3GPP TSG-RAN Meeting #17 Biarritz, France, 3-6 September 2002 | | CHA | ANGE REQ | UES1 | - | | CR-Form-v7 | |-------|---------------|----------|------------|------------------|-------|------------| | ₩ | 25.433 CR 713 | жrev | 3 * | Current version: | 5.1.0 | ¥ | | - 455 | | | | | | | For **HELP** on using this form, see bottom of this page or look at the pop-up text over the **#** symbols. | Proposed chan | ge i | affects: | UICC apps# | ME Radio A | ccess Netwo | rk X Core Network | |----------------|----------------|-------------|------------------------------|-------------------------|--------------|---------------------------| | Title: | ж | CQI an | d ACK/NACK Repetitio | n factor and Power | Offset and k | c-value | | | | | · | | | | | Source: | \mathfrak{R} | NEC | | | | | | | | | | | | | | Work item code | : X | HSDP/ | \-lublur | | Date: ℍ | 19-23/08/2002 | | | | | | | | | | Category: | \mathfrak{R} | F | | | Release: # | Rel-5 | | | | | of the following categories | : | | f the following releases: | | | | F (c | correction) | | 2 | (GSM Phase 2) | | | | A (0 | corresponds to a correction | n in an earlier release | e) R96 | (Release 1996) | | | | B (8 | addition of feature), | | R97 | (Release 1997) | | | | C (f | iunctional modification of f | eature) | R98 | (Release 1998) | | | | D (6 | editorial modification) | | R99 | (Release 1999) | | | | Detailed | explanations of the above | categories can | Rel-4 | (Release 4) | | | | | in 3GPP TR 21.900. | • | Rel-5 | (Release 5) | | | | | | | Rel-6 | (Release 6) | ### Reason for change: ₩ During RAN3 #29 a joint meeting with RAN1 was held where it was clarified, that the CQI Feedback Cycle k, the CQI- and ACK-NACK Repetition Factors as well as CQI Power Offset, ACK Power Offset and NACK Power Offset are set as initial values during HS-DSCH setup by the SRNC, and not reported from Node B to CRNC/SRNC. – So these IEs must be made available for the RL SETUP REQUEST and RL RECONFIG PREPARE messages. The values of the IEs are definded according the proposals from RAN1 in the LS to RAN3 (R3-021828). ### - ASN.1 syntax errors are corrected (highlighted in yellow). - The order of IE is aligned with tabular (highlighted in green). - Obsolete comment is removed (highlighted in blue). ### Rev.0, Rev.1and Rev.2 These changes are done: - The CQI Feedback Cycle k IE is included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. It is removed from the HS-DSCH FDD Information Response IE - CQI Repetition Factor IE is included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. In HS-DSCH FDD Information IE the CQI Repetition Factor IE is set conditional because it should only be signalled if the CQI Feedback Cycle k IE is set > 0. - ACK-NACK Repetition Factor IE is included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. - ACK Power Offset IE and NACK Power Offset IE are included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. - CQI Power Offset IE is included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. The procedure text of the RL RECONFIG PREPARATION procedure is added, to take the added optional parameters into account ### Impact Analysis: Impact assessment towards the previous version of the specification (same release): This CR has isolated impact with the previous version of the specification (same release) because it affects implementations supporting the corrected functionality of HS-DSCH setup and reconfiguration. This CR has an impact under functional and protocol point of view. The impact can be considered isolated because the change affects one function namely HSDPA. Consequences if not approved: If this CR is not approved the CQI processing cannot be configured correctly and the correct reception of the ACK-NACK can not be guaranteed. | Clauses affected: | # 8.3.2.2, 9.2.1.31H, 9.2.2.18D, 9.2.2.18E, 9.2.2.21B, 9.2.2.x1, 9.2.2.x2, 9.3.4 | |-----------------------|----------------------------------------------------------------------------------| | Other specs affected: | Y N X Other core specifications | | Other comments: | * | ### How to create CRs using this form: Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary: - 1) Fill out the above form. The symbols above marked \(\mathcal{H} \) contain pop-up help information about the field that they are closest to. - 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. - 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request. # 8.3.2 Synchronised Radio Link Reconfiguration Preparation ### 8.3.2.1 General The Synchronised Radio Link Reconfiguration Preparation procedure is used to prepare a new configuration of Radio Link(s) related to one Node B Communication Context. The Synchronised Radio Link Reconfiguration Preparation procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1. ### 8.3.2.2 Successful Operation Figure 30: Synchronised Radio Link Reconfiguration Preparation procedure, Successful Operation The Synchronised Radio Link Reconfiguration Preparation procedure is initiated by the CRNC by sending the RADIO LINK RECONFIGURATION PREPARE message to the Node B. The message shall use the Communication Control Port assigned for this Node B Communication Context. Upon reception, the Node B shall reserve necessary resources for the new configuration of the Radio Link(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications. The Node B shall prioritise resource allocation for the RL(s) to be modified according to Annex A. ### **DCH Modification:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs to Modify* IE then the Node B shall treat them each as follows: - If the *DCHs to