and Node B for the related DCH or set of co-ordinated DCHs. - The DRNS shall use the included *UL FP Mode* IE for a DCH or a set of co-ordinated DCHs to be added as the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - The DRNS shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - The DRNS shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - [TDD The DRNC shall include the *Secondary CCPCH Info TDD* IE in the RADIO LINK RECONFIGURATION READY message if at least one DSCH or USCH exists in the new configuration.] - [FDD If the *DRAC Control* IE is set to "requested" in the *DCH Specific Info* IE for at least one DCH and if the DRNS supports the DRAC, the DRNC shall indicate in the RADIO LINK RECONFIGURATION READY message the *Secondary CCPCH Info* IE for the FACH where the DRAC information is sent, for each Radio Link supported by a cell where DRAC is active. If the DRNS does not support DRAC, the DRNC shall not provide these IEs in the RADIO LINK RECONFIGURATION READY message.] - If the *DCH Specific Info* IE includes the *Guaranteed Rate Information* IE, the DRNS shall treat the included IEs according to the following: - If the *Guaranteed Rate Information* IE includes the *Guaranteed UL Rate* IE, the DRNS shall apply the new Guaranteed Rate in the uplink of this DCH in the new configuration. The DRNS may decide to request the SRNC to limit the user rate of the uplink of the DCH at any point in time after activating the new configuration. The DRNS may request the SRNC to reduce the user rate of the uplink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *DCH Specific Info* IE in the *DCH Information* IE does not include the *Guaranteed UL Rate* IE, the DRNS shall not limit the user rate of the downlink of the DCH. - If the *Guaranteed Rate Information* IE includes the *Guaranteed DL Rate* IE, the DRNS shall apply the new Guaranteed Rate in the downlink of this DCH in the new configuration. The DRNS may decide to request the SRNC to limit the user rate of the downlink of the DCH at any point in time after activating the new configuration. The DRNS may request the SRNC to reduce the user rate of the uplink of the DCH below the guaranteed bit rate, however, whenever possible the DRNS should request the SRNC to reduce the user rate between the maximum bit rate and the guaranteed bit rate. If the *DCH Specific Info* IE in the *DCH Information* IE does not include the *Guaranteed DL Rate* IE, the DRNS shall not limit the user rate of the uplink of the DCH. #### **DCH Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCH To Delete*, the DRNS shall not include the referenced DCHs in the new configuration. If all of the DCHs belonging to a set of co-ordinated DCHs are requested to be deleted, the DRNS shall not include this set of co-ordinated DCHs in the new configuration. #### **Physical Channel Modification:** [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes an *UL DPCH Information* IE, the DRNS shall apply the parameters to the new configuration as follows:] - [FDD If the *UL DPCH Information* IE includes the *Uplink Scrambling Code* IE, the DRNS shall apply this Uplink Scrambling Code to the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *Min UL Channelisation Code Length* IE, the DRNS shall apply the new Min UL Channelisation Code Length in the new configuration. The DRNS shall apply the contents of the *Max Number of UL DPDCHs* IE (if it is included) in the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *TFCS* IE, the DRNS shall use the *TFCS* IE for the UL when reserving resources for the uplink of the new configuration. The DRNS shall apply the new TFCS in the Uplink of the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *UL DPCCH Slot Format* IE, the DRNS shall apply the new Uplink DPCCH *Slot Format* to the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *UL SIR Target* IE, the DRNS shall set the UL inner loop power control to the UL SIR target when the new configuration is being used.] - [FDD If the *UL DPCH Information* IE includes the *Puncture Limit* IE, the DRNS shall apply the value in the uplink of the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *Diversity Mode* IE, the DRNS shall apply diversity according to the given value.] - [FDD If the *UL DPCH Information* IE includes an *SSDT Cell Identity Length* IE and/or an *S-Field Length* IE, the DRNS shall apply the values in the new configuration.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes a *DL DPCH Information* IE, the DRNS shall apply the parameters to the new configuration as follows:] - [FDD If the *DL DPCH Information* IE includes *Number of DL Channelisation Codes* IE, the DRNS shall allocate given number of Downlink Channelisation Codes per Radio Link and apply the new Downlink Channelisation Code(s) to the new configuration. Each Downlink Channelisation Code allocated for the new configuration shall be included as a FDD DL Channelisation Code Number IE in the RADIO LINK RECONFIGURATION READY message when sent to the SRNC. If some Transmission Gap Pattern sequences using 'SF/2' method are already initialised in the DRNS, DRNC shall include the *Transmission Gap Pattern Sequence Scrambling Code Information* IE in the RADIO LINK RECONFIGURATION READY message in case the DRNS selects to change the Scrambling code change method for one or more DL Channelisation Code.] - [FDD When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] - [FDD If the *DL DPCH Information* IE includes the *TFCS* IE, the DRNS shall use the *TFCS* IE for the DL when reserving resources for the downlink of the new configuration. The DRNS shall apply the new TFCS in the Downlink of the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *DL DPCH Slot Format* IE, the DRNS shall apply the new slot format used in DPCH in DL.] - [FDD If the *DL DPCH Information* IE includes the *TFCI Signalling Mode* IE, the DRNS shall apply the new signalling mode of the TFCI.] - [FDD If the *DL DPCH Information* IE includes the *Multiplexing
Position* IE, the DRNS shall apply the new parameter to define whether fixed or flexible positions of transport channels shall be used in the physical channel.] - [FDD If the *DL DPCH Information* IE includes the *Limited Power Increase* IE set to "Used", the DRNS shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Limited Power Increase* IEset to "Not Used", the DRNS shall not use Limited Power Increase for the inner loop DL power control in the new configuration.] - [FDD If the RADIO LINK RECONFIGURATION PREPARE message does not include the *Length of TFC12* IE and the *Split type* IE is present with the value "Hard", then the DRNS shall assume the length of the TFCI (field 2) is 5 bits.] - [FDD If the RADIO LINK RECONFIGURATION PREPARE message includes *Split Type* IE, then the DRNS shall apply this information to the new configuration of TFCI.] - [FDD If the *DL DPCH Information* IE includes the *Length of TFC12* IE, the DRNS shall apply this information to the length of TFCI(field 2) in the new configuration.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transmission Gap Pattern Sequence Information* IE, the DRNS shall store the new information about the Transmission Gap Pattern Sequences to be used in the new Compressed Mode Configuration. This new Compressed Mode Configuration shall be valid in the DRNS until the next Compressed Mode Configuration is configured in the DRNS or last Radio Link is deleted.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transmission Gap Pattern Sequence Information* IE and the *Downlink Compressed Mode Method* IE in one or more Transmission Gap Pattern Sequence within the *Transmission Gap Pattern Sequence Information* IE is set to 'SF/2', the DRNC shall include the *Transmission Gap Pattern Sequence Scrambling Code Information* IE to the RADIO LINK RECONFIGURATION READY message indicating for each Channelisation Code whether the alternative scrambling code shall be used or not]. #### [TDD - UL/DL CCTrCH Modification] [TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH To Modify* IEs or *DL CCTrCH To Modify* IEs, then the DRNS shall treat them each as follows:] [TDD - If any of the *UL CCTrCH To Modify* IEs or *DL CCTrCH To Modify* IEs includes any of the *TFCS* IE, *TFCI coding* IE, *Puncture limit* IE, or *TPC CCTrCH ID* IEs the DRNS shall apply these as the new values, otherwise the old values specified for this CCTrCH are still applicable.] - [TDD The DRNC shall include in the RADIO LINK RECONFIGURATION READY message DPCH information to be modified and the IEs modified if any of *Repetition Period* IE, *Repetition Length* IE, *TDD DPCH Offset* IE or timeslot information was modified. The DRNC shall include timeslot information and the IEs modified if any of [3.84Mcps TDD Midamble Shift And Burst Type IE, Time Slot IE], [1.28Mcps TDD Midamble Shift LCR IE, Time Slot LCR IE], TFCI Presence IE or Code information was modified. The DRNC shall include code information if [3.84Mcps TDD TDD Channelisation Code IE] and/or [1.28Mcps TDD TDD Channelisation Code LCR IE] was modified.] - [1.28Mcps TDD If the *UL CCTrCH To Modify* IE includes the *UL SIR Target* IE, the DRNS shall use the value for the UL inner loop power control according [12] and [22] when the new configuration is being used.] #### [TDD - UL/DL CCTrCH Addition] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH To Add* IEs or *DL CCTrCH To Add* IEs, the DRNS shall include this CCTrCH in the new configuration.] [TDD – If the DRNS has reserved the required resources for any requested DPCHs, the DRNC shall include the DPCH information within DPCH to be added in the RADIO LINK RECONFIGURATION READY message. [3.84Mcps TDD - If no DPCH was active before the reconfiguration, and if a valid Rx Timing Deviation measurement is known in DRNC, then the DRNC shall include the *Rx Timing Deviation* IE in the RADIO LINK RECONFIGURATION READY message.]] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes a *DL CCTrCH To Add* IE, the DRNS shall set the TPC step size of that CCTrCH to the same value as the lowest numbered DL CCTrCH in the current configuration.] [1.28Mcps TDD – The DRNS shall use the *UL SIR Target* IE in the *UL CCTrCH To Add* IE as the UL SIR value for the inner loop power control for this CCTrCH according [12] and [22] in the new configuration.] #### [TDD – UL/DL CCTrCH Deletion] [TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH To Delete* IEs *or DL CCTrCH To Delete* IEs, the DRNS shall remove this CCTrCH in the new configuration.] #### **SSDT Activation/Deactivation:** - [FDD If the *RL Information* IE includes the *SSDT Indication* IE set to "SSDT Active in the UE", the DRNS shall activate SSDT, if supported, using the *SSDT Cell Identity* IE in *RL Information* IE, and the *SSDT Cell Identity Length* IE in *UL DPCH Information* IE, in the new configuration.] - [FDD If the *RL Information* IE includes the *Qth Parameter* IE and the *SSDT Indication* IE set to "SSDT Active in the UE", the DRNS shall use the *Qth Parameter* IE, if Qth signalling is supported, when SSDT is activated in the new configuration.] - [FDD If the *RL Information* IE includes the *SSDT Indication* IE set to "SSDT not Active in the UE", the DRNS shall deactivate SSDT in the new configuration.] #### **DL Power Control:** - [FDD - If the *RL Information* IE includes the *DL Reference Power* IEs and power balancing is active, DRNS shall update the reference power of the power balancing in the indicated RL(s), if updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported, at the CFN in the RADIO LINK RECONFIGURATION COMMIT message, according to subclause 8.3.15, using the *DL Reference Power* IE. If the CFN modulo the value of the *Adjustment Period* IE is not equal to 0, the power balancing continues with the old reference power until the end of the current adjustment period, and the updated reference power shall be used from the next adjustment period. [FDD - If updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported by the DRNS, the DRNC shall include the *DL Power Balancing Updated Indicator* IE in the *RL Information Response* IE in the RADIO LINK RECONFIGURATION READY message.] #### DSCH Addition/Modification/Deletion: If the RADIO LINK RECONFIGURATION PREPARE message includes any *DSCH To Add*, *DSCH To Modify* or *DSCH To Delete* IEs, then the DRNS shall use this information to add/modify/delete the indicated DSCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs. If the RADIO LINK RECONFIGURATION PREPARE message includes any *DSCH To Add* IE, then the DRNS shall use the *Allocation/Retention Priority* IE, *Scheduling Priority Indicator* IE and *TrCH Source Statistics Descriptor* IE to define a set of DSCH Priority classes each of which is associated with a set of supported MAC-c/sh SDU lengths. If the RADIO LINK RECONFIGURATION PREPARE message includes any *DSCH To Add* IE, then the DRNS may use the *Traffic Class* IE to determine the transport bearer characteristics to apply between DRNC and Node B for the related DSCHs. [FDD - If the *DSCHs To Add* IE includes the *Enhanced DSCH PC* IE, the DRNS shall activate enhanced DSCH power control in accordance with ref. [10] subclause 5.2.2, if supported, using either:] - [FDD the *SSDT Cell Identity for EDSCHPC* IE in the *RL Information* IE, if the *SSDT Cell Identity* IE is not included in the *RL Information* IE or] - [FDD the SSDT Cell Identity IE in the RL Information IE, if both the SSDT Cell Identity IE and the SSDT Cell Identity for EDSCHPC are included in the RL Information IE.] [FDD - together with the SSDT Cell Identity Length IE in UL DPCH Information IE, and Enhanced DSCH PC IE, in the new configuration.] [FDD - If the enhanced DSCH power control is activated and the TFCI PC Mode 2 is supported, the primary/secondary status determination in the enhanced DSCH power control shall be applied to the TFCI power control in DSCH hard split mode.] If the RADIO LINK RECONFIGURATION PREPARE message includes any *DSCH To Modify* IE, then the DRNS shall treat them each as follows: - [FDD If the *DSCH To Modify* IE includes any *DSCH Info* IEs, then the DRNS shall treat them each as follows:] - [FDD If the *DSCH Info* IE includes any of the *Allocation/Retention Priority* IE, *Scheduling Priority Indicator* IE or *TrCH Source Statistics Descriptor* IE, the DRNS shall use them to update the set of DSCH Priority classes each of which is associated with a set of supported MAC-c/sh SDU lengths.] - [FDD If the *DSCH Info* IE includes any of the *Transport Format Set* IE or *BLER* IE, the DRNS shall apply the parameters to the new configuration.] - [FDD If the DSCH Info IE includes the *Traffic Class* IE, the DRNS may use this information to determine the transport bearer characteristics to apply between DRNC and Node B for the related DSCHs.] - [FDD If the *DSCH To Modify* IE includes the *PDSCH RL ID* IE, then the DRNS shall use it as the new DSCH RL identifier.] - [FDD If the indicated PDSCH RL ID is in the DRNS and there was no DSCH-RNTI allocated to the UE Context, the DRNC shall allocate a DSCH-RNTI to the UE Context and include the *DSCH-RNTI* IE in the RADIO LINK RECONFIGURATION READY message.] - [FDD If the indicated PDSCH RL ID is in the DRNS and there was a DSCH-RNTI allocated to the UE Context, the DRNC shall allocate a new DSCH-RNTI to the UE Context, release the old DSCH-RNTI and include the *DSCH-RNTI* IE in the RADIO LINK RECONFIGURATION READY message.] - [FDD If the indicated PDSCH RL ID is not in the DRNS and there was a DSCH-RNTI
