[image: image9.wmf]

Draft ETSI ES 202 915-9 V0.0.1 (2002-06)
ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);

Part 9: Generic Messaging SCF

[image: image1.png]V- Y

7/

el

<
Reference

DES/SPAN-120091-9

Keywords

API, OSA, IDL, UML

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

© The Parlay Group 2002.

All rights reserved.
Contents

6Intellectual Property Rights

Foreword
6
1
Scope
8
2
References
8
3
Definitions and abbreviations
8
3.1
Definitions
8
3.2
Abbreviations
8
4
Generic Messaging SCF
8
5
Sequence Diagrams
9
5.1
Prepare Mailbox
9
5.2
Open Mailbox
10
5.3
Get Message
10
5.4
Get Folder Information
11
5.5
Close Mailbox
12
6
Class Diagrams
13
7
The Service Interface Specifications
14
7.1
Interface Specification Format
14
7.1.1
Interface Class
14
7.1.2
Method descriptions
14
7.1.3
Parameter descriptions
15
7.1.4
State Model
15
7.2
Base Interface
15
7.2.1
Interface Class IpInterface
15
7.3
Service Interfaces
15
7.3.1
Overview
15
7.4
Generic Service Interface
15
7.4.1
Interface Class IpService
15
7.4.1.1
Method setCallback()
16
7.4.1.2
Method setCallbackWithSessionID()
16
8
Generic Messaging Interface Classes
16
8.1
Interface Class IpMessagingManager
17
8.1.1
Method openMailbox()
17
8.1.2
Method enableMessagingNotification()
18
8.1.3
Method disableMessagingNotification()
18
8.2
Interface Class IpAppMessagingManager
18
8.2.1
Method mailboxTerminated()
19
8.2.2
Method mailboxFaultDetected()
19
8.2.3
Method messagingEventNotify()
19
8.2.4
Method messagingNotificationTerminated()
20
8.3
Interface Class IpMailbox
20
8.3.1
Method close()
21
8.3.2
Method lock()
21
8.3.3
Method unlock()
21
8.3.4
Method getInfoAmount()
22
8.3.5
Method getInfoProperties()
22
8.3.6
Method setInfoProperties()
23
8.3.7
Method openFolder()
23
8.3.8
Method createFolder()
24
8.3.9
Method remove()
24
8.4
Interface Class IpMailboxFolder
25
8.4.1
Method getInfoAmount()
25
8.4.2
Method getInfoProperties()
26
8.4.3
Method setInfoProperties()
26
8.4.4
Method putMessage()
27
8.4.5
Method getMessage()
27
8.4.6
Method close()
28
8.4.7
Method remove()
28
8.5
Interface Class IpMessage
28
8.5.1
Method getInfoAmount()
29
8.5.2
Method getInfoProperties()
29
8.5.3
Method setInfoProperties()
30
8.5.4
Method remove()
31
8.5.5
Method getContent()
31
9
State Transition Diagrams
32
10
Data Definitions
32
10.1
Event notification Definitions
32
10.1.1
TpMessagingEventName
32
10.1.2
TpMessagingEventCriteria
32
10.1.3
TpGMSNewMessageArrivedCriteria
32
10.1.4
TpMessagingEventInfo
33
10.1.5
TpGMSNewMessageArrivedInfo
33
10.2
Generic Messaging Data Definitions
33
10.2.1
IpMessagingManager
33
10.2.2
IpMessagingManagerRef
33
10.2.3
IpAppMessagingManager
33
10.2.4
IpAppMessagingManagerRef
33
10.2.5
IpMailbox
33
10.2.6
IpMailboxRef
33
10.2.7
IpMailboxFolder
34
10.2.8
IpMailboxFolderRef
34
10.2.9
IpMessage
34
10.2.10
IpMessageRef
34
10.2.11
TpFolderInfoProperty
34
10.2.12
TpFolderInfoPropertyName
34
10.2.13
TpFolderInfoPropertySet
34
10.2.14
TpMailboxFolderIdentifier
35
10.2.15
TpMailboxIdentifier
35
10.2.16
TpMailboxInfoProperty
35
10.2.17
TpMailboxInfoPropertyName
35
10.2.18
TpMailboxInfoPropertySet
35
10.2.19
TpMessage
35
10.2.20
TpMessageFormat
36
10.2.21
TpMessageInfoProperty
36
10.2.22
TpMessageInfoPropertyName
37
10.2.23
TpMessageInfoPropertySet
37
10.2.24
TpMessagePriority
37
10.2.25
TpMessageStatus
38
10.2.26
TpMessagingFault
38
11
Exception Classes
39
Annex A (normative): OMG IDL Description of Generic Messaging SCF
40
Annex B (informative): Record of changes
41
B.1
Interfaces
41
B.1.1
New
41
B.1.2
Deprecated
41
B.1.3
Removed
41
B.2
Methods
41
B.2.1
New
41
B.2.2
Depreciated
41
B.2.3
Modified
42
B.2.4
Removed
42
B.3
Data Definitions
42
B.3.1
New
42
B.3.2
Modified
42
B.3.3
Removed
42
B.4
Service Properties
42
B.4.1
New
42
B.4.2
Depreciated
42
B.4.3
Modified
43
B.4.4
Removed
43
B.5
Exceptions
43
B.5.1
New
43
B.5.2
Modified
43
B.5.3
Removed
43
B.6
Others
43
History
44