Modify* IE includes the *Frame Handling Priority* IE, the Node B should store this information for this DCH in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the radio interface in congestion situations within the Node B once the new configuration has been activated. - If the *DCHs to Modify* IE includes the *Transport Format Set* IE for the UL of a DCH, the Node B shall apply the new Transport Format Set in the Uplink of this DCH in the new configuration. - If the *DCHs to Modify* IE includes the *Transport Format Set* IE for the DL of a DCH, the Node B shall apply the new Transport Format Set in the Downlink of this DCH in the new configuration. - If the *DCHs to Modify* IE includes multiple *DCH Specific Info* IEs, the Node B shall treat the DCHs in the *DCHs to Modify* IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration. - If the *DCHs to Modify* IE includes the *UL FP Mode* IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCHs to Modify* IE includes the *ToAWS* IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new ToAWS in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - If the *DCHs to Modify* IE includes the *ToAWE* IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new ToAWE in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - [TDD If the *DCHs to Modify* IE includes the *CCTrCH ID* IE for the DL of a DCH to be modified, the Node B shall apply the new CCTrCH ID in the Downlink of this DCH in the new configuration.] - [TDD If the *DCHs to Modify* IE includes the *CCTrCH ID* IE for the UL of a DCH to be modified, the Node B shall apply the new CCTrCH ID in the Uplink of this DCH in the new configuration.] ### **DCH Addition:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs to Add* IEs then the Node B shall treat them each as follows: - If the *DCHs to Add* IE includes multiple *DCH Specific Info* IEs, the Node B shall treat the DCHs in the *DCHs to Add* IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration. - [FDD For DCHs which do not belong to a set of co-ordinated DCHs with the *QE-Selector* IE set to "selected", the Transport channel BER from that DCH shall be the base for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If the *QE-Selector* IE is set to "non-selected", the Physical channel BER shall be used for the QE in the UL data frames, ref. [16].] - For a set of co-ordinated DCHs, the Transport channel BER from the DCH with the *QE-Selector* IE set to "selected" shall be used for the QE in the UL data frames, ref. [16]. [FDD If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If all DCHs have the *QE-Selector* IE set to "non-selected", the Physical channel BER shall be used for the QE, ref. [16].] - The Node B should store the *Frame Handling Priority* IE received for a DCH to be added in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the Uu interface in congestion situations within the Node B once the new configuration has been activated. - The Node B shall use the included *UL FP Mode* IE for a DCH or a set of co-ordinated DCHs to be added as the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - The Node B shall use the included *ToAWS* IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - The Node B shall use the included *ToAWE* IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration. - [TDD The Node B shall apply the *CCTrCH ID* IE (for the DL) in the Downlink of this DCH in the new configuration.] - [TDD The Node B shall apply the *CCTrCH ID* IE (for the UL) in the Uplink of this DCH in the new configuration.] ### **DCH Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DCHs to Delete* IE, the Node B shall not include the referenced DCHs in the new configuration. If all of the DCHs belonging to a set of co-ordinated DCHs are requested to be deleted, the Node B shall not include this set of co-ordinated DCHs in the new configuration. ### **Physical Channel Modification:** [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes an *UL DPCH Information* IE, then the Node B shall apply the parameters to the new configuration as follows:] - [FDD If the *UL DPCH Information* IE includes the *Uplink Scrambling Code* IE, the Node B shall apply this Uplink Scrambling Code to the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *Min UL Channelisation Code Length* IE, the Node B shall apply the value in the new configuration. The Node B shall apply the contents of the *Max Number of UL DPDCHs* IE (if it is included) in the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *UL SIR Target* IE, the Node B shall use the value for the UL inner loop power control when the new configuration is being used.] - [FDD If the *UL DPCH Information* IE includes the *Puncture Limit* IE, the Node B shall apply the value in the uplink of the new configuration.] - [FDD The Node B shall use the *TFCS* IE for the UL (if present) when reserving resources for the uplink of the new configuration. The Node B shall apply the new TFCS in the Uplink of the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *UL DPCCH Slot Format* IE, the Node B shall set the new Uplink DPCCH Structure to the new configuration.] - [FDD If the *UL DPCH Information* IE includes the *Diversity Mode* IE, the Node B shall apply diversity according to the given value.] - [FDD If the *UL DPCH Information* IE includes an *SSDT Cell Identity Length* IE and/or an *S-Field Length* IE, the Node B shall apply the values in the new configuration.