allocated to the UE Context, the DRNC shall release this DSCH-RNTI.] - [FDD If the *DSCH To Modify* IE includes the *Transport Format Combination Set* IE, then the DRNS shall use it as the new Transport Format Combination Set associated with the DSCH.] - [TDD If the *DSCHs To Modify* IE includes the *CCTrCH Id* IE, then the DRNS shall map the DSCH onto the referenced DL CCTrCH.] - [TDD If the *DSCHs To Modify* IE includes any of the *Allocation/Retention Priority* IE, *Scheduling Priority Indicator* IE or *TrCH Source Statistics Descriptor* IE, the DNRS shall use them to update the set of DSCH Priority classes each of which is associated with a set of supported MAC-c/sh SDU lengths.] - [TDD If the *DSCHs To Modify* IE includes any of the *Transport Format Set* IE or *BLER* IE, the DRNS shall apply the parameters to the new configuration.] - [TDD If the *DSCHs To Modify* IE includes the *Traffic Class* IE, the DRNS may use this information to determine the transport bearer characteristics to apply between DRNC and Node B for the related DSCHs.] - [TDD The DRNC shall include the Secondary CCPCH Info TDD IE in the RADIO LINK RECONFIGURATION READY message if a DSCH is added and at least one DCH exists in the new configuration. The DRNC shall also include the Secondary CCPCH Info TDD IE in the RADIO LINK RECONFIGURATION READY message if the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] - [FDD If the *DSCHs To Modify* IE includes the *Enhanced DSCH PC Indicator* IE set to "Enhanced DSCH PC Active in the UE", the DRNS shall activate enhanced DSCH power control in accordance with ref. [10] subclause 5.2.2, if supported, using either:] - [FDD the SSDT Cell Identity for EDSCHPC IE in RL Information IE, if the SSDT Cell Identity IE is not included in the RL Information IE or] - [FDD the SSDT Cell Identity IE in the RL Information IE, if both the SSDT Cell Identity IE and the SSDT Cell Identity for EDSCHPC are included in the RL Information IE.] - [FDD together with the SSDT Cell Identity Length IE in UL DPCH Information IE, and Enhanced DSCH PC IE, in the new configuration.] - [FDD If the *DSCHs To Modify* IE includes the *Enhanced DSCH PC Indicator* IE set to "Enhanced DSCH PC not Active in the UE", the DRNS shall deactivate enhanced DSCH power control in the new configuration.] - [FDD If the enhanced DSCH power control is activated and the TFCI PC Mode 2 is supported, the primary/secondary status determination in the enhanced DSCH power control shall be applied to the TFCI power control in DSCH hard split mode.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes a *DSCHs To Delete* IE requesting the deletion of all DSCH resources for the UE Context, then the DRNC shall release the DSCH-RNTI allocated to the UE Context, if there was one.] If the requested modifications are allowed by the DRNS and the DRNS has successfully reserved the required resources for the new configuration of the Radio Link(s), it shall respond to the SRNC with the RADIO LINK RECONFIGURATION READY message. #### [TDD] USCH Addition/Modification/Deletion If the RADIO LINK RECONFIGURATION PREPARE message includes any *USCH To Modify*, *USCH To Add* or *USCH To Delete* IEs, then the DRNS shall use this information to add/modify/delete the indicated USCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs. If the RADIO LINK RECONFIGURATION PREPARE message includes any *USCH To Add* IE, then, the DRNS shall use the *Allocation/Retention Priority* IE, *Scheduling Priority Indicator* IE and *TrCH Source Statistics Descriptor* IE to define a set of USCH Priority classes each of which is associated with a set of supported MAC-c/sh SDU lengths. If the RADIO LINK RECONFIGURATION PREPARE message includes any *USCH To Add* IE, then the DRNS may use the *Traffic Class* IE to determine the transport bearer characteristics to apply between DRNC and Node B for the related USCHs. If the RADIO LINK RECONFIGURATION PREPARE message includes any *USCH To Modify* IE, then the DRNS shall treat them each as follows: - If the *USCH To Modify* IE includes any of the Allocation/Retention Priority IE, Scheduling Priority Indicator IE or TrCH Source Statistics Descriptor IE, the DNRS shall use them to update the set of USCH Priority classes. - If the *USCH To Modify* IE includes any of the CCTrCH Id IE, Transport Format Set IE, BLER IE or RB Info IE, the DRNS shall apply the parameters to the new configuration. - If the *USCHs To Modify* IE includes the *Traffic Class* IE, the DRNS may use this information to determine the transport bearer characteristics to apply between DRNC and Node B for the related USCHs. - [TDD The DRNC shall include the *Secondary CCPCH Info TDD* IE in the RADIO LINK RECONFIGURATION READY message if a USCH is added and at least one DCH exists in the new configuration. The DRNC shall also include the *Secondary CCPCH Info TDD* IE in the RADIO LINK RECONFIGURATION READY message if the SHCCH messages for this radio link will be transmitted over a different secondary CCPCH than selected by the UE from system information.] If the requested modifications are allowed by the DRNC and the DRNC has successfully reserved the required resources for the new configuration of the Radio Link(s), it shall respond to the SRNC with the RADIO LINK RECONFIGURATION READY message. #### **RL Information:** [FDD- If the *RL Information* IE includes the *DL DPCH Timing Adjustment* IE, the DRNS shall adjust the timing of the radio link accordingly in the new configuration.] #### **HS-DSCH Information Addition/Modification/Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *HS-DSCH Information To Modify*, *HS-DSCH Information To Add* or *HS-DSCH Information to Delete* IEs, then the DRNS shall use this information to add/modify/delete the indicated HS-DSCH resources to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs. If the RADIO LINK RECONFIGURATION PREPARE message includes an *HS-DSCH Information to Delete* IE requesting the deletion of all HS-DSCH resources for the UE Context, then the DRNC shall release the HS-DSCH-RNTI allocated to the UE Context, if there was one. If the RADIO LINK RECONFIGURATION PREPARE message includes the *HS-PDSCH RL ID* IE and there is a HS-DSCH existing in the UE Context after reconfiguration, then: - If the indicated HS-PDSCH RL ID is in the DRNS and there was no HS-DSCH-RNTI allocated to the UE Context, the DRNC shall allocate an HS-DSCH-RNTI to the UE Context and include the *HS-DSCH-RNTI* IE in the RADIO LINK RECONFIGURATION READY message. - If the indicated HS-PDSCH RL ID is in the DRNS and there was an HS-DSCH-RNTI allocated to the UE Context, the DRNC shall allocate a new HS-DSCH-RNTI to the UE Context, release the old HS-DSCH-RNTI and include the *HS-DSCH-RNTI* IE in the RADIO LINK RECONFIGURATION READY message. - If the indicated HS-PDSCH RL ID is not in the DRNS and there was an HS-DSCH-RNTI allocated to the UE Context, the DRNC shall release this HS-DSCH-RNTI. [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Measurement Reporting Cycle* IE in the *HS-DSCH Information To Modify* IE, then the DRNS shall use the indicated Measurement Feedback Reporting Cycle value in the new configuration.] #### General If the RADIO LINK RECONFIGURATION PREPARE message includes an *HS-DSCH Information to Delete* IE requesting the deletion of all HS-DSCH resources for the UE Context, then the DRNC shall release the HS-DSCH-RNTI allocated to the UE Context, if there was one. The DRNC shall include the *HS-DSCH Initial Capacity Allocation* IE in the RADIO LINK RECONFIGURATION READY message for each MAC-d flow, if the DRNS allows the SRNC to start transmission of MAC-d PDUs before the DRNS has allocated capacity on user plane as described in [32]. #### [TDD] DSCH RNTI Addition/Deletion [TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the PDSCH RL ID IE, then the DRNS shall use it as the new RL identifier for PDSCH and PUSCH...] - [TDD If the indicated PDSCH RL ID is in the DRNS and there was no DSCH-RNTI allocated to the UE Context, the DRNC shall allocate a DSCH-RNTI to the UE Context and include the DSCH-RNTI IE in the RADIO LINK RECONFIGURATION READY message.] - [TDD If the indicated PDSCH RL ID is in the DRNS and there was a DSCH-RNTI allocated to the UE Context, the DRNC shall allocate a new DSCH-RNTI to the UE Context, release the old DSCH-RNTI and include the DSCH-RNTI IE in the RADIO LINK RECONFIGURATION READY message.] - [TDD If the indicated PDSCH RL ID is not in the DRNS and there was a DSCH-RNTI allocated to the UE Context, the DRNC shall release this DSCH-RNTI.] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes a DSCHs to Delete IE and/or a USCHs to Delete IE which results in the deletion of all DSCH and USCH resources for the UE Context, then the DRNC shall release the DSCH-RNTI allocated to the UE Context, if there was one.] If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transport Layer Address* IE and *Binding ID* IE in the *DSCHs To Modify*, *DSCHs To Add*, [TDD - *USCHs To Modify*, *USCHs To Add*], *HS-DSCH To Modify*, *HS-DSCH To Add* or in the *RL Specific DCH Information* IEs, the DRNC may use the transport layer address and the binding identifier received from the SRNC when establishing a transport bearer for any Transport Channel or HS-DSCH MAC-d flow being added, or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the *Transport Bearer Request Indicator* IE. The DRNS shall include in the RADIO LINK RECONFIGURATION READY message the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE for any Transport Channel or HS-DSCH MAC-d flow being added, or any
Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the *Transport Bearer Request Indicator* IE. In the case of a set of co-ordinated DCHs requiring a new transport bearer on the Iur interface, the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE shall be included only for one of the DCHs in the set of co-ordinated DCHs. In the case of a Radio Link being combined with another Radio Link within the DRNS, the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE shall be included only for one of the combined Radio Links. Any allowed rate for the uplink of a DCH provided for the old configuration will not be valid for the new configuration. If the DRNS needs to limit the user rate in the uplink of a DCH due to congestion caused by the UL UTRAN Dynamic Resources (see subclause 9.2.1.79) in the new configuration for a Radio Link, the DRNC shall include the *Allowed UL Rate* IE of the *Allowed Rate Information* IE in the *DCH Information Response* IE for this DCH in the RADIO LINK RECONFIGURATION READY message for this Radio Link. Any allowed rate for the downlink of a DCH provided for the old configuration will not be valid for the new configuration. If the DRNS needs to limit the user rate in the downlink of a DCH due to congestion caused by the DL UTRAN Dynamic Resources (see subclause 9.2.1.79) in the new configuration for a Radio Link, the DRNC shall include the *Allowed DL Rate* IE of the *Allowed Rate Information* IE in the *DCH Information Response* IE for this DCH in the RADIO LINK RECONFIGURATION READY message for this Radio Link. If the requested modifications are allowed by the DRNS, and the DRNS has successfully reserved the required resources for the new configuration of the Radio Link(s) it shall respond to the SRNC with the RADIO LINK RECONFIGURATION READY message. When this procedure has been completed successfully there exists a Prepared Reconfiguration, as defined in subclause 3.1. The DRNS decides the maximum and minimum SIR for the uplink of the Radio Link(s) and shall return this in the *Maximum Uplink SIR* IE and *Minimum Uplink SIR* IE for each Radio Link in the RADIO LINK RECONFIGURATION READY message. If the DL TX power upper or lower limit has been re-configured the DRNC shall return this in the *Maximum DL TX Power* IE and *Minimum DL TX Power* IE respectively in the RADIO LINK RECONFIGURATION READY message. The DRNS shall not transmit with a higher power than indicated by the *Maximum DL TX Power* IE or lower than indicated by the *Minimum DL TX Power* IE on any DL DPCH of the RL [FDD – except during compressed mode, when the $P_{SIR}(k)$, as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power in slot k.] [TDD - If the *Primary CCPCH RSCP* IE and/or the [3.84Mcps TDD - *DL Time Slot ISCP Info* IE][1.28Mcps TDD - *DL Time Slot ISCP Info LCR* IE] are present, the DRNC should use the indicated values when deciding the Initial DL TX Power.] /*Partly omitted*/ # 3GPP TSG-RAN3 Meeting #33 Sophia Antipolis, France, 11th – 15th November 2002 | - | | | CHANG | SE REQ | UES ⁻ | Γ | | CR-Form-v7 | |--------------|---------------|------------------|--------------------|--------------|------------------|--------------------|-------------|------------| | ж | | 25.433 C | R <mark>772</mark> | жrev | 1 * | Current version: | 5.2.0 | * | | For H | ELP on | using this form, | see bottom of | this page or | look at t | he pop-up text ove | r the # syn | nbols. | | * | 25.433 CR 772 # rev 1 | # Current version: 5.2.0 # | |-------------------------------|---|--| | For <u>HELP</u> on | using this form, see bottom of this page or look a | nt the pop-up text over the % symbols. | | Proposed change | affects: UICC apps第 ME Radi | io Access Network X Core Network | | Title: | Clarification of the usage of HS-DSCH-RNTI | | | Source: | RAN WG3 | | | Work item code: | HSDPA-lublur | Date: 第 <mark>11/10/2002</mark> | | Category: ३ | Use one of the following categories: F (correction) A (corresponds to a correction in an earlier relation of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900. | Release: % Rel-5 Use one of the following releases: 2 (GSM Phase 2) lease) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6) | | Reason for chang | e: # The usage of the HS-DSCH-RNTI is not SETUP it is necessary to clarify that the setup of an HS-DSCH if an HS-DSCH In SYNCHRONISED RADIO LINK RECON be clarified under which conditions the H | HS-DSCH-RNTI will only be used for the formation IE exist. In case of FIGURATION PREPARATION it should | | Summary of chan | The procedure text is extended to clarify the presence of the HS-DSCH RNTI is classed. Impact Analysis: Impact assessment towards the previous release): This CR has isolated impact with the previous release) because HSDPA only is affected. This CR has an impact under functional processed impact can be considered isolated by namely HSDPA. | hanged to "conditional". s version of the specification (same vious version of the specification (same d. | | Consequences if not approved: | # If the CR would not be approved the han remain ambiguous. | dling of the HS-DSCH-RNTI would | | Clauses affected: | 8.2.17 , 8.2.17.2 , 8.3.2 , 8.3.2.2 , 9.1.36 , 9. | .1.36.1, 9.1.36.2, 9.3.3 | | Other specs | Y N X Other core specifications % (| CR744 TS 25.423 v5.3.0 | | Clauses affected: | 8.2.17 , 8.2.17.2, 8.3.2, 8.3.2.2, 9.1.36, 9.1.36.1, 9.1.36.2, 9.3.3 | | | | | | | |-------------------|---|--|---|--|--|--|--| | Other specs | ¥ | | N | Other core specifications ** CR744 TS 25.423 v5.3.0 | | | | | affected: | | | X | Test specifications | | | | | | X O&M Specifications | | |-----------------|----------------------|--| | | <u> </u> | | | Other comments: | * | | #### How to create CRs using this form: Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary: - 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to. - 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. - 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. # 8.2.17 Radio Link Setup #### 8.2.17.1 General This procedure is used for establishing the necessary resources for a new Node B Communication Context in the Node B. [FDD – The Radio Link Setup procedure is used to establish one or more radio links. The procedure establishes one or more DCHs on all radio links, and in addition, it can include the establishment of one or more DSCHs or an HS-DSCH on one radio link.] [TDD – The Radio Link Setup procedure is used to establish one radio link including one or more transport channels. The transport channels can be a mix of DCHs, DSCHs, and USCHs, or DCHs and an HS-DSCH, including also combinations where one or more transport channel types are not present.] #### 8.2.17.2 Successful Operation Figure 24: Radio Link Setup procedure, Successful Operation The procedure is initiated with a RADIO LINK SETUP REQUEST message sent from the CRNC to the Node B using the Node B Control Port. Upon reception of the RADIO LINK SETUP REQUEST message, the Node B shall reserve necessary resources and configure the new Radio Link(s) according to the parameters given in the message. The Node B shall prioritise resource allocation for the RL(s) to be established according to Annex A. #### **Transport Channels Handling:** #### DCH(s): [TDD – If the *DCH Information* IE is present, the Node B shall configure the new DCH(s) according to the parameters given in the message.] If the RADIO LINK SETUP REQUEST message includes a *DCH Information* IE with multiple *DCH Specific Info* IEs, then the Node B shall treat the DCHs in the *DCH Information* IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration. [FDD – For DCHs which do not belong to a set of co-ordinated DCHs with the *QE-Selector* IE set to "selected", the Transport channel BER from that DCH shall be the base for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If the
QE-Selector IE is set to "non-selected", the Physical channel BER shall be used for the QE in the UL data frames, ref. [16].] For a set of co-ordinated DCHs, the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" shall be used for the QE in the UL data frames, ref. [16]. [FDD - If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If all DCHs have *QE-Selector* IE set to "non-selected", the Physical channel BER shall be used for the QE, ref. [16]]. The Node B shall use the included *UL FP Mode* IE for a DCH or a set of co-ordinated DCHs as the FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the configuration. The Node B shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs in the configuration. The Node B shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs as the Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs in the configuration. The received *Frame Handling Priority* IE specified for each Transport Channel should be used when prioritising between different frames in the downlink on the radio interface in congestion situations within the Node B once the new RL(s) has been activated. [FDD – The *Diversity Control Field* IE indicates for each RL (except the first RL in the message) whether the Node B shall combine the concerned RL or not. - If the Diversity Control Field IE is set to "May", the Node B shall decide for either of the alternatives. - If the *Diversity Control Field* IE is set to "Must", the Node B shall combine the RL with one of the other RL. - If the *Diversity Control Field* IE is set to "Must not", the Node B shall not combine the RL with any other existing RL. Diversity combining is applied to Dedicated Transport Channels (DCH), i.e. it is not applied to the DSCHs. When a new RL is to be combined, the Node B shall choose which RL(s) to combine it with.] [FDD – In the RADIO LINK SETUP RESPONSE message, the Node B shall indicate for each RL with the Diversity Indication in the *RL Information Response* IE whether the RL is combined or not. - In case of combining, the *RL ID* IE indicates one of the existing RLs that the concerned RL is combined with. - In case of not combining, the Node B shall include in the *DCH Information Response* IE in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and *Transport Layer Address* IE for the transport bearer to be established for each DCH of this RL.] [TDD – The Node B shall include in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and *Transport Layer Address* IE for the transport bearer to be established for each DCH of this RL.] In the case of a set of co-ordinated DCHs, the *Binding ID* IE and the *Transport Layer Address* IE shall be specified for only one of the DCHs in the set of co-ordinated DCHs. #### DSCH(s): If the *DSCH Information* IE is present, the Node B shall configure the new DSCH(s) according to the parameters given in the message. [FDD – If the RADIO LINK SETUP REQUEST message includes the *TFC12 Bearer Information* IE then the Node B shall support the establishment of a transport bearer on which the DSCH TFCI Signaling control frames shall be received. The Node B shall manage the time of arrival of these frames according to the values of ToAWS and ToAWE specified in the IEs. The *Binding ID* IE and the *Transport Layer Address* IE for the new bearer to be set up for this purpose shall be returned in the RADIO LINK SETUP RESPONSE message.] If the RADIO LINK SETUP REQUEST message includes the *Transport Layer Address* IE and *Binding ID* IE in the *DSCH Information* IE, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for the DSCH. The Node B shall include in the RADIO LINK SETUP RESPONSE the *Binding ID* IE and the *Transport Layer Address* IE for the transport bearer to be established for each DSCH of this RL. #### [TDD - USCH(s)]: [TDD – If the *USCH Information* IE is present, the Node B shall configure the new USCH(s) according to the parameters given in the message.] [TDD - If the RADIO LINK SETUP REQUEST message includes the *Transport Layer Address* IE and *Binding ID* IE in the *USCH Information* IE, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for the USCH.] [TDD –If the *USCH Information* IE is present, the Node B shall include in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and the *Transport Layer Address* IE for the transport bearer to be established for each USCH of this RL.] #### **HS-DSCH**(s): If the *HS-DSCH Information* IE is present, the Node B shall configure the new HS-DSCH resources according to the parameters given in the message. [FDD—If the *HS-DSCH Information* IE and the *HS-PDSCH RL ID* IE are present, the Node B shall configure the new HS-DSCH resources in the radio link specified by the HS-PDSCH RL ID.] In addition, the Node B shall include in the RADIO LINK SETUP RESPONSE message the *Binding ID* IE and *Transport Layer Address* IE for the transport bearers to be established for the HS-DSCH MAC-d flows of this RL. If the RADIO LINK SETUP REQUEST message includes the *Transport Layer Address* IE and *Binding ID* IE in the *HS-DSCH Information* IE for an HS-DSCH MAC-d flow, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for the concerned HS-DSCH MAC-d flow. If the *HS-DSCH-RNTI* IE is present, the Node B shall use the HS-DSCH RNTI value for HS-DSCH processing for the respective Node B Communication Context. The Node B shall include the *HS-DSCH Initial Capacity Allocation* IE in the RADIO LINK SETUP RESPONSE message for each MAC-d flow, if the Node B allows the CRNC to start transmission of the MAC-d PDUs before the Node B has allocated capacity on user plane as described in [24]. #### **Physical Channels Handling:** #### [FDD - Compressed Mode]: [FDD – If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE, the Node B shall store the information about the Transmission Gap Pattern Sequences to be used in the Compressed Mode Configuration. This Compressed Mode Configuration shall be valid in the Node B until the next Compressed Mode Configuration is configured in the Node B or the Node B Communication Context is deleted.] [FDD – If the *Downlink compressed mode method* IE in one or more Transmission Gap Pattern Sequence is set to "SF/2" in the RADIO LINK SETUP REQUEST message, the Node B shall use or not the alternate scrambling code as indicated for each DL Channelisation Code in the *Transmission Gap Pattern Sequence Code Information* IE.] [FDD – If the RADIO LINK SETUP REQUEST message includes the *Transmission Gap Pattern Sequence Information* IE and the *Active Pattern Sequence Information* IE, the Node B shall use the information to activate the indicated Transmission Gap Pattern Sequence(s) in the new RL. The received *CM Configuration Change CFN* refers to the latest passed CFN with that value The Node B shall treat the received *TGCFN* IEs as follows:] - [FDD If any received *TGCFN* IE has the same value as the received *CM Configuration Change CFN* IE, the Node B shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] - [FDD If any received *TGCFN* IE does not have the same value as the received *CM Configuration Change CFN* IE but the first CFN after the CM Configuration Change CFN with a value equal to the *TGCFN* IE has already passed, the Node B shall consider the concerned Transmission Gap Pattern Sequence as activated at that CFN.] [FDD - For all other Transmission Gap Pattern Sequences included in the Active Pattern Sequence Information IE, the Node B shall activate each Transmission Gap Pattern Sequence at the first CFN after the CM Configuration Change CFN with a value equal to the TGCFN IE for the Transmission Gap Pattern Sequence.] #### [FDD – DL Code Information]: [FDD – When more than one DL DPDCH is assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number I*", the second to "*PhCH number 2*", and so on until the *pth* to "*PhCH number p*".] #### [TDD - PDSCH RL ID]: [TDD – If the *PDSCH RL ID* IE is included in RADIO LINK SETUP REQUEST message, the Node B shall use the PDSCH RL ID as an identifier for the PDSCH and/or PUSCH in this radio link.] #### General: [FDD – If the *Propagation Delay* IE is included, the Node B may use this information to speed up the detection of L1 synchronisation.] [FDD – The *UL SIR Target* IE included in the message shall be used by the Node B as initial UL SIR target for the UL inner loop power control.] [1.28Mcps TDD – The *UL SIR Target* IE included in the message shall be used by the Node B as initial UL SIR target for the UL inner loop power control according [19] and [21].] [FDD – If the received *Limited Power Increase* IE is set to "Used", the Node B shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control.] [FDD – If the *TFCI Signalling Mode* IE within the RADIO LINK SETUP REQUEST message indicates that there shall be a hard split on the TFCI field but the *TFCI2 Bearer Information* IE is not included in the message, then the Node B shall transmit the TFCI2 field with zero power.] [FDD - If the *TFCI Signalling Mode* IE within the RADIO LINK SETUP REQUEST message indicates that there