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 9 of a multi-part deliverable covering Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (ES 202 915) is structured in the following parts:

Part 1:
"Overview";

Part 2:
"Common Data Definitions";

Part 3:
"Framework";

Part 4:
"Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";

Part 5:
"User Interaction SCF";

Part 6:
"Mobility SCF";

Part 7:
"Terminal Capabilities SCF";

Part 8:
"Data Session Control SCF";

Part 9:
"Generic Messaging SCF";

Part 10:
"Connectivity Manager SCF";

Part 11:
"Account Management SCF";

Part 12:
"Charging SCF".

Part 13:
"Policy Management SCF";

Part 14:
"Presence and Availability Management SCF";

The present document has been defined jointly between ETSI, The Parlay Group [24] and the 3GPP , in co-operation with a number of JAIN™ Community [25] member companies.

The present document forms part of the Parlay 4 set of specifications.

1
Scope

The present document is part 9 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Generic Messaging Service Capability Feature (SCF) aspects of the interface. All aspects of the Generic Messaging SCF are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data Definitions

· IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

2
References

The references listed in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute provisions of the present document.

ETSI ES 202 915-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in ES 202 915-1 apply.

4 Generic Messaging SCF

The following clauses describe each aspect of the Generic Messaging Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

5 Sequence Diagrams

5.1 Prepare Mailbox

[image: image2.wmf]:

IpAppLogic

 :

IpAppMessagingManager

 :

IpMessagingManager

1: new()

2: enableMessagingNotification()

3: messagingEventNotify()

4: 'forward event'

1:
This message is used by the application to create an object implementing the IpAppMessagingManager interface.

2:
This message is used to enable the notification mechanism so that events can be sent to the application.

When new mail, that matches the event criteria set in message 2, arrives a message indicating the presence of new mail (not shown) is directed to the object implementing the IpMessagingManager.

3:
This message is used to pass the new mail event to the object implementing the IpAppMessagingManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5.2 Open Mailbox

[image: image3.wmf]:

IpAppLogic

 :

IpMessagingManager

 : IpMailbox

1: openMailbox()

2: new()

1:
This message requests the object implementing the IpMessagingManager interface to create an object implementing the IpMailbox interface.

2:
Assuming that the criteria for creating an object implementing the IpMailbox interface is met, message 2 is used to create it.

5.3 Get Message

[image: image4.wmf]:

IpAppLogic

 : IpMailboxFolder

 : IpMessage

 : IpMailbox

1: openFolder()

2: getInfoAmount()

3: getInfoProperties()

4: getMessage()

5: new()

1:
This message requests a folder to be opened and returns a reference to that folder.

2:
This message requests the number of folder information properties of the opened folder.

3:
This message requests all of the folder information properties.

4:
This message requests a message from the opened mailbox folder.

5:
Assuming that the criteria for creating an object implementing the IpMessage interface are met, the (internal) message 5 is used to create it.

5.4 Get Folder Information

[image: image5.wmf]:

IpAppLogic

 :

IpMailboxFolder

1: getInfoAmount()

2: getInfoProperties()

3: getInfoProperties()

1:
This message requests the number of folder information properties of the specified folder.

2:
This message requests the first set of folder information properties.