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes a *DL DPCH Information* IE, the Node B shall apply the parameters to the new configuration as follows:] - [FDD The Node B shall use the *TFCS* IE for the DL (if it is present) when reserving resources for the downlink of the new configuration. The Node B shall apply the new TFCS in the Downlink of the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *TFCI Signalling Mode* IE or the *TFCI Presence* IE, the Node B shall use the information when building TFCIs in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *DL DPCCH Slot Format* IE, the Node B shall set the new Downlink DPCCH Structure to the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Multiplexing Position* IE, the Node B shall apply the indicated multiplexing type in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Limited Power Increase* IE set to "Used", the Node B shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *Limited Power Increase* IE set to "Not Used", the Node B shall not use Limited Power Increase for the inner loop DL power control in the new configuration.] - [FDD If the *DL DPCH Information* IE includes the *PDSCH Code Mapping* IE, then the Node B shall apply the defined mapping between TFCI values and PDSCH channelisation codes.] - [FDD If the *DL DPCH Information* IE includes the *PDSCH RL ID* IE, then the Node B shall infer that the PDSCH for the specified user will be transmitted on the defined radio link.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transmission Gap Pattern Sequence Information* IE, the Node B shall store the new information about the Transmission Gap Pattern Sequences to be used in the new Compressed Mode Configuration. This new Compressed Mode Configuration shall be valid in the Node B until the next Compressed Mode Configuration is configured in the Node B or Node B Communication Context is deleted.] ### [TDD – UL/DL CCTrCH Modification] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH to Modify* or *DL CCTrCH to Modify* IE, then the Node B shall treat them each as follows:] - [TDD – If the IE includes any of the *TFCS* IE, *TFCI coding* IE or *Puncture Limit* IE, the Node B shall apply these as the new values, otherwise the old values specified for this CCTrCH are still applicable.] - [TDD If the IE includes any *UL DPCH To Add* IE or *DL DPCH To Add* IE, the Node B shall include this DPCH in the new configuration.] - [TDD If the IE includes any *UL DPCH To Delete* IE or *DL DPCH To Delete* IE, the Node B shall remove this DPCH in the new configuration.] - [TDD If the IE includes any UL DPCH To Modify IE or DL DPCH To Modify IE and includes any of the Repetition Period IE, Repetition Length IE or TDD DPCH Offset IE, or the message includes UL/DL Timeslot Information and includes any of the [3.84Mcps TDD Midamble Shift And Burst Type IE, Time Slot IE], [1.28Mcps TDD Midamble Shift LCR IE, Time Slot LCR IE], or TFCI Presence IE or the message includes UL/DL Code information and includes [3.84Mcps TDD TDD Channelisation Code IE], [1.28Mcps TDD TDD Channelisation Code LCR IE], the Node B shall apply these specified information elements as the new values, otherwise the old values specified for this DPCH configuration are still applicable.] - [1.28Mcps TDD If the *UL CCTrCH To Modify* IE includes the *UL SIR Target* IE, the Node B shall use the value for the UL inner loop power control according [19] and [21] when the new configuration is being used.] ### [TDD - UL/DL CCTrCH Addition] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any *UL CCTrCH To Add* IE or *DL CCTrCH To Add* IE, the Node B shall include this CCTrCH in the new configuration.] [TDD – If the *UL/DL CCTrCH To Add* IE includes any *UL/DL DPCH Information* IE, the Node B shall reserve necessary resources for the new configuration of the UL/DL DPCH(s) according to the parameters given in the message.] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes a *DL CCTrCH To Add* IE, the Node B shall set the TPC step size of that CCTrCH to the same value as the lowest numbered DL CCTrCH in the current configuration.] [1.28Mcps TDD – The Node B shall use the *UL SIR Target* IE in the *UL CCTrCH To Add* IE as the UL SIR value for the inner loop power control for this CCTrCH according [19] and [21] in the new configuration.] ### [TDD – UL/DL CCTrCH Deletion] [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes any UL or DL CCTrCH to be deleted , the Node B shall remove this CCTrCH in the new configuration.] ### **DL Power Control:** - [FDD - If the *RL Information* IE includes the *DL Reference Power* IEs and the power balancing is active, the Node B shall update the reference power of the power balancing in the indicated RL(s), if updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported, at the CFN in the RADIO LINK RECONFIGURATION COMMIT message, according to subclause 8.3.7, using the *DL Reference Power* IE. If the CFN modulo the value of the *Adjustment Period* IE is not equal to 0, the power balancing continues with the old reference power until the end of the current adjustment period, and the updated reference power shall be used from the next adjustment period. [FDD - If updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported by the Node B, the Node B shall include the DL Power Balancing Updated Indicator IE in the RL Information Response IE in the RADIO LINK RECONFIGURATION READY message.] ### **DSCH Addition/Modification/Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *DSCH To Add*, *DSCH To Modify* or *DSCH To Delete* IE, then the Node B shall use this information to add/modify/delete the indicated DSCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs. The Node B shall include in the RADIO LINK RECONFIGURATION READY message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each DSCH. [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *TFC12 Bearer Information* IE, then the Node B shall support the establishment of a transport bearer on which the DSCH TFCI Signaling control frames shall be received if one does not already exist or shall apply the new values if such a bearer does already exist for this Node B Communication Context. The *Binding ID* IE and *Transport Layer Address* IE of any new bearer to be set up for this purpose shall be returned in the RADIO LINK RECONFIGURATION READY message. If the RADIO LINK RECONFIGURATION PREPARE message specifies that the TFCI2 transport bearer is to be deleted, then the Node B shall release the resources associated with that bearer in the new configuration.