shall be a hard split on the TFCI and the *TFCI2 Bearer Information* IE is included in the message, then the Node B shall transmit the TFCI2 field with zero power until Synchronization is achieved on the TFCI2 transport bearer and the first valid DSCH TFCI Signalling control frame is received on this bearer (see ref. [24]).] [FDD – If the RADIO LINK SETUP REQUEST message includes the *Length Of TFC12* IE, then the Node B shall apply the length of TFCI (field 2) indicated in the message.] [FDD – If the RADIO LINK SETUP REQUEST message does not include the *Length Of TFC12* IE and the *Split Type* IE is present with the value "Hard", then the Node B shall assume the length of the TFCI (field 2) is 5 bits.] #### **Radio Link Handling:** #### [FDD – Transmit Diversity]: [FDD – When the *Diversity Mode* IE is set to "STTD", "Closedloop mode1" or "Closedloop mode2", the Node B shall activate/deactivate the Transmit Diversity for each Radio Link in accordance with the Transmit Diversity Indication IE] #### **DL Power Control:** [FDD – The Node B shall start any DL transmission using the initial DL power specified in the message on each DL DPCH of the RL until either UL synchronisation on the Uu interface is achieved for the RLS or Power Balancing is activated. No inner loop power control or balancing shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[10], subclause 5.2.1.2) and the power control procedure (see subclause 8.3.7), but shall always be kept within the maximum and minimum limit specified in the RADIO LINK SETUP REQUEST message. During compressed mode, the $P_{SIR}(k)$, as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power in slot k.] [FDD - If the *DPC Mode* IE is present in the RADIO LINK SETUP REQUEST message, the Node B shall apply the DPC mode indicated in the message and be prepared that the DPC mode may be changed during the life time of the RL. If the *DPC Mode* IE is not present in the RADIO LINK SETUP REQUEST message, DPC mode 0 shall be applied (see ref. [10]).] [TDD – The Node B shall determine the initial CCTrCH DL power for each CCTrCH by the following rule: If the CCTrCH Initial DL Transmission Power IE is included for that CCTrCH, then the Node B shall use that power for the initial CCTrCH DL power, otherwise the initial CCTrCH DL power is the Initial DL Transmission Power IE included in the RL Information IE. The Node B shall start any DL transmission on each CCTrCH using the initial CCTrCH DL power, as determined above, on each DL DPCH and on each Time Slot of the CCTrCH until the UL synchronisation on the Uu interface is achieved for the CCTrCH. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[22], subclause 4.2.3.3), but shall always be kept within the maximum and minimum limit specified in the RADIO LINK SETUP REQUEST message.] [TDD – If the [3.84Mcps TDD – *DL Time Slot ISCP Info* IE] or [1.28Mcps TDD – *DL Timeslot ISCP LCR* IE] is present, the Node B shall use the indicated value when deciding the initial DL TX Power for each timeslot as specified in [21], i.e. it shall reduce the DL TX power in those downlink timeslots of the radio link where the interference is low, and increase the DL TX power in those timeslots where the interference is high, while keeping the total downlink power in the radio link unchanged]. [FDD – If the received *Inner Loop DL PC Status* IE is set to "Active", the Node B shall activate the inner loop DL power control for all RLs. If *Inner Loop DL PC Status* IE is set to "Inactive", the Node B shall deactivate the inner loop DL power control for all RLs according to ref. [10].] [FDD – If the RADIO LINK SETUP REQUEST message includes the *DL Power Balancing Information* IE and the *Power Adjustment Type* IE is set to "Common" or "Individual", the Node B shall activate the power balancing, if activation of power balancing by the RADIO LINK SETUP REQUEST message is supported, according to subclause 8.3.7, using the *DL Power Balancing Information* IE. If the Node B starts the DL transmission and the activation of the power balancing at the same CFN, the initial power of the power balancing shall be set to the indicated DL TX power level (if received) or the decided DL TX power level on each DL channelisation code of a RL.] [FDD – If activation of power balancing by the RADIO LINK SETUP REQUEST message is supported by the Node B, the Node B shall include the *DL Power Balancing Activation Indicator* IE in the *RL Information Response* IE in the RADIO LINK SETUP RESPONSE message.] #### General: If the RADIO LINK SETUP REQUEST message includes the *RL Specific DCH Information* IE, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for the DCH or the set of co-ordinated DCHs. [FDD – If the RADIO LINK SETUP REQUEST message includes the SSDT Cell Identity IE and the S-Field Length IE, the Node B shall activate SSDT, if supported, using the SSDT Cell Identity IE and SSDT Cell Identity Length IE.] [FDD – If the RADIO LINK SETUP REQUEST message includes the *Qth Parameter* IE in addition to the *SSDT Cell Identity* IE, the Node B shall use the *Qth Parameter* IE, if Qth signalling is supported, when SSDT is activated.] [FDD – Irrespective of SSDT activation, the Node B shall include in the RADIO LINK SETUP RESPONSE message an indication concerning the capability to support SSDT on this RL. Only if the RADIO LINK SETUP REQUEST message requested SSDT activation and the RADIO LINK SETUP RESPONSE message indicates that the SSDT capability is supported for this RL, SSDT is activated in the Node B.] [FDD - If the RADIO LINK SETUP REQUEST message includes the *SSDT Cell Identity for EDSCHPC* IE, the Node B shall activate enhanced DSCH power control, if supported, using the *SSDT Cell Identity For EDSCHPC* IE and *SSDT Cell Identity Length* IE as well as *Enhanced DSCH PC* IE in accordance with ref. [10] subclause 5.2.2. If the RADIO LINK SETUP REQUEST message includes both *SSDT Cell Identity* IE and *SSDT Cell Identity For EDSCHPC* IE, then the Node B shall ignore the value in *SSDT Cell Identity For EDSCHPC* IE. If the enhanced DSCH power control is activated and the TFCI power control in DSCH hard split mode is supported, the primary/secondary status determination in the enhanced DSCH power control is also applied to the TFCI power control in DSCH hard split mode.] The Node B shall start reception on the new RL(s) after the RLs are successfully established. #### [FDD – Radio Link Set Handling]: [FDD – The *First RLS Indicator* IE indicates if the concerned RL shall be considered part of the first RLS established towards this UE. The *First RLS Indicator* IE shall be used by the Node B together with the value of the *DL TPC Pattern 01 Count* IE which the Node B has received in the Cell Setup procedure, to determine the initial TPC pattern in the DL of the concerned RL and all RLs which are part of the same RLS, as described in [10], section 5.1.2.2.1.2.] [FDD – For each RL not having a common generation of the TPC commands in the DL with another RL, the Node B shall assign the *RL Set ID* IE included in the RADIO LINK SETUP RESPONSE message a value that uniquely identifies the RL Set within the Node B Communication Context.] [FDD – For all RLs having a common generation of the TPC commands in the DL with another RL, the Node B shall assign the *RL Set ID* IE included in the RADIO LINK SETUP RESPONSE message the same value. This value shall uniquely identify the RL Set within the Node B Communication Context.] [FDD – The UL out-of-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the maximum value of the parameters N_OUTSYNC_IND and T_RLFAILURE that are configured in the cells supporting the radio links of the RL Set. The UL in-sync algorithm defined in [10] shall, for each of the established RL Set(s), use the minimum value of the parameters N_INSYNC_IND, that are configured in the cells supporting the radio links of the RL Set.] #### Response Message: If the RLs are successfully established, the Node B shall and respond with a RADIO LINK SETUP RESPONSE message. After sending the RADIO LINK SETUP RESPONSE message the Node B shall continuously attempt to obtain UL synchronisation on the Uu interface. For each RL for which the *Delayed Activation* IE is not included in the RADIO LINK SETUP REQUEST message, the Node B shall: - [FDD start transmission on the new RL after synchronisation is achieved in the DL user plane as specified in [16].] - [TDD start transmission on the new RL immediately as specified in [16].] For each RL for which the *Delayed Activation* IE is included in the RADIO LINK SETUP REQUEST message, the Node B shall: - if the *Delayed Activation* IE indicates "Separate Indication": - not start any DL transmission for the concerned RL on the Uu interface; - if the Delayed Activation IE indicates "CFN": - [FDD start transmission on the new RL after synchronisation is achieved in the DL user plane as specified in [16], however never before the CFN indicated in the *Activation CFN* IE.] - [TDD start transmission on the new RL at the CFN indicated in the Activation CFN IE as specified in [16].] #### /*Partly omitted*/ # 8.3.2 Synchronised Radio Link Reconfiguration Preparation #### 8.3.2.1 General The Synchronised Radio Link Reconfiguration Preparation procedure is used to prepare a new configuration of Radio Link(s) related to one Node B Communication Context. The Synchronised Radio Link Reconfiguration Preparation procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1. #### 8.3.2.2 Successful Operation Figure 30: Synchronised Radio Link Reconfiguration Preparation procedure, Successful Operation The Synchronised
Radio Link Reconfiguration Preparation procedure is initiated by the CRNC by sending the RADIO LINK RECONFIGURATION PREPARE message to the Node B. The message shall use the Communication Control Port assigned for this Node B Communication Context. Upon reception, the Node B shall reserve necessary resources for the new configuration of the Radio Link(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The Node B shall prioritise resource allocation for the RL(s) to be modified according to Annex A. #### **DCH Modification:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs to Modify* IE then the Node B shall treat them each as follows: - If the *DCHs to Modify* IE includes the *Frame Handling Priority* IE, the Node B should store this information for this DCH in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the radio interface in congestion situations within the Node B once the new configuration has been activated. - If the *DCHs to Modify* IE includes the *Transport Format Set* IE for the UL of a DCH, the Node B shall apply the new Transport Format Set in the Uplink of this DCH in the new configuration. - If the *DCHs to Modify* IE includes the *Transport Format Set* IE for the DL of a DCH, the Node B shall apply the new Transport Format Set in the Downlink of this DCH in the new configuration. - If the *DCHs to Modify* IE includes multiple *DCH Specific Info* IEs, the Node B shall treat the DCHs in the *DCHs to Modify* IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration. - If the *DCHs to Modify* IE includes the *UL FP Mode* IE for a DCH or a DCH which belongs to a set of coordinated DCHs, the Node B shall apply the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCHs to Modify* IE includes the *ToAWS* IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new ToAWS in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCHs to Modify* IE includes the *ToAWE* IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new ToAWE in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - [TDD If the *DCHs to Modify* IE includes the *CCTrCH ID* IE for the DL of a DCH to be modified, the Node B shall apply the new CCTrCH ID in the Downlink of this DCH in the new configuration.] - [TDD If the *DCHs to Modify* IE includes the *CCTrCH ID* IE for the UL of a DCH to be modified, the Node B shall apply the new CCTrCH ID in the Uplink of this DCH in the new configuration.] #### **DCH Addition:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs to Add* IEs then the Node B shall treat them each as follows: - If the *DCHs to Add* IE includes multiple *DCH Specific