3:
This message requests the second set of folder information properties.

5.5 Close Mailbox

[image: image6.wmf]:

IpAppLogic

 : IpMailbox

1: close()

1:
This message requests the object implementing the IpMailbox interface to de-assign.

6 Class Diagrams

[image: image7.wmf]IpService

setCallback()

setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpMessagingManager

(from gms)

<<Interface>>

IpMailbox

(from gms)

<<Interface>>

0..n

1

0..n

1

IpMessage

(from gms)

<<Interface>>

IpMailboxFolder

(from gms)

<<Interface>>

2..n

1

2..n

1

0..n

1

0..n

1

Figure: Package Overview : Service Interfaces
The application generic messaging service package consists of only one IpAppMessagingManager interface.
The generic messaging service package consists of one IpMessagingManager interface, zero or more IpMailbox interfaces, zero or more IpMailboxFolder and zero or more IpMessage interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic messaging service package and the generic messaging service package. Communication between these packages is done via the +uses the IpMessagingManager channels. Communication with the IpMailbox and IpMailboxFolder interfaces has to be done via the application logic (not shown).

[image: image8.wmf]IpInterface

(from csapi)

<<Interface>>

IpAppMessagingManager

mailboxTerminated()

mailboxFaultDetected()

messagingEventNotify()

messagingNotificationTerminated()

(from gms)

<<Interface>>

IpMessagingManager

openMailbox()

enableMessagingNotification()

disableMessagingNotification()

(from gms)

<<Interface>>

IpMailbox

close()

lock()

unlock()

getInfoAmount()

getInfoProperties()

setInfoProperties()

openFolder()

createFolder()

remove()

(from gms)

<<Interface>>

1

0..n

1

0..n

IpMailboxFolder

getInfoAmount()

getInfoProperties()

setInfoProperties()

putMessage()

getMessage()

close()

remove()

(from gms)

<<Interface>>

1

2..n

1

2..n

IpMessage

getInfoAmount()

getInfoProperties()

setInfoProperties()

remove()

getContent()

(from gms)

<<Interface>>

1

0..n

1

0..n

1

1

<<uses>>

Figure: Package Overview: Application and Service Interfaces
7 The Service Interface Specifications

7.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

8 Generic Messaging Interface Classes

The Generic Messaging Service interface (GMS) is used by applications to send, store and receive messages. GMS has voice mail and electronic mail as the messaging mechanisms. The messaging service interface can be used by both.
A messaging system is assumed to have the following entities:
· Mailboxes. This is the application's main entry point to the messaging system. The framework may or may not need to authenticate an application before it accesses a mailbox
· Folders. A mailbox has at least the inbox and the outbox as folders. The name of the inbox is "INBOX", and the name of the outbox is "OUTBOX". These folders may have sub-folders. The names of these sub-folders are appended to their parents' names with '/' as the delimiter. For instance, if there is a sub-folder in INBOX called 'Personal' and a sub-folder in that folder called 'archive' then the fully qualified names, which are required for all operations, of the four folders are 'INBOX', 'OUTBOX', 'INBOX/Personal', and 'INBOX/Personal/archive'. The names are case sensitive. A messaging service may have other folders other than the inbox and the outbox.
· Messages. Messages are stored in folders. Messages usually have properties associated with them.
The GMS is represented by the IpMessagingManager, IpMailbox, IpMailboxFolder and IpMessage interfaces to services provided by the network. To handle responses and reports, the developer must implement IpAppMessagingManager to provide the callback mechanism for the Messaging service manager.
8.1 Interface Class IpMessagingManager

Inherits from: IpService.
This interface is the 'service manager' interface for the Generic Messaging Service. The generic messaging manager interface provides the management functions to the generic messaging service. The application programmer can use this interface to open mailbox objects and also to enable or disable event notifications.

	<<Interface>>

IpMessagingManager

	

	openMailbox (mailboxID : in TpAddress, authenticationInfo : in TpString) : TpMailboxIdentifier

enableMessagingNotification (appInterface : in IpAppMessagingManagerRef, eventCriteria : in TpMessagingEventCriteria) : TpAssignmentID

disableMessagingNotification (assignmentID : in TpAssignmentID) : void

8.1.1 Method openMailbox()

This method opens a mailbox for the application. The session ID for use by the application is returned. Authentication information may be needed to open the mailbox.