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *TFCI2 Bearer Request Indicator* IE in the *TFCI2 Bearer Information* IE with the value "New Bearer Requested", the Node B shall, if supported, establish a new transport bearer replacing the existing transport bearer on which the DSCH TFCI Signaling control frames shall be received. The *Binding ID* IE and *Transport Layer Address* IE of a new bearer to be set up for this purpose shall be returned in the RADIO LINK RECONFIGURATION READY message.] [FDD – If the *TFCI Signalling Mode* IE within the RADIO LINK RECONFIGURATION PREPARE message indicates that there shall be a hard split on the TFCI field but a TFCI2 transport bearer has not already been set up and *TFCI2 Bearer Information* IE is not included in the message, then the Node B shall transmit the TFCI2 field with zero power in the new configuration.] [FDD – If the *TFCI Signalling Mode* IE within the RADIO LINK RECONFIGURATION PREPARE message indicates that there shall be a hard split on the TFCI and the *TFCI2 Bearer Information* IE is included in the message, then the Node B shall transmit the TFCI2 field with zero power until Synchronisation is achieved on the TFCI2 transport bearer and the first valid DSCH TFCI Signalling control frame is received on this bearer in the new configuration (see ref. [24]).] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *Length Of TFCI2* IE, then the Node B shall apply the length of TFCI (field 2) indicated in the message in the new configuration.] [FDD – If the RADIO LINK RECONFIGURATION PREPARE message does not include the *Length Of TFCI2* IE and the *Split Type* IE is present with the value "Hard", then the Node B shall assume the length of the TFCI (field 2) is 5 bits in the new configuration.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the *DSCH Common Information* IE, the Node B shall treat it as follows:] - [FDD If the *Enhanced DSCH PC Indicator* IE is included and set to "Enhanced DSCH PC Active in the UE", the Node B shall activate enhanced DSCH power control in accordance with ref. [10] subclause 5.2.2, if supported, using either:] - [FDD the *SSDT Cell Identity for EDSCHPC* IE in the *RL Information* IE, if the *SSDT Cell Identity* IE is not included in the *RL Information* IE or] - [FDD the SSDT Cell Identity IE in the RL Information IE, if both the SSDT Cell Identity IE and the SSDT Cell Identity for EDSCHPC IE are included in the RL Information IE.] [FDD - together with the SSDT Cell Identity Length IE in UL DPCH Information IE, and Enhanced DSCH PC IE, in the new configuration.] [FDD - If the enhanced DSCH power control is activated and the TFCI power control in DSCH hard split mode is supported, the primary/secondary status determination in the enhanced DSCH power control is also applied to the TFCI power control in DSCH hard split mode.] [FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the *Enhanced DSCH PC Indicator* IE set to "Enhanced DSCH PC not Active in the UE", the Node B shall deactivate enhanced DSCH power control in the new configuration.] ### [TDD – USCH Addition/Modification/Deletion:] - [TDD If the RADIO LINK RECONFIGURATION PREPARE message includes USCH information for the USCHs to be added/modified/deleted then the Node B shall use this information to add/modify/delete the indicated USCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs.] - [TDD The Node B shall include in the RADIO LINK RECONFIGURATION READY message both the *Transport Layer Address* IE and the *Binding ID* IE for the transport bearer to be established for each USCH.] ### **RL Information:** If the RADIO LINK RECONFIGURATION PREPARE message includes the *RL Information* IE, the Node B shall treat it as follows: - [FDD When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When *p* number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "*PhCH number 1*", the second to "*PhCH number 2*", and so on until the *p*th to "*PhCH number p*".] - [FDD If the *RL Information* IE includes the *SSDT Indication* IE set to "SSDT Active in the UE", the Node B may activate SSDT using the *SSDT Cell Identity* IE in the new configuration.] - [FDD If the *RL Information* IE includes the *Qth Parameter* IE and the *SSDT Indication* IE set to "SSDT Active in the UE", the Node B shall use the *Qth Parameter* IE, if Qth signalling is supported, when SSDT is activated in the new configuration.] - [FDD If the *RL Information* IE includes the *SSDT Indication* IE set to "SSDT not Active in the UE", the Node B shall deactivate SSDT in the new configuration.] - [FDD If the *RL Information* IE includes a *DL Code Information* IE, the Node B shall apply the values in the new configuration.] - [FDD If the *RL Information* IE contains the *Transmission Gap Pattern Sequence Code Information* IE