Info* IEs, the Node B shall treat the DCHs in the *DCHs to Add* IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration. - [FDD For DCHs which do not belong to a set of co-ordinated DCHs with the *QE-Selector* IE set to "selected", the Transport channel BER from that DCH shall be the base for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If the *QE-Selector* IE is set to "non-selected", the Physical channel BER shall be used for the QE in the UL data frames, ref. [16].] - For a set of co-ordinated DCHs, the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" shall be used for the QE in the UL data frames, ref. [16]. [FDD If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If all DCHs have the *QE-Selector* IE set to "non-selected", the Physical channel BER shall be used for the QE, ref. [16].] - The Node B should store the *Frame Handling Priority* IE received for a DCH to be added in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the Uu interface in congestion situations within the Node B once the new configuration has been activated. - The Node B shall use the included *UL FP Mode* IE for a DCH or a set of co-ordinated DCHs to be added as the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - The Node B shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - The Node B shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - [TDD The Node B shall apply the *CCTrCH ID* IE (for the DL) in the Downlink of this DCH in the new configuration.] - [TDD The Node B shall apply the *CCTrCH ID* IE (for the UL) in the Uplink of this DCH in the new configuration.] #### **DCH Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs to Delete* IE, the Node B shall not include the referenced DCHs in the new configuration. If all of the DCHs belonging to a set of co-ordinated DCHs are requested to be deleted, the Node B shall not include this set of co-ordinated DCHs in the new configuration. #### **Physical Channel Modification:** [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes an *UL DPCH Information* IE, then the Node B shall apply the parameters to the new configuration as follows:] - [FDD If the *UL DPCH Information* IE includes the *Uplink Scrambling Code* IE, the Node B shall apply this Uplink Scrambling Code to the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *Min UL Channelisation Code Length* IE, the Node B shall apply the value in the new configuration. The Node B shall apply the contents of the *Max Number of UL DPDCHs* IE (if it is included) in the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *UL SIR Target* IE, the Node B shall use the value for the UL inner loop power control when the new configuration is being used.] - [FDD If the *UL DPCH Information* IE includes the *Puncture Limit* IE, the Node B shall apply the value in the uplink of the new configuration.] - [FDD The Node B shall use the *TFCS* IE for the UL (if present) when reserving resources for the uplink of the new configuration. The Node B shall apply the new TFCS in the Uplink of the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *UL DPCCH Slot Format* IE, the Node B shall set the new Uplink DPCCH Structure to the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *Diversity Mode* IE, the Node B shall apply diversity according to the given value.] - [FDD If the *UL DPCH Information* IE includes an *SSDT Cell Identity Length* IE and/or an *S-Field Length* IE, the Node B shall apply the values in the new configuration.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes a *DL DPCH Information* IE, the Node B shall apply the parameters to the new configuration as follows:] - [FDD The Node B shall use the *TFCS* IE for the DL (if it is present) when reserving resources for the downlink of the new configuration. The Node B shall apply the new TFCS in the Downlink of the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *TFCI Signalling Mode* IE or the *TFCI Presence* IE, the Node B shall use the information when building TFCIs in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *DL DPCCH Slot Format* IE, the Node B shall set the new Downlink DPCCH Structure to the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Multiplexing Position* IE, the Node B shall apply the indicated multiplexing type in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Limited Power Increase* IE set to "Used", the Node B shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Limited Power Increase* IE set to "Not Used", the Node B shall not use Limited Power Increase for the inner loop DL power control in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *PDSCH Code Mapping* IE, then the Node B shall apply the defined mapping between TFCI values and PDSCH channelisation codes.] - [FDD If the *DL DPCH Information* IE includes the *PDSCH RL ID* IE, then the Node B shall infer that the PDSCH for the specified user will be transmitted on the defined radio link.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transmission Gap Pattern Sequence Information* IE, the Node B shall store the new information about the Transmission Gap Pattern Sequences to be used in the new Compressed Mode Configuration. This new Compressed Mode Configuration shall be valid in the Node B until the next Compressed Mode Configuration is configured in the Node B or Node B Communication Context is deleted.] #### [TDD – UL/DL CCTrCH Modification] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH to Modify* or *DL CCTrCH to Modify* IE, then the Node B shall treat them each as follows:] - [TDD If the IE includes any of the *TFCS* IE, *TFCI coding* IE or *Puncture Limit*
IE, the Node B shall apply these as the new values, otherwise the old values specified for this CCTrCH are still applicable.] - [TDD If the IE includes any *UL DPCH To Add* IE or *DL DPCH To Add* IE, the Node B shall include this DPCH in the new configuration.] - [TDD If the IE includes any *UL DPCH To Delete* IE or *DL DPCH To Delete* IE, the Node B shall remove this DPCH in the new configuration.] - [TDD If the IE includes any *UL DPCH To Modify* IE or *DL DPCH To Modify* IE and includes any of the *Repetition Period* IE, *Repetition Length* IE or *TDD DPCH Offset* IE, or the message includes UL/DL Timeslot Information and includes any of the [3.84Mcps TDD *Midamble Shift And Burst Type* IE, *Time Slot* IE], [1.28Mcps TDD *Midamble Shift LCR* IE, *Time Slot LCR* IE], or *TFCI Presence* IE or the message includes UL/DL Code information and includes [3.84Mcps TDD *TDD Channelisation Code* IE], [1.28Mcps TDD - TDD Channelisation Code LCR IE], the Node B shall apply these specified information elements as the new values, otherwise the old values specified for this DPCH configuration are still applicable.] - [1.28Mcps TDD – If the *UL CCTrCH To Modify* IE includes the *UL SIR Target* IE, the Node B shall use the value for the UL inner loop power control according [19] and [21] when the new configuration is being used.] #### [TDD – UL/DL CCTrCH Addition] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH To Add* IE or *DL CCTrCH To Add* IE, the Node B shall include this CCTrCH in the new configuration.] [TDD – If the *UL/DL CCTrCH To Add* IE includes any *UL/DL DPCH Information* IE, the Node B shall reserve necessary resources for the new configuration of the UL/DL DPCH(s) according to the parameters given in the message.] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes a *DL CCTrCH To Add* IE, the Node B shall set the TPC step size of that CCTrCH to the same value as the lowest numbered DL CCTrCH in the current configuration.] [1.28Mcps TDD – The Node B shall use the *UL SIR Target* IE in the *UL CCTrCH To Add* IE as the UL SIR value for the inner loop power control for this CCTrCH according [19] and [21] in the new configuration.] #### [TDD – UL/DL CCTrCH Deletion] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any UL or DL CCTrCH to be deleted , the Node B shall remove this CCTrCH in the new configuration.] #### **DL Power Control:** - [FDD - If the *RL Information* IE includes the *DL Reference Power* IEs and the power balancing is active, the Node B shall update the reference power of the power balancing in the indicated RL(s), if updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported, at the CFN in the RADIO LINK RECONFIGURATION COMMIT message, according to subclause 8.3.7, using the *DL Reference Power* IE. If the CFN modulo the value of the *Adjustment Period* IE is not equal to 0, the power balancing continues with the old reference power until the end of the current adjustment period, and the updated reference power shall be used from the next adjustment period. [FDD - If updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported by the Node B, the Node B shall include the *DL Power Balancing Updated Indicator* IE in the *RL Information Response* IE in the RADIO LINK RECONFIGURATION READY message.] #### **DSCH Addition/Modification/Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DSCH To Add*, *DSCH To Modify* or *DSCH To Delete* IE, then the Node B shall use this information to add/modify/delete the indicated DSCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs. The Node B shall include in the RADIO LINK RECONFIGURATION READY message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DSCH. [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *TFC12 Bearer Information* IE, then the Node B shall support the establishment of a transport bearer on which the DSCH TFCI Signaling control frames shall be received if one does not already exist or shall apply the new values if such a bearer does already exist for this Node B Communication Context. The *Binding ID* IE and *Transport Layer Address* IE of any new bearer to be set up for this purpose shall be returned in the RADIO LINK RECONFIGURATION READY message. If the RADIO LINK RECONFIGURATION PREPARE message specifies that the TFC12 transport bearer is to be deleted, then the Node B shall release the resources associated with that bearer in the new configuration.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *TFCI2 Bearer Request Indicator* IE in the *TFCI2 Bearer Information* IE with the value "New Bearer Requested", the Node B shall, if supported, establish a new transport bearer replacing the existing transport bearer on which the DSCH TFCI Signaling control frames shall be received. The *Binding ID* IE and *Transport Layer Address* IE of a new bearer to be set up for this purpose shall be returned in the RADIO LINK RECONFIGURATION READY message.] [FDD – If the *TFCI Signalling Mode* IE within the RADIO LINK RECONFIGURATION PREPARE message indicates that there shall be a hard split on the TFCI field but a TFCI2 transport bearer has not already been set up and *TFCI2 Bearer Information* IE is not included in the message, then the Node B shall transmit the TFCI2 field with zero power in the new configuration.] [FDD – If the *TFCI Signalling Mode* IE within the RADIO LINK RECONFIGURATION PREPARE message indicates that there shall be a hard split on the TFCI and the *TFCI2 Bearer Information* IE is included in the message, then the Node B shall transmit the TFCI2 field with zero power until Synchronisation is achieved on the TFCI2 transport bearer and the first valid DSCH TFCI Signalling control frame is received on this bearer in the new configuration (see ref. [24]).] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Length Of TFCI2* IE, then the Node B shall apply the length of TFCI (field 2) indicated in the message in the new configuration.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message does not include the *Length Of TFCI2* IE and the *Split Type* IE is present with the value "Hard", then the Node B shall assume the length of the TFCI (field 2) is 5 bits in the new configuration.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the *DSCH Common Information* IE, the Node B shall treat it as follows:] - [FDD If the *Enhanced DSCH PC Indicator* IE is included and set to "Enhanced DSCH PC Active in the UE", the Node B shall activate enhanced DSCH power control in accordance with ref. [10] subclause 5.2.2, if supported, using either:] - [FDD the *SSDT Cell Identity for EDSCHPC* IE in the *RL Information* IE, if the *SSDT Cell Identity* IE is not included in the *RL Information* IE or] - [FDD the SSDT Cell Identity IE in the RL Information IE, if both the SSDT Cell Identity IE and the SSDT Cell Identity for EDSCHPC IE are included in the RL Information IE.] [FDD - together with the SSDT Cell Identity Length IE in UL DPCH Information IE, and Enhanced DSCH PC IE, in the new configuration.] [FDD - If the enhanced DSCH power control is activated and the TFCI power control in DSCH hard split mode is supported, the primary/secondary status determination in the enhanced DSCH power control is also applied to the TFCI power control in DSCH hard split mode.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the *Enhanced DSCH PC Indicator* IE set to "Enhanced DSCH PC not Active in the UE", the Node B shall deactivate enhanced DSCH power control in the new configuration.] ### $[TDD-USCH\ Addition/Modification/Deletion:] \\$ - [TDD If the RADIO LINK RECONFIGURATION PREPARE message includes USCH information for the USCHs to be added/modified/deleted then the Node B shall use this information to add/modify/delete the indicated USCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs.] - [TDD The Node B shall include in the RADIO LINK RECONFIGURATION READY message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each USCH.] #### **RL Information:** If the RADIO LINK RECONFIGURATION PREPARE message includes the *RL Information* IE, the Node B shall treat it as follows: - [FDD When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] - [FDD If the *RL Information* IE includes the *SSDT Indication* IE set to "SSDT Active in the UE", the Node B may activate SSDT using the *SSDT Cell Identity* IE in the new configuration.] - [FDD If the *RL Information* IE includes the *Qth Parameter* IE and the *SSDT Indication* IE set to "SSDT Active in the UE", the Node B shall use the *Qth Parameter* IE, if Qth signalling is supported, when SSDT is activated in the new configuration.] - [FDD If the *RL Information* IE includes the *SSDT Indication* IE set to "SSDT not Active in the UE", the Node B shall deactivate SSDT in the new configuration.] - [FDD If the *RL Information* IE includes a *DL Code Information* IE, the Node B shall apply the values in the new configuration.] - [FDD If the *RL Information* IE contains the *Transmission Gap Pattern Sequence Code Information* IE in the *DL Code Information* IE for any of the allocated DL Channelisation Codes, the Node B shall apply the alternate scrambling code as indicated whenever the downlink compressed mode method SF/2 is