in the *DL Code Information* IE for any of the allocated DL Channelisation Codes, the Node B shall apply the alternate scrambling code as indicated whenever the downlink compressed mode method SF/2 is active in the new configuration.] - If the *RL Information* IE includes the *Maximum DL Power* and/or the *Minimum DL Power* IEs, the Node B shall apply the values in the new configuration. [FDD During compressed mode, the $P_{SIR}(k)$, as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power in slot k.] - [TDD If the *RL Information* IE includes the *Initial DL Transmission Power* IE, the Node B shall determine the initial CCTrCH DL power for each CCTrCH by the following rule: If the *CCTrCH Initial DL Transmission Power* IE is included for that CCTrCH, then the Node B shall use that power for the initial CCTrCH DL power, otherwise the initial CCTrCH DL power is the *Initial DL Transmission Power* IE included in the *RL Information* IE. The Node B shall apply the determined initial CCTrCH DL power to the transmission on each DPCH of the CCTrCH when starting transmission on a new CCTrCH until the UL synchronisation on the Uu interface is achieved for the CCTrCH. If no *Initial DL Transmission Power* IE is included with a new CCTrCH (even if *CCTrCH Initial DL Transmission Power* IEs are included), the Node B shall use any transmission power level currently used on already existing CCTrCHs when starting transmission for a new CCTrCH. No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[22], subclause 4.2.3.3).] - [FDD- If the *RL Information* IE includes the *DL DPCH Timing Adjustment* IE, the Node B shall adjust the timing of the radio link accordingly in the new configuration.] ### [TDD - PDSCH RL ID] - [TDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *PDSCH RL ID* IE then in the new configuration the Node B shall use the PDSCH and/or PUSCH in this radio link.] ### **Signalling bearer rearrangement:** If the RADIO LINK RECONFIGURATION PREPARE message includes the *Signalling Bearer Request Indicator* IE the Node B shall, if supported, allocate a new Communication Control Port for the control of the Node B Communication Context and include the *Target Communication Control Port ID* IE in the RADIO LINK RECONFIGURATION READY message. ### **HS-DSCH Addition/Modification/Deletion:** If the RADIO LINK RECONFIGURATION PREPARE message includes any *HS-DSCH To Add* IE or *HS-DSCH To Modify* IE or *HS-DSCH To Delete* IE, then the Node B shall use this information to add/modify/delete the indicated HS-DSCH channel to/from the radio link. [FDD – If the RADIO LINK RECONFIGURATION PREPARE message includes the *CQI Feedback Cycle k* IE, the *CQI Repetition Factor* IE, the *ACK-NACK Repetiton Factor* IE, the *ACK Power Offset* IE, the *NACK Power Offset* IE or the *CQI Power Offset* IE in the *HS-DSCH Information To Modify* IE, then the DRNS shall use the indicated CQI Feedback Cycle k value, the CQI Repetition Factor orand the ACK-NACK Repetition Factor, ACK Power Offset, the NACK Power Offset orand the CQI Power Offset in the new configuration.] If the RADIO LINK RECONFIGURATION PREPARE message includes an *HS-PDSCH RL ID* IE, then the Node B shall configure the HS-PDSCH in the radio link indicated by this IE, while removing any existing HS-PDSCH resources from other radio links associated with the Node B Communication Context. If the RADIO LINK RECONFIGURATION PREPARE message includes an *HS-DSCH-RNTI* IE, then the Node B shall use the HS-DSCH-RNTI for the Node B Communication Context. If the RADIO LINK CONFIGURATION PREPARE message includes an *HS-DSCH To Delete* IE requesting the deletion of certain HS-DSCH resources for the Node B Communication Context, the Node B shall remove the indicated HS-DSCH in the new configuration. The Node B shall include the *HS-DSCH Initial Capacity Allocation* IE in the RADIO LINK RECONFIGURATION READY message for each MAC-d flow, if the Node B allows the CRNC to start transmission of MAC-d PDUs before the Node B has allocated capacity on user plane as described in [24]. ### General If the RADIO LINK RECONFIGURATION PREPARE message includes the *Transport Layer Address* IE and *Binding ID* IEs in the *DSCHs To Modify, DSCHs To Add*, [TDD - *USCHs To Modify, USCHs To Add*], *HS-DSCH To Modify, HS-DSCH To Add* or in the *RL Specific DCH Information* IEs, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for any Transport Channel or HS-DSCH MAC-d flow being added, or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the *Transport Bearer Request Indicator* IE. If the requested modifications are allowed by the Node B and the Node B has successfully reserved the required resources for the new configuration of the Radio Link(s), it shall respond to the CRNC with the RADIO LINK RECONFIGURATION READY message. When this procedure has been completed successfully there exists a Prepared Reconfiguration, as defined in subclause 3.1. In the RADIO LINK RECONFIGURATION READY message, the Node B shall include the *RL Information Response* IE for each affected Radio Link. The Node B shall include in the RADIO LINK RECONFIGURATION READY message the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE for any Transport Channel or HS-DSCH MAC-d flow being added or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the *Transport Bearer Request Indicator* IE. In case of a DCH requiring a new transport bearer on Iub, the *Transport Layer Address* IE and the *Binding ID* IE shall be included in the IE *DCH Information Response* IE. In the case of a set of co-ordinated DCHs requiring a new transport bearer on the Iub interface, the *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE shall be included only for one of the DCH in the set of co-ordinated DCHs. In the case of a Radio Link being combined with another Radio Link within the Node B, the *RL Information Response* IE shall be included only for one of the combined RLs. The *Transport Layer Address* IE and the *Binding ID* IE in the *DCH Information Response* IE shall be included only for one of the combined Radio Links. /*Partly omitted*/ ### 9.2.1.31H HS-DSCH Information to modify The HS-DSCH Information to modify provides information for HS-DSCH to be modified. | IE/Group Name | Presence | Range | IE type
and
reference | Semantics description | Criticality | Assigned
Criticality | |--|----------|---|-----------------------------|-----------------------|-------------|-------------------------| | HS-DSCH MAC-d Flow
Specific Information | | 0 <maxno
ofMACdFl
ows></maxno
 | | | _ | | | >HS-DSCH MAC-d Flow ID | M | | 9.2.1311 | | _ | | | >BLER | 0 | | 9.2.1.4A | | _ | | | >Allocation/Retention
Priority | 0 | | 9.2.1.1A | | _ | | | >Priority Queue
Information | | 0 <maxno
ofPrioQue
ues></maxno
 | | | _ | | | >>Priority Queue ID | M | | 9.2.1.49C | | _ | | | >>Scheduling Priority Indicator | 0 | | 9.2.1.53H | | _ | | | >>MAC-d PDU Size Index | | 0 <maxno
ofMACdP
DUindexes
></maxno
 | | | _ | | | >>>SID | M | | 9.2.1.531 | | _ | | | >>>MAC-d PDU Size | 0 | | 9.2.1.38A | | _ | | | >Transport Bearer Request Indicator | M | | 9.2.1.62A | | _ | | | Measurement Reporting cycle | θ | | ENUMERA
TED (k1,
k2) | For FDD
only | _ | | | CQI Feedback Cycle k | <u>O</u> | | 9.2.2.21B | For FDD
only | = | | | CQI Repetition Factor | <u>O</u> | | 9.2.2.x1 | For FDD
only | = | | | ACK-NACK Repetition Factor | <u>O</u> | | <u>9.2.2.x2</u> | For FDD
only | = | | | CQI Power Offset | <u>O</u> | | 9.2.2.x3 | For FDD
only | = | | | ACK Power Offset | <u>O</u> | | 9.2.2.x4 | For FDD
only | = | | | NACK Power Offset | <u>O</u> | | <u>9.2.2.x5</u> | For FDD
only | = | | /*Partly omitted*/ # 9.2.2.18D HS-DSCH FDD Information The HS-DSCH Information provides information for HS-DSCH MAC-d flows to be established. | IE/Group Name | Presence | Range | IE type
and
reference | Semantics description | Criticality | Assigned
Criticality | |--|-----------------|---|---|--|-------------|-------------------------| | HS-DSCH MAC-d Flow
Specific Information | | 1 <maxno
ofMACdFl
ows></maxno
 | | | _ | | | >HS-DSCH MAC-d Flow ID | М | | 9.2.1.311 | | _ | | | >BLER | М | | 9.2.1.4A | | _ | | | >Allocation/Retention
Priority | М | | 9.2.1.1A | | _ | | | >Priority Queue
Information | M | 1 <maxno
ofPrioQue
ues></maxno
 | | | _ | | | >>Priority Queue ID | М | | 9.2.1.49C | | _ | | | >>Scheduling Priority
Indicator | М | | 9.2.1.53H | | _ | | | >>MAC-d PDU Size Index | | 1 <maxno
ofMACdP
DUindexes
></maxno
 | | | _ | | | >>>SID | М | | 9.2.1.531 | | _ | | | >>>MAC-d PDU Size | М | | 9.2.1.38A | | _ | | | UE Capabilities information | | 1 | | | _ | | | >Max TrCH Bits per HS-
DSCH TTI | M | | ENUMERA
TED
(7300,
14600,
20456,
28800,) | | - | | | >HS-DSCH multi-code capability | М | | ENUMERA
TED (5,
10, 15,) | | - | | | >Min Inter-TTI Interval | М | | INTEGER
(1 3,) | | _ | | | >MAC-hs reordering buffer
size | М | | INTEGER
(1300,) | Total combined receiving buffer capability in RLC and MAC-hs in kBytes | - | | | HARQ memory partitioning | | 1 <maxno
ofHARQpr
ocesses></maxno
 | | | - | | | >Process memory size | M | | INTEGER
(1172800,
) | | _ | | | Measurement feedback offset | M | | INTEGER
(079,) | | _ | | | CQI Feedback Cycle k | <u>M</u> | | <u>9.2.2.21B</u> | | _ | | | CQI Repetition Factor | C-
CQICyclek | | 9.2.2.x1 | | = | | | ACK-NACK Repetition Factor | <u>M</u> | | 9.2.2.x2 | | _ | | | CQI Power Offset | <u>M</u> | | 9.2.2.x3 | | = | | | ACK Power Offset | <u>M</u> | | 9.2.2.x4 | | = | | | NACK Power Offset | <u>M</u> | | 9.2.2.x5 | <u> </u> | <u> </u> | <u> </u> | | Condition | <u>Explanation</u> | |-----------|--| | CQICyclek | The IE shall be present if the CQI Feedback Cycle k IE is set to | | | a value greater than 0. | | Range bound | Explanation | |-----------------------|---| | MaxnoofMACdFlows | Maximum number of HS-DSCH MAC-d flows | | MaxnoofPrioQueues | Maximum number of Priority Queues | | MaxnoofHARQprocesses | Maximum number of HARQ processes for one UE. | | MaxnoofMACdPDUindexes | Maximum number of different MAC-d PDU SIDs | | MaxAllowedinterTTI | Maximum Inter-TTI Interval that should be supported | | | by any UE. | | MaxRecordBuffSize | Maximum MAC-hs re-ordering buffer size. | | MaxProcessMemSize | Maximum HARQ process memory size. | # 9.2.2.18E HS-DSCH FDD Information Response The HS-DSCH Information Response provides information for HS-DSCH that have been established or modified. | IE/Group Name | Presence | Range | IE type
and
reference | Semantics description | Criticality | Assigned
Criticality | |--|----------|---|---|---|-------------|-------------------------| | HS-DSCH MAC-d Flow
Specific Information
Response | | 1 <maxno
ofMACdFl
ows></maxno
 | | | _ | | | >HS-DSCH MAC-d Flow ID | М | | 9.2.1.311 | | _ | | | >Binding ID | 0 | | 9.2.1.4 | | _ | | | >Transport Layer Address | 0 | | 9.2.1.63 | | _ | | | HS-SCCH Code | | 1 <maxno
ofHSSCC
Hcodes></maxno
 | | | = | | | >Code Number | M | | INTEGER
(0127) | | = | | | Measurement feedback reporting cycle k1 | M | | Measurem ent Feedback Reporting Cycle 9.2.2.21B | employed by
the UE when
not in soft
handover | - | | | Measurement feedback reporting cycle k2 | M | | Measurem ent Feedback Reporting Cycle 9.2.2.21B | employed by
the UE when
in soft