active in the new configuration.] - If the *RL Information* IE includes the *Maximum DL Power* and/or the *Minimum DL Power* IEs, the Node B shall apply the values in the new configuration. [FDD During compressed mode, the $P_{SIR}(k)$, as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power in slot k.] - [TDD If the *RL Information* IE includes the *Initial DL Transmission Power* IE, the Node B shall determine the initial CCTrCH DL power for each CCTrCH by the following rule: If the *CCTrCH Initial DL Transmission Power* IE is included for that CCTrCH, then the Node B shall use that power for the initial CCTrCH DL power, otherwise the initial CCTrCH DL power is the *Initial DL Transmission Power* IE included in the *RL Information* IE. The Node B shall apply the determined initial CCTrCH DL power to the transmission on each DPCH of the CCTrCH when starting transmission on a new CCTrCH until the UL synchronisation on the Uu interface is achieved for the CCTrCH. If no *Initial DL Transmission Power* IE is included with a new CCTrCH (even if *CCTrCH Initial DL Transmission Power* IEs are included), the Node B shall use any transmission power level currently used on already existing CCTrCHs when starting transmission for a new CCTrCH. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[22], subclause 4.2.3.3).] - [FDD- If the *RL Information* IE includes the *DL DPCH Timing Adjustment* IE, the Node B shall adjust the timing of the radio link accordingly in the new configuration.] #### [TDD - PDSCH RL ID] - [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *PDSCH RL ID* IE then in the new configuration the Node B shall use the PDSCH and/or PUSCH in this radio link.] #### Signalling bearer rearrangement: If the RADIO LINK RECONFIGURATION PREPARE message includes the *Signalling Bearer Request Indicator* IE the Node B shall, if supported, allocate a new Communication Control Port for the control of the Node B Communication Context and include the *Target Communication Control Port ID* IE in the RADIO LINK RECONFIGURATION READY message. #### **HS-DSCH Addition/Modification/Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *HS-DSCH To Add* IE or *HS-DSCH To Modify* IE or *HS-DSCH To Delete* IE, then the Node B shall use this information to add/modify/delete the indicated HS-DSCH channel to/from the radio link. If the RADIO LINK RECONFIGURATION PREPARE message includes an *HS-PDSCH RL ID* IE, then the Node B shall configure the HS-PDSCH in the radio link indicated by this IE, while removing any existing HS-PDSCH resources from other radio links associated with the Node B Communication Context. If the RADIO LINK RECONFIGURATION PREPARE message includes an *HS-DSCH-RNTI* IE_, then the Node B shall use the HS-DSCH-RNTI for the Node B Communication Context. If the new configuration does not include a HS-DSCH, the HS-DSCH-RNTI, if existing in the Node B Communication Context, shall be deleted from the Node B Communication Context. If the RADIO LINK CONFIGURATION PREPARE message includes an *HS-DSCH To Delete* IE requesting the deletion of certain HS-DSCH resources for the Node B Communication Context, the Node B shall remove the indicated HS-DSCH in the new configuration. The Node B shall include the *HS-DSCH Initial Capacity Allocation* IE in the RADIO LINK RECONFIGURATION READY message for each MAC-d flow, if the Node B allows the CRNC to start transmission of MAC-d PDUs before the Node B has allocated capacity on user plane as described in [24]. #### General If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transport Layer Address* IE and *Binding ID* IEs in the *DSCHs To Modify*, *DSCHs To Add*, [TDD - *USCHs To Modify*, *USCHs To Add*], *HS-DSCH To Modify*, *HS-DSCH To Add* or in the *RL Specific DCH Information* IEs, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for any Transport Channel or HS-DSCH MAC-d flow being added, or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the *Transport Bearer Request Indicator* IE. If the requested modifications are allowed by the Node B and the Node B has successfully reserved the required resources for the new configuration of the Radio Link(s), it shall respond to the CRNC with the RADIO LINK RECONFIGURATION READY message. When this procedure has been completed successfully there exists a Prepared Reconfiguration, as defined in subclause 3.1. In the RADIO LINK RECONFIGURATION READY message, the Node B shall include the *RL Information Response* IE for each affected Radio Link. The Node B shall include in the RADIO LINK RECONFIGURATION READY message the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE for any Transport Channel or HS-DSCH MAC-d flow being added or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the *Transport Bearer Request Indicator* IE. In case of a DCH requiring a new transport bearer on Iub, the *Transport Layer Address* IE and the *Binding ID* IE shall be included in the IE *DCH Information Response* IE. In the case of a set of co-ordinated DCHs requiring a new transport bearer on the Iub interface, the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE shall be included only for one of the DCH in the set of co-ordinated DCHs. In the case of a Radio Link being combined with another Radio Link within the Node B, the *RL Information Response* IE shall be included only for one of the combined RLs. The *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE shall be included only for one of the combined Radio Links. /*Partly omitted*/ # 9.1.36 RADIO LINK SETUP REQUEST # 9.1.36.1 FDD message | IE/Group Name | Presence | Range | IE Type
and | Semantics
Description | Criticality | Assigned Criticality | |----------------------------------|------------|-------|--------------------------------------|--|-------------|----------------------| | | М | | Reference | | _ | | | Message Discriminator | *** | | 9.2.1.45 | | | it | | Message Type | M | | 9.2.1.46 | | YES | reject | | Transaction ID | M | | 9.2.1.62 | | - | | | CRNC Communication
Context ID | M | | 9.2.1.18 | The reserved value "All CRNCCC" shall not be used. | YES | reject | | UL DPCH Information | | 1 | | | YES | reject | | >UL Scrambling Code | М | | 9.2.2.59 | | _ | | | >Min UL Channelisation | M | | 9.2.2.22 | | _ | | | Code Length | | | | | | | | >Max Number of UL | C- | | 9.2.2.21 | | _ | | | DPDCHs | CodeLen | | | | | | | >Puncture Limit | М | | 9.2.1.50 | For UL | - | | | >TFCS | М | | 9.2.1.58 | For UL | _ | | | >UL DPCCH Slot Format | М | | 9.2.2.57 | | _ | | | > UL SIR Target | M | | UL SIR | | _ | | | - JE OIR Target | | | 9.2.1.67A | | | | | >Diversity Mode | M | | 9.2.2.9 | | _ | | | >SSDT Cell ID Length | 0 | | 9.2.2.45 | | _ | | | >S Field Length | 0 | | 9.2.2.40 | | _ | | | >DPC Mode | 0 | | 9.2.2.13C | | YES | reject | | DL DPCH Information | | 1 | | | YES | reject | | >TFCS | М | | 9.2.1.58 | For DL | _ | , | | >DL DPCH Slot Format | М | | 9.2.2.10 | | _ | | | >TFCI Signalling Mode | M | | 9.2.2.50 | | _ | | | >TFCI Presence | C- | | 9.2.1.57 | | _ | | | >TFCT Flesence | SlotFormat | | 0.2.1.07 | | | | | >Multiplexing Position | M | | 9.2.2.23 | | _ | | | >PDSCH RL ID | C-DSCH | | RL ID | | _ | | | | 0 200 | | 9.2.1.53 | | | | | >PDSCH Code Mapping | C-DSCH | | 9.2.2.25 | | _ | | | >Power Offset | 0 20011 | 1 | 0.2.2.20 | | _ | | | Information | | | | | | | | >>P01 | М | | Power
Offset
9.2.2.29 | Power offset for the TFCI bits | - | | | >>PO2 | М | | Power
Offset
9.2.2.29 | Power offset for the TPC bits | - | | | >>PO3 | М | | Power
Offset
9.2.2.29 | Power offset for the pilot bits | - | | | >FDD TPC DL Step Size | M | | 9.2.2.16 | | _ | | | >Limited Power Increase | M | | 9.2.2.18A | | _ | | | >Inner Loop DL PC Status | M | | 9.2.2.18B | | _ | | | DCH Information | M | | DCH FDD
Information
9.2.2.4D | | YES | reject | | DSCH Information | 0 | | DSCH FDD
Information
9.2.2.13B | | YES | reject | | TFCI2 bearer information | | 01 | 1 | | YES | ignore | | >ToAWS | М | | 9.2.1.61 | | _ | | | | i . | İ | 1 | 1 | l . | 1 | | >ToAWE | М | | 9.2.1.60 | | _ | | |---|-----------------------|----------------------------------|--|--|------|--------| | >Binding ID | 0 | | 9.2.1.4 | Shall be ignored if bearer establishment with ALCAP. | YES | ignore | | >Transport Layer Address | 0 | | 9.2.1.63 | Shall be ignored if bearer establishment with ALCAP. | YES | ignore | | RL Information | | 1 <maxno
ofRLs></maxno
 | | | EACH | notify | | >RL ID | М | | 9.2.1.53 | | _ | | | >C-ID | M | | 9.2.1.9 | | _ | | | >First RLS Indicator | М | | 9.2.2.16A | | _ | | | >Frame Offset | M | | 9.2.1.31 | | _ | | | >Chip Offset | М | | 9.2.2.2 | | _ | | | >Propagation Delay | 0 | | 9.2.2.35 | | _ | | | >Diversity Control Field | C-
NotFirstRL | | 9.2.1.25 | | _ | | | >DL Code Information | M | | FDD DL
Code
Information
9.2.2.14A | | - | | | >Initial DL Transmission
Power | М | | DL Power
9.2.1.21 | Initial power on DPCH | _ | | | >Maximum DL Power | М | | DL Power
9.2.1.21 | Maximum
allowed power
on DPCH | _ | | | >Minimum DL Power | М | | DL Power
9.2.1.21 | Minimum
allowed power
on DPCH | _ | | | >SSDT Cell Identity | 0 | | 9.2.2.44 | | _ | | | >Transmit Diversity Indicator | C-Diversity mode | | 9.2.2.53 | | _ | | | >SSDT Cell Identity For
EDSCHPC |
C-
EDSCHPC | | 9.2.2.44A | | YES | ignore | | >RL Specific DCH
Information | 0 | | 9.2.1.53G | | YES | ignore | | >Delayed Activation | 0 | | 9.2.1.24C | | YES | reject | | >Qth Parameter | 0 | | 9.2.2.36A | | YES | ignore | | Transmission Gap Pattern Sequence Information | 0 | | 9.2.2.53A | | YES | reject | | Active Pattern Sequence Information | 0 | | 9.2.2.A | | YES | reject | | DSCH Common Information | 0 | | DSCH FDD
Common
Information
9.2.2.13D | | YES | ignore | | DL Power Balancing
Information | 0 | | 9.2.2.12B | | YES | ignore | | HS-DSCH Information | 0 | | HS-DSCH
FDD
Information
9.2.2.18D | | YES | reject | | HS-DSCH-RNTI | OC-
InfoHSDS
CH | | 9.2.1.31J | | YES | reject | | HS-PDSCH RL ID | C-
InfoHSDS
CH | | RL ID
9.2.1.53 | | YES | reject | | Condition | Explanation | |----------------|--| | CodeLen | The IE shall be present if Min UL Channelisation Code Length IE equals | | | to 4. | | NotFirstRL | The IE shall be present if the RL is not the first one in the RL Information | | | IE. | | DSCH | The IE shall be present if the DSCH Information IE is present. | | SlotFormat | The IE shall be present if the DL DPCH Slot Format IE is equal to any of | | | the values from 12 to 16. | | Diversity mode | The IE shall be present if Diversity Mode IE in UL DPCH Information IE | | | is not set to "none". | | EDSCHPC | The IE shall be present if Enhanced DSCH PC IE is present in the | | | DSCH Common Information IE. | | InfoHSDSCH | The IE shall be present if HS-DSCH-FDD Information IE is present-as | | | well. | | Range Bound | Explanation | |-------------|----------------------------------| | maxnoofRLs | Maximum number of RLs for one UE | # 9.1.36.2 TDD message | IE/Group Name | Presence | Range | IE Type
and
Reference | Semantics
Description | Criticality | Assigned
Criticality | |----------------------------------|----------|-----------------------------------|-----------------------------|---|-------------|-------------------------| | Message Discriminator | М | | 9.2.1.45 | | _ | | | Message Type | M | | 9.2.1.46 | | YES | reject | | Transaction ID | M | | 9.2.1.62 | | _ | . 0,000 | | CRNC Communication Context ID | M | | 9.2.1.18 | The reserved value "All CRNCCC" shall not be used. | YES | reject | | UL CCTrCH Information | | 0 <maxno
CCTrCH></maxno
 | | | EACH | notify | | >CCTrCH ID | М | | 9.2.3.3 | | _ | | | >TFCS | М | | 9.2.1.58 | | _ | | | >TFCI Coding | М | | 9.2.3.22 | | _ | | | >Puncture Limit | М | | 9.2.1.50 | | _ | | | >UL DPCH Information | | 01 | | Applicable to
3.84Mcps TDD
only | YES | notify | | >>Repetition Period | М | | 9.2.3.16 | | _ | | | >>Repetition Length | M | | 9.2.3.15 | | - | | | >>TDD DPCH Offset | М | | 9.2.3.19A | | _ | | | >>UL Timeslot Information | M | | 9.2.3.26C | | _ | | | >UL DPCH Information LCR | | 01 | | Applicable to
1.28Mcps TDD
only | YES | notify | | >>Repetition Period | М | | 9.2.3.16 | | _ | | | >>Repetition Length | М | | 9.2.3.15 | | _ | | | >>TDD DPCH Offset | М | | 9.2.3.19A | | _ | | | >>UL Timeslot
Information LCR | М | | 9.2.3.26E | | _ | | | >UL SIR Target | 0 | | UL SIR
9.2.1.67A | Mandatory for
1.28Mcps TDD.