handover | - | | | Range bound | Explanation | |-----------------------|--| | MaxnoofMACdFlows | Maximum number of HS-DSCH MAC-d flows. | | MaxnoofPrioQueues | Maximum number of Priority Queues | | MaxnoofMACdPDUindexes | Maximum number of MAC-d PDU Size Indexes | | MaxnoofHSSCCHcodes | Maximum number of HS-SCCH codes. | | MaxCodeNumComp | Maximum number of codes at the defined spreading | | | factor, within the complete code tree. | /*Partly omitted*/ # 9.2.2.21B CQIMeasurement Feedback Reporting-Cycle k The <u>CQIMeasurement</u> Feedback <u>Reporting</u> Cycle <u>k</u> IE provides the duration of the <u>CQI measurement</u> feedback reporting cycle. | IE/Group Name | Presence | Range | IE type and reference | Semantics description | |--------------------------------------|----------|-------|-----------------------|------------------------------| | CQI Measuremen t Feedback | | | ENUMERAT | Multiples of 2 ms intervals; | | Reporting Cycle k | | | ED (0, 1, 5, | | | | | | 10, 20, 40, | | | | | | 80,) | | # 9.2.2.x1 CQI Repetition Factor The COI Repetiton Factor IE indicates the number of consecutive repetitions of the COI. | IE/Group Name | <u>Presence</u> | <u>Range</u> | IE type and reference | Semantics description | |-----------------------|-----------------|--------------|-------------------------|-----------------------| | CQI Repetition Factor | | | <u>INTEGER</u>
(14,) | <u>Step: 1</u> | # 9.2.2.x2 ACK-NACK Repetition Factor The ACK-NACK Repetiton Factor IE indicates the number of consecutive repetitions of the ACK and NACK | IE/Group Name | Presence | <u>Range</u> | IE type and reference | Semantics description | |-------------------------------|----------|--------------|-----------------------|-----------------------| | ACK-NACK Repetition
Factor | | | <u>INTEGER</u> (14,) | Step: 1 | # 9.2.2.x3 CQI Power Offset The *CQI Power Offset* IE indicates Power offset used in the UL between the HS-DPCCH slots carrying CQI information and the associated DPCCH. | IE/Group Name | Presence | <u>Range</u> | IE type and reference | Semantics description | |------------------|----------|--------------|-----------------------|-----------------------| | CQI Power Offset | | | INTEGER (- | Unit dB, | | | | | 106) | Step: 2 dB | # 9.2.2.x4 ACK Power Offset The ACK Power Offset IE indicates Power offset used in the UL between the HS-DPCCH slot carrying HARQ ACK information and the associated DPCCH. | IE/Group Name | <u>Presence</u> | <u>Range</u> | IE type and reference | Semantics description | |------------------|-----------------|--------------|-------------------------|------------------------| | ACK Power Offset | | | <u>INTEGER (-</u> 106,) | Unit dB,
Step: 2 dB | ### 9.2.2.x5 NACK Power Offset The NACK Power Offset IE indicates Power offset used in the UL between the HS-DPCCH slot carrying HARQ NACK information and the associated DPCCH. | IE/Group Name | <u>Presence</u> | <u>Range</u> | IE type and reference | Semantics description | |-------------------|-----------------|--------------|-------------------------|------------------------| | NACK Power Offset | | | <u>INTEGER (-</u> 106,) | Unit dB,
Step: 2 dB | # 9.3.4 Information Elements Definitions # /*Partly omitted*/ /*Partly omitted*/ ``` CQI-Feedback-Cycle ::= ENUMERATED {v0, v1, v5, v10, v20, v40, v80,...} CQI-Power-Offset ::= INTEGER (-10..6,...) -- Unit dB, Step: 2 dB CQI-RepetitionFactor ::= INTEGER (1..4,...) -- Step: 1 ``` ``` OPTIONAL, OPTIONAL OPTIONAL ProtocolExtensionContainer { { HARQMemoryPartitioning-ItemFDD-ExtIEs} } ProtocolExtensionContainer { { HARQMemoryPartitioning-ItemTDD-ExtIEs} } HARQMemoryPartitioningFDD ::= SEQUENCE (SIZE (1..maxNrOfHARQProcesses)) OF HARQMemoryPartitioning-ItemFDD HARQMemoryPartitioningTDD ::= SEQUENCE (SIZE (1..maxNrOfHARQProcesses)) OF HARQMemoryPartitioning-ItemTDD ProtocolExtensionContainer { { HSDSCH-FDD-Information-ExtIEs} OPTIONAL HSDSCH-MACdFlow-Specific-InfoList, HSDSCH-MACdFlow-Specific-InfoList, Feedback Cycle k is greater than UE-Capability-InformationFDD, HAROMemoryPartitioningFDD, HARQMemoryPartitioning-ItemTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= HARQMemoryPartitioning-ItemFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= AckNack-RepetitionFactor, INTEGER (0..172800,...), INTEGER (0..168960,...), CQI-Feedback-Cycle, CQI-RepetitionFactor HSDSCH-FDD-Information-ExtIEs NBAP-PROTOCOL-EXTENSION ::= Nack-Power-Offset CQI-Power-Offset, Ack-Power-Offset, INTEGER (0..79,. HARQMemoryPartitioning-ItemTDD ::= SEQUENCE { HARQMemoryPartitioning-ItemFDD ::= SEQUENCE { This IE shall be present if the CQI HSDSCH-TDD-Information ::= SEQUENCE { HSDSCH-FDD-Information ::= SEQUENCE { hsDSCH-MACdFlow-Specific-Info hsDSCH-MACdFlow-Specific-Info harqMemoryPartitioningFDD ackNackRepetitionFactor process-Memory-Size process-Memory-Size cgiRepetitionFactor cqiFeedback-CycleK measFeedbackOffset ueCapability-Info nackPowerOffset ackPowerOffset cqiPowerOffset iE-Extensions iE-Extensions iE-Extensions ``` ``` ENUMERATED { measurement-Feedback-Reporting-Cycle-K1, measurement-Feedback-Reporting-Cycle-K2 } OPTIONAL HSDSCH-MACGFlow-Specific-InfoList-to-Modify ::= SEQUENCE (SIZE (1..maxNrOfMACGFlows)) OF HSDSCH-MACGFlow-Specific-Infoltem-to-Modify OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, ProtocolExtensionContainer { { HSDSCH-MACdFlow-Specific-InfoItem-to-Modify-ExtIES} } ProtocolExtensionContainer { { HSDSCH-MACdFlow-Specific-Infoltem-ExtIEs} } ProtocolExtensionContainer { { HSDSCH-FDD-Information-to-Modify-ExtIEs} } HSDSCH-MACdFlow-Specific-InfoList ::= SEQUENCE (SIZE (1..maxNrOfMACdFlows)) OF HSDSCH-MACdFlow-Specific-Infoltem