Not Applicable
to 3.84Mcps
TDD. | YES | reject | | DL CCTrCH Information | | 0 <maxno
CCTrCH></maxno
 | | | EACH | notify | | >CCTrCH ID | М | | 9.2.3.3 | | _ | | | >TFCS | M | | 9.2.1.58 | | _ | | | >TFCI Coding | M | | 9.2.3.22 | | _ | | | >Puncture Limit | M | | 9.2.1.50 | | _ | | | >TDD TPC DL Step Size | M | | 9.2.3.21 | | _ | | | >TPC CCTrCH List | | 0 <maxno
CCTrCH></maxno
 | | List of uplink
CCTrCH which
provide TPC | _ | | | >>TPC CCTrCH ID | М | | CCTrCH ID 9.2.3.3 | | _ | | | >DL DPCH information | | 01 | | Applicable to
3.84Mcps TDD
only | YES | notify | | >>Repetition Period | M | | 9.2.3.16 | | _ | | | >>Repetition Length | M | | 9.2.3.15 | | - | | | >>TDD DPCH Offset | M | | 9.2.3.19A | | _ | | | >>DL Timeslot Information | M | | 9.2.3.4E | | _ | | | >DL DPCH information
LCR | | 01 | | Applicable to 1.28Mcps TDD only | YES | notify | | | L N 4 | | 00040 | | | | |---------------------------------------|-----------------------|----|---|---|-----|--------| | >>Repetition Period | M | | 9.2.3.16 | | _ | | | >>Repetition Length | M | | 9.2.3.15 | | _ | | | >>TDD DPCH Offset | M | | 9.2.3.19A | | _ | | | >>DL Timeslot | M | | 9.2.3.40 | | _ | | | Information LCR | | | | | | | | >>TSTD Indicator | M | | 9.2.1.64 | | _ | | | >CCTrCH Initial DL | 0 | | DL Power | Initial power on | YES | ignore | | Transmission Power | | | 9.2.1.21 | DPCH | | | | DCH Information | 0 | | DCH TDD
Information
9.2.3.4C | | YES | reject | | DSCH Information | 0 | | DSCH TDD
Information
9.2.3.5A | | YES | reject | | USCH Information | 0 | | 9.2.3.28 | | YES | reject | | RL Information | | 1 | | | YES | reject | | >RL ID | M | | 9.2.1.53 | | _ | | | >C-ID | М | | 9.2.1.9 | | _ | | | >Frame Offset | М | | 9.2.1.31 | | _ | | | >Special Burst Scheduling | М | | 9.2.3.18A | | _ | | | >Initial DL Transmission Power | М | | DL Power
9.2.1.21 | Initial power on DPCH | - | | | >Maximum DL Power | М | | DL Power
9.2.1.21 | Maximum
allowed power
on DPCH | - | | | >Minimum DL Power | M | | DL Power
9.2.1.21 | Minimum
allowed power
on DPCH | 1 | | | >DL Time Slot ISCP Info | 0 | | 9.2.3.4F | Applicable to
3.84Mcps TDD
only | _ | | | >DL Time Slot ISCP Info
LCR | 0 | | 9.2.3.40A | Applicable to
1.28Mcps TDD
only | YES | reject | | >RL Specific DCH | 0 | | 9.2.1.53G | | YES | ignore | | Information | | | | | | | | >Delayed Activation | 0 | | 9.2.1.24C | | YES | reject | | >UL Synchronisation Parameters LCR | | 01 | | Mandatory for
1.28Mcps TDD.
Not Applicable
to 3.84Mcps
TDD. | YES | ignore | | >>Uplink Synchronisation Step Size | М | | 9.2.3.26H | | _ | | | >>Uplink Synchronisation
Frequency | М | | 9.2.3.26G | | _ | | | HS-DSCH Information | 0 | | HS-DSCH
TDD
Information
9.2.3.5F | | YES | reject | | HS-DSCH-RNTI | OC-
InfoHSDS
CH | | 9.2.1.31J | | YES | reject | | HS-PDSCH RL ID | C-
InfoHSDS
CH | | RL ID
9.2.1.53 | | YES | reject | | PDSCH-RL-ID | 0 | | RL ID
9.2.1.53 | | YES | ignore | | Range Bound | Explanation | |-------------|------------------------------| | maxnoCCTrCH | Number of CCTrCHs for one UE | | Condition | <u>Explanation</u> | |-------------------|---| | <u>InfoHSDSCH</u> | The IE shall be present if HS-DSCH Information IE is present. | /*Partly omitted*/ #### 9.3.3 PDU Definitions ``` ***************** -- PDU definitions for NBAP. /*Partly omitted*/ ******************* -- RADIO LINK SETUP REQUEST FDD ****************** RadioLinkSetupRequestFDD ::= SEOUENCE { protocolIEs ProtocolIE-Container {{RadioLinkSetupRequestFDD-IEs}}, ProtocolExtensionContainer {{RadioLinkSetupRequestFDD-Extensions}} protocolExtensions OPTIONAL, RadioLinkSetupRequestFDD-IEs NBAP-PROTOCOL-IES ::= { { ID id-CRNC-CommunicationContextID CRITICALITY reject TYPE CRNC-CommunicationContextID PRESENCE mandatory } | { ID id-UL-DPCH-Information-RL-SetupRqstFDD CRITICALITY reject TYPE UL-DPCH-Information-RL- SetupRastFDD PRESENCE mandatory } { ID id-DL-DPCH-Information-RL-SetupRqstFDD CRITICALITY reject TYPE DL-DPCH-Information-RL- PRESENCE mandatory } SetupRqstFDD PRESENCE mandatory } | id-DCH-FDD-Information CRITICALITY reject TYPE DCH-FDD-Information DSCH-FDD-Information PRESENCE optional } | ID id-DSCH-FDD-Information CRITICALITY reject TYPE TFCI2-Bearer-Information-RL- ID id-TFCI2-Bearer-Information-RL-SetupRqstFDD CRITICALITY ignore TYPE SetupRastFDD PRESENCE optional id-RL-InformationList-RL-SetupRqstFDD CRITICALITY notify TYPE RL-InformationList-RL- { ID SetupRqstFDD PRESENCE mandatory } | { ID id-Transmission-Gap-Pattern-Sequence-Information TYPE Transmission-Gap-Pattern-Sequence-Information CRITICALITY reject PRESENCE optional } | { ID id-Active-Pattern-Sequence-Information CRITICALITY reject TYPE Active-Pattern-Sequence-Information PRESENCE optional }, . . . RadioLinkSetupRequestFDD-Extensions NBAP-PROTOCOL-EXTENSION ::= { ID id-DSCH-FDD-Common-Information CRITICALITY ignore EXTENSION DSCH-FDD-Common-Information PRESENCE optional ID id-DL-PowerBalancing-Information CRITICALITY ignore PRESENCE optional | EXTENSION DL-PowerBalancing-Information ID id-HSDSCH-FDD-Information CRITICALITY reject EXTENSION HSDSCH-FDD-Information PRESENCE optional } ID id-HSDSCH-RNTI CRITICALITY reject EXTENSION HSDSCH-RNTI PRESENCE conditional optional } -- The IE shall be present if HS-DSCH Information IE is present CRITICALITY reject EXTENSION RL-ID PRESENCE conditional }, ``` ``` -- The IE shall be present if HS-DSCH Information IE is present UL-DPCH-Information-RL-SetupRgstFDD ::= SEQUENCE { ul-ScramblingCode UL-ScramblingCode, minUL-ChannelisationCodeLength MinUL-ChannelisationCodeLength. maxNrOfUL-DPDCHs MaxNrOfUL-DPDCHs OPTIONAL, -- This IE shall be present if Min UL Channelisation Code length IE is set to 4 -- ul-PunctureLimit PunctureLimit, t FCS TFCS, ul-DPCCH-SlotFormat UL-DPCCH-SlotFormat, ul-SIR-Target UL-SIR. diversityMode DiversityMode, sSDT-CellID-Length SSDT-CellID-Length OPTIONAL, s-FieldLength S-FieldLength OPTIONAL. ProtocolExtensionContainer { { UL-DPCH-Information-RL-SetupRgstFDD-ExtIEs} } OPTIONAL, iE-Extensions UL-DPCH-Information-RL-SetupRqstFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { {ID id-DPC-Mode CRITICALITY reject EXTENSION DPC-Mode PRESENCE optional }, . . . DL-DPCH-Information-RL-SetupRgstFDD ::= SEOUENCE { dl-DPCH-SlotFormat DL-DPCH-SlotFormat, tFCI-SignallingMode TFCI-SignallingMode, tFCI-Presence TFCI-Presence OPTIONAL, -- this IE shall be
present if the DL DPCH slot format IE is set to any of the values from 12 to 16 -- multiplexingPosition MultiplexingPosition, pDSCH-RL-ID RL-ID OPTIONAL, -- This IE shall be present if the DSCH Information IE is present -- pDSCH-CodeMapping PDSCH-CodeMapping OPTIONAL, -- This IE shall be present if the DSCH Information IE is present -- powerOffsetInformation PowerOffsetInformation-RL-SetupRqstFDD, fdd-TPC-DownlinkStepSize FDD-TPC-DownlinkStepSize, limitedPowerIncrease LimitedPowerIncrease, innerLoopDLPCStatus InnerLoopDLPCStatus, ProtocolExtensionContainer { { DL-DPCH-Information-RL-SetupRqstFDD-ExtIEs} } OPTIONAL, iE-Extensions DL-DPCH-Information-RL-SetupRgstFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { PowerOffsetInformation-RL-SetupRgstFDD ::= SEQUENCE { PowerOffset, pO1-ForTFCI-Bits PowerOffset, pO2-ForTPC-Bits pO3-ForPilotBits PowerOffset, iE-Extensions ProtocolExtensionContainer { { PowerOffsetInformation-RL-SetupRqstFDD-ExtIEs} } OPTIONAL, ``` ``` PowerOffsetInformation-RL-SetupRqstFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { TFCI2-Bearer-Information-RL-SetupRgstFDD ::= SEOUENCE { toAWS ToAWS, toAWE ToAWE, iE-Extensions ProtocolExtensionContainer { { TFCI2-Bearer-Information-RL-SetupRqstFDD-ExtIEs} } OPTIONAL, TFCI2-Bearer-Information-RL-SetupRqstFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= ID id-bindingID CRITICALITY ignore EXTENSION BindingID PRESENCE optional }| ID id-transportlayeraddress CRITICALITY ignore optional }, EXTENSION TransportLayerAddress PRESENCE RL-InformationList-RL-SetupRqstFDD ::= SEQUENCE (SIZE (1..maxNrOfRLs)) OF ProtocolIE-Single-Container{{ RL-InformationItemIE-RL-SetupRqstFDD }} RL-InformationItemIE-RL-SetupRgstFDD NBAP-PROTOCOL-IES ::= { id-RL-InformationItem-RL-SetupRqstFDD CRITICALITY TYPE RL-InformationItem-RL- notify SetupRqstFDD PRESENCE mandatory} RL-InformationItem-RL-SetupRgstFDD ::= SEQUENCE { rL-ID RL-ID, C-TD C-ID, firstRLS-indicator FirstRLS-Indicator, frameOffset FrameOffset, chipOffset ChipOffset, propagationDelay PropagationDelay OPTIONAL. diversityControlField