ProtocolExtensionContainer { { HSDSCH-TDD-Information-ExtIEs} -- For FDD only -- For FDD only -- For FDD only For FDD only -- For FDD only -- For FDD only HSDSCH-MACdFlow-Specific-InfoList-to-Modify OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, OPTIONAL, PriorityQueue-InfoList-to-Modify HSDSCH-MACGFlow-Specific-Infoltem-ExtlEs NBAP-PROTOCOL-EXTENSION ::= { UE-Capability-InformationTDD, AllocationRetentionPriority HSDSCH-FDD-Information-to-Modify-ExtIEs NBAP-PROTOCOL-EXTENSION ::= AllocationRetentionPriority HARQMemoryPartitioningTDD, AckNack-RepetitionFactor PriorityQueue-InfoList, CQI-RepetitionFactor HSDSCH-MACGFlow-ID, HSDSCH-MACdFlow-ID, HSDSCH-MACdFlow-Specific-Infoltem-to-Modify ::= SEQUENCE { CQI-Feedback-Cycle HSDSCH-TDD-Information-ExtIEs NBAP-PROTOCOL-EXTENSION ::= Nack-Power-Offset CQI-Power-Offset Ack-Power-Offset HSDSCH-MACdFlow-Specific-Infoltem ::= SEQUENCE HSDSCH-Information-to-Modify ::= SEQUENCE { hsDSCH-MACdFlow-Specific-Info-to-Modify allocationRetentionPriority allocationRetentionPriority hardMemoryPartitioningTDD priorityQueueInfotoModify ackNackRepetitionFactor measFeedbackRepCycleK cqiRepetitionFactor hsDSCH-MACdFlow-ID hsDSCH-MACdFlow-ID cqiFeedback-CycleK priorityQueueInfo ueCapability-Info nackPowerOffset -- only for FDD cqiPowerOffset ackPowerOffset iE-Extensions iE-Extensions iE-Extensions iE-Extensions : ``` ``` OPTIONAL, OPTIONAL OPTIONAL ProtocolExtensionContainer { { HSDSCH-MACdFlow-Specific-InformationRespItem-ExtIEs } } ProtocolExtensionContainer { { HSSCCH-Specific-InformationRespItemFDD-ExtIEs } } HSDSCH-MACdFlow-Specific-InformationResp := SEQUENCE (SIZE (1..maxNrOfMACdFlows)) OF HSDSCH-MACdFlow-Specific-InformationResp-Item ProtocolExtensionContainer { { HSDSCH-FDD-Information-Response-ExtIEs } } ProtocolExtensionContainer { { HSDSCH-TDD-Information-Response-ExtIEs } } OPTIONAL, OPTIONAL HSSCCH-Specific-InformationRespListFDD ::= SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Codes HSSCCH-Specific-InformationRespListTDDLCR HSDSCH-MACdFlow-Specific-InformationResp, HSDSCH-MACdFlow-Specific-InformationResp, HSSCCH-Specific-InformationRespListFDD HSSCCH-Specific-InformationRespListTDD Measurement-Feedback-Reporting-Cycle, Measurement-Feedback-Reporting-Cycle, OPTIONAL, HSDSCH-MACdFlow-Specific-Infoltem-to-Modify-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { HSDSCH-MACGFlow-Specific-InformationRespItem-ExtIEs NBAP-PROTOCOL-EXTENSION ::= TransportLayerAddress HSDSCH-MACGFlow-ID, INTEGER (1..127), HSDSCH-FDD-Information-Response-ExtIEs NBAP-PROTOCOL-EXTENSION ::= HSDSCH-TDD-Information-Response-ExtIEs NBAP-PROTOCOL-EXTENSION ::= BindingID HSDSCH-MACdFlow-Specific-InformationResp-Item ::= SEQUENCE hsSCCH-Specific-Information-ResponseTDDLCR HSDSCH-FDD-Information-Response ::= SEQUENCE HSDSCH-TDD-Information-Response ::= SEQUENCE hsDSCH-MACdFlow-Specific-InformationResp hsDSCH-MACdFlow-Specific-InformationResp hsSCCH-Specific-Information-ResponseFDD hsSCCH-Specific-Information-ResponseTDD HSSCCH-Codes ::= SEQUENCE transportLayerAddress measFeedback-CycleK1 measFeedback-CycleK2 hsDSCHMacdFlow-Id iE-Extensions iE-Extensions iE-Extensions iE-Extensions codeNumber bindingID OPTIONAL, : ``` ``` OPTIONAL, OPTIONAL, HSSICH-Info, ProtocolExtensionContainer { { HSSCCH-Specific-InformationRespItemTDD-ExtIEs } } ProtocolExtensionContainer { { HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs } } HSSCCH-Specific-InformationRespListIDDLCR ::= SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemIDDLCR HSSCCH-Specific-InformationRespListTDD ::= SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDD OPTIONAL, OPTIONAL, ProtocolExtensionContainer { { HSSICH-Info-LCR-ExtIEs } } ProtocolExtensionContainer { { HSSICH-Info-ExtIEs } } HSSCCH-Specific-InformationRespltemTDDLCR-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { TDD-ChannelisationCodeLCR, MidambleShiftAndBurstType, MidambleShiftAndBurstType, TDD-ChannelisationCode, TDD-ChannelisationCode, HSSCCH-Specific-InformationRespItemFDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= HSSCCH-Specific-InformationRespItemTDD-ExtIEs NBAP-PROTOCOL-EXTENSION ::= TDD-ChannelisationCodeLCR, HSSICH-InfoLCR, MidambleShiftLCR, MidambleShiftLCR, TimeSlotLCR, TimeSlot, HSSCCH-Specific-InformationRespItemTDDLCR ::= SEQUENCE { timeslotLCR HSSCCH-Specific-InformationRespItemTDD ::= SEQUENCE HSSICH-Info-ExtIEs NBAP-PROTOCOL-EXTENSION ::= midambleShiftAndBurstType tDD-ChannelisationCodeLCR midambleShiftAndBurstType tDD-ChannelisationCodeLCR HSSICH-InfolcR ::= SEQUENCE tDD-ChannelisationCode tDD-ChannelisationCode HSSICH-Info ::= SEQUENCE midambleShiftLCR midambleShiftLCR hssich-infolcr iE-Extensions iE-Extensions iE-Extensions iE-Extensions hssich-info timeslotLCR timeslot : ``` ``` HS-SCCH-FDD-Code-List ::= SEQUENCE (SIZE (1..maxNrOfHSSCCHs)) OF HS-SCCH-FDD-Code-Information-Item OPTIONAL, OPTIONAL, number-of-HS-PDSCH-codes INTEGER (0..maxCodeNrComp-1), hS-PDSCH-Start-code-number HS-PDSCH-Start-code-number Only included when number of HS-DSCH codes > 0 HS-SCCH-FDD-Code-List HS-SCCH-FDD-Code-Information-Item ::= INTEGER (0..maxCodeNrComp-1) HS-PDSCH-Start-code-number ::= INTEGER (0..maxCodeNrComp-1) HSDSCH-MACdFlow-ID ::= INTEGER (0..maxNrOfMACdFlows-1) HSSICH-Info-LCR-ExtIEs NBAP-PROTOCOL-EXTENSION ::= { HS-SCCH-FDD-Code-Information ::= SEQUENCE { HS-PDSCH-FDD-Code-Information ::= SEQUENCE HSDSCH-RNTI ::= INTEGER (0..65535) HS-SCCH-ID ::= INTEGER (0..31) hS-SCCH-FDD-Code-List ``` # /*Partly omitted*/ ,080, /*Partly omitted*/ -- N -- N -- Second Properties -- N Nack-Power-Offset ::= INTEGER (-10..6,...) -- Unit dB, Step: 2 dB