DiversityControlField OPTIONAL, -- This IE shall be present if the RL is not the first one in the RL Information IE dl-CodeInformation FDD-DL-CodeInformation, initialDL-transmissionPower DL-Power, maximumDL-power DL-Power, minimumDL-power DL-Power, sSDT-Cell-Identity SSDT-Cell-Identity OPTIONAL. transmitDiversityIndicator TransmitDiversityIndicator OPTIONAL, -- This IE shall be present if Diversity Mode IE in UL DPCH Information group is not set to "none" ProtocolExtensionContainer { RL-InformationItem-RL-SetupRgstFDD-ExtIEs} } iE-Extensions RL-InformationItem-RL-SetupRqstFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { { ID id-SSDT-CellIDforEDSCHPC CRITICALITY ignore EXTENSION SSDT-Cell-Identity PRESENCE conditional } -- This IE shall be present if Enhanced DSCH PC IE is present in the DSCH Common Information IE. { ID id-RL-Specific-DCH-Info CRITICALITY ignore EXTENSION RL-Specific-DCH-Info optional } { ID id-DelayedActivation CRITICALITY reject EXTENSION DelayedActivation PRESENCE optional } ``` ``` PRESENCE optional }, EXTENSION Oth-Parameter ***************** -- RADIO LINK SETUP REQUEST TDD RadioLinkSetupRequestTDD ::= SEQUENCE { protocolIEs ProtocolIE-Container {{RadioLinkSetupRequestTDD-IEs}}, ProtocolExtensionContainer {{RadioLinkSetupRequestTDD-Extensions}} protocolExtensions OPTIONAL. RadioLinkSetupRequestTDD-IEs NBAP-PROTOCOL-IES ::= { id-CRNC-CommunicationContextID CRITICALITY reject TYPE CRNC-CommunicationContextID PRESENCE mandatory }| id-UL-CCTrCH-InformationList-RL-SetupRqstTDD { ID CRITICALITY notify TYPE UL-CCTrCH-InformationList-RL- SetupRqstTDD PRESENCE optional }| { ID id-DL-CCTrCH-InformationList-RL-SetupRqstTDD CRITICALITY notify TYPE DL-CCTrCH-InformationList-RL- SetupRqstTDD PRESENCE optional ID id-DCH-TDD-Information CRITICALITY reject TYPE DCH-TDD-Information PRESENCE optional } ID id-DSCH-TDD-Information CRITICALITY reject TYPE DSCH-TDD-Information PRESENCE optional } | id-USCH-Information CRITICALITY reject TYPE USCH-Information PRESENCE optional } ID ID id-RL-Information-RL-SetupRgstTDD CRITICALITY reject TYPE RL-Information-RL-SetupRgstTDD PRESENCE mandatory }, . . . RadioLinkSetupRequestTDD-Extensions NBAP-PROTOCOL-EXTENSION ::= { { ID id-HSDSCH-TDD-Information CRITICALITY reject EXTENSION HSDSCH-TDD-Information PRESENCE optional } | { ID id-HSDSCH-RNTI CRITICALITY reject PRESENCE conditional optional } | EXTENSION HSDSCH-RNTI -- The IE shall be present if HS-DSCH Information IE is present PRESENCE conditional } | { ID id-HSPDSCH-RL-ID CRITICALITY reject EXTENSION RL-ID -- The IE shall be present if HS-DSCH Information IE is present { ID id-PDSCH-RL-ID CRITICALITY ignore PRESENCE optional }, EXTENSION RL-ID UL-CCTrCH-InformationList-RL-SetupRgstTDD ::= SEOUENCE (SIZE(1..maxNrOfCCTrCHs)) OF ProtocolIE-Single-Container{{ UL-CCTrCH-InformationItemIE-RL-SetupRqstTDD }} UL-CCTrCH-InformationItemIE-RL-SetupRgstTDD NBAP-PROTOCOL-IES ::= { { ID id-UL-CCTrCH-InformationItem-RL-SetupRqstTDD CRITICALITY notify TYPE UL-CCTrCH-InformationItem-RL- SetupRastTDD PRESENCE mandatory} UL-CCTrCH-InformationItem-RL-SetupRqstTDD ::= SEQUENCE { cCTrCH-ID CCTrCH-ID, tFCS TFCS, tFCI-Coding TFCI-Coding, ``` ``` PunctureLimit, punctureLimit uL-DPCH-Information UL-DPCH-Information-RL-SetupRqstTDD OPTIONAL, -- Applicable to 3.84Mcps TDD only iE-Extensions ProtocolExtensionContainer { { UL-CCTrCH-InformationItem-RL-SetupRgstTDD-ExtIEs} } UL-CCTrCH-InformationItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { { ID id-UL-DPCH-LCR-Information-RL-SetupRqstTDD CRITICALITY notify EXTENSION UL-DPCH-LCR-Information-RL-SetupRgstTDD PRESENCE optional } -- Applicable to 1.28Mcps TDD only CRITICALITY reject { ID id-UL-SIRTarget UL-SIR PRESENCE optional -- Mandatory for 1.28Mcps TDD, Not Applicable to 3.84Mcps TDD. UL-DPCH-Information-RL-SetupRqstTDD ::= ProtocolIE-Single-Container{{ UL-DPCH-InformationIE-RL-SetupRqstTDD }} UL-DPCH-InformationIE-RL-SetupRqstTDD NBAP-PROTOCOL-IES ::= { { ID id-UL-DPCH-InformationList-RL-SetupRgstTDD CRITICALITY notify TYPE UL-DPCH-InformationItem-RL-SetupRqstTDD PRESENCE mandatory UL-DPCH-InformationItem-RL-SetupRqstTDD ::= SEQUENCE repetitionPeriod RepetitionPeriod, repetitionLength RepetitionLength, tdd-DPCHOffset TDD-DPCHOffset, uL-Timeslot-Information UL-Timeslot-Information, iE-Extensions ProtocolExtensionContainer { { UL-DPCH-InformationItem-RL-SetupRgstTDD-ExtIEs} } UL-DPCH-InformationItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { . . . UL-DPCH-LCR-Information-RL-SetupRqstTDD ::= SEQUENCE { repetitionPeriod RepetitionPeriod, repetitionLength RepetitionLength, tdd-DPCHOffset TDD-DPCHOffset, uL-TimeslotLCR-Information UL-TimeslotLCR-Information, iE-Extensions ProtocolExtensionContainer { { UL-DPCH-LCR-InformationItem-RL-SetupRqstTDD-ExtIEs} } OPTIONAL, . . . UL-DPCH-LCR-InformationItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { DL-CCTrCH-InformationList-RL-SetupRqstTDD ::= SEQUENCE (SIZE (1..maxNrOfCCTrCHs)) OF ProtocolIE-Single-Container {{ DL-CCTrCH-InformationItemIE-RL- SetupRqstTDD }} DL-CCTrCH-InformationItemIE-RL-SetupRqstTDD NBAP-PROTOCOL-IES ::= { TYPE DL-CCTrCH-InformationItem- id-DL-CCTrCH-InformationItem-RL-SetupRqstTDD CRITICALITY notify RL-SetupRqstTDD PRESENCE mandatory} ``` ``` DL-CCTrCH-InformationItem-RL-SetupRgstTDD ::= SEQUENCE cCTrCH-ID CCTrCH-ID. t.FCS TFCS, tFCI-Coding TFCI-Coding, punctureLimit PunctureLimit, TDD-TPC-DownlinkStepSize, tdd-TPC-DownlinkStepSize cCTrCH-TPCList CCTrCH-TPCList-RL-SetupRgstTDD OPTIONAL, dL-DPCH-Information DL-DPCH-Information-RL-SetupRqstTDD OPTIONAL, -- Applicable to 3.84Mcps TDD only ProtocolExtensionContainer { { DL-CCTrCH-InformationItem-RL-SetupRqstTDD-ExtIEs} } iE-Extensions DL-CCTrCH-InformationItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { { ID id-DL-DPCH-LCR-Information-RL-SetupRqstTDD CRITICALITY notify EXTENSION DL-DPCH-LCR-Information-RL-SetupRqstTDD PRESENCE optional } -- Applicable to 1.28Mcps TDD only { ID id-CCTrCH-Initial-DL-Power-RL-SetupRgstTDD CRITICALITY ignore PRESENCE optional }, EXTENSION DL-Power CCTrCH-TPCList-RL-SetupRqstTDD ::= SEQUENCE (SIZE (1..maxNrOfCCTrCHs)) OF CCTrCH-TPCItem-RL-SetupRqstTDD CCTrCH-TPCItem-RL-SetupRqstTDD ::= SEQUENCE { cCTrCH-ID iE-Extensions ProtocolExtensionContainer { { CCTrCH-TPCItem-RL-SetupRqstTDD-ExtIEs} } OPTIONAL. CCTrCH-TPCItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { DL-DPCH-Information-RL-SetupRqstTDD ::= ProtocolIE-Single-Container {{ DL-DPCH-InformationIE-RL-SetupRqstTDD }} DL-DPCH-InformationIE-RL-SetupRgstTDD NBAP-PROTOCOL-IES ::= { { ID id-DL-DPCH-InformationList-RL-SetupRqstTDD CRITICALITY notify TYPE DL-DPCH-InformationItem-RL-SetupRqstTDD PRESENCE mandatory DL-DPCH-InformationItem-RL-SetupRgstTDD ::= SEQUENCE { repetitionPeriod RepetitionPeriod, repetitionLength RepetitionLength, tdd-DPCHOffset TDD-DPCHOffset, dL-Timeslot-Information DL-Timeslot-Information, iE-Extensions OPTIONAL, . . . DL-DPCH-InformationItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { DL-DPCH-LCR-Information-RL-SetupRqstTDD ::= SEQUENCE { repetitionPeriod RepetitionPeriod, ``` ``` RepetitionLength, repetitionLength tdd-DPCHOffset TDD-DPCHOffset, dL-TimeslotLCR-Information DL-TimeslotLCR-Information. tstdIndicator TSTD-Indicator, iE-Extensions ProtocolExtensionContainer { { DL-DPCH-LCR-InformationItem-RL-SetupRqstTDD-ExtIEs} } OPTIONAL, . . . DL-DPCH-LCR-InformationItem-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { RL-Information-RL-SetupRgstTDD ::= SEQUENCE { rL-ID RL-ID, c-ID C-ID, frameOffset FrameOffset, SpecialBurstScheduling, specialBurstScheduling initialDL-transmissionPower DL-Power, maximumDL-power DL-Power, minimumDL-power DL-Power, dL-TimeSlotISCPInfo DL-TimeslotISCPInfo OPTIONAL, -- Applicable to 3.84Mcps TDD only iE-Extensions ProtocolExtensionContainer { { RL-Information-RL-SetupRqstTDD-ExtIEs} } OPTIONAL, RL-Information-RL-SetupRqstTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { PRESENCE optional } | EXTENSION DL-TimeslotISCPInfoLCR --
Applicable to 1.28Mcps TDD only { ID id-RL-Specific-DCH-Info CRITICALITY ignore EXTENSION RL-Specific-DCH-Info PRESENCE optional } { ID id-DelayedActivation CRITICALITY reject EXTENSION DelayedActivation PRESENCE optional } | EXTENSION UL-Synchronisation-Parameters-LCR { ID id-UL-Synchronisation-Parameters-LCR CRITICALITY ignore PRESENCE optional }, -- Mandatory for 1.28Mcps TDD, Not Applicable to 3.84Mcps TDD ``` /*Partly omitted*/