The application can open more than one mailbox at the same time. The application is not allowed to open the same mailbox more than once at the same time.

Returns: mailboxReference

Specifies the reference to the opened mailbox.

Parameters

mailboxID : in TpAddress

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_GMS_INVALID_MAILBOX is returned.
authenticationInfo : in TpString

Authentication information needed for the application to open a mailbox in the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be null. If the authentication information is not valid, the error code P_GMS_INVALID_AUTHENTICATION_INFORMATION is returned.
Returns

TpMailboxIdentifier

Raises

TpCommonExceptions,P_GMS_INVALID_MAILBOX,P_GMS_INVALID_AUTHENTICATION_INFORMATION
8.1.2 Method enableMessagingNotification()

This method is used to enable messaging notifications so that events can be sent to the application.

Returns: assignmentID

Specifies the ID assigned by the generic messaging manager interface for this newly-enabled event notification.

Parameters

appInterface : in IpAppMessagingManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpMessagingEventCriteria

Specifies the event specific criteria used by the application to define the event required.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA
8.1.3 Method disableMessagingNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic messaging manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
8.2 Interface Class IpAppMessagingManager

Inherits from: IpInterface.
The client application developer implements the generic messaging manager application interface to handle mailbox termination, mailbox fault and messaging event notifications.

	<<Interface>>

IpAppMessagingManager

	

	mailboxTerminated (mailbox : in IpMailboxRef, mailboxSessionID : in TpSessionID) : void

mailboxFaultDetected (mailbox : in IpMailboxRef, mailboxSessionID : in TpSessionID, fault : in TpMessagingFault) : void

messagingEventNotify (messagingManager : in IpMessagingManagerRef, eventInfo : in TpMessagingEventInfo, assignmentID : in TpAssignmentID) : void

messagingNotificationTerminated () : void

8.2.1 Method mailboxTerminated()

This method indicates to the application that the mailbox has terminated or closed abnormally. No further communication will be possible between the mailbox and application.

Parameters

mailbox : in IpMailboxRef

Specifies the interface of the mailbox that has terminated.
mailboxSessionID : in TpSessionID

Specifies the mailbox session ID of the mailbox that has terminated.
8.2.2 Method mailboxFaultDetected()

This method indicates to the application that a fault has been detected in the mailbox.

Parameters

mailbox : in IpMailboxRef

Specifies the interface of the mailbox in which the fault has been detected.
mailboxSessionID : in TpSessionID

Specifies the mailbox session ID of the mailbox in which the fault has been detected.
fault : in TpMessagingFault

Specifies the fault that has been detected.
8.2.3 Method messagingEventNotify()

This method notifies the application of the arrival of a messaging-related event.

Parameters

messagingManager : in IpMessagingManagerRef

Specifies the reference to the messaging manager interface to which the notification relates.
eventInfo : in TpMessagingEventInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
8.2.4 Method messagingNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method

8.3 Interface Class IpMailbox

Inherits from: IpService.
	<<Interface>>

IpMailbox

	

	close (mailboxSessionID : in TpSessionID) : void

lock (mailboxSessionID : in TpSessionID) : void

unlock (mailboxSessionID : in TpSessionID) : void

getInfoAmount (mailboxSessionID : in TpSessionID) : TpInt32

getInfoProperties (mailboxSessionID : in TpSessionID, firstProperty : in TpInt32, numberOfProperties : in TpInt32) : TpMailboxInfoPropertySet

setInfoProperties (mailboxSessionID : in TpSessionID, firstProperty : in TpInt32, mailboxInfoProperties : in TpMailboxInfoPropertySet) : void

openFolder (mailboxSessionID : in TpSessionID, folderID : in TpString) : TpMailboxFolderIdentifier

createFolder (mailboxSessionID : in TpSessionID, folderID : in TpString) : void

remove (mailboxID : in TpAddress, authenticationInfo : in TpString) : void

8.3.1 Method close()

This method closes the mailbox. After closing, the interfaces to the mailbox and any associated folders are automatically de-assigned and are no longer valid. Any open folders will also be automatically closed.

Parameters

mailboxSessionID : in TpSessionID

The session ID of the open mailbox previously opened by openMailbox. From now on, the session ID is no longer valid. If by coincidence an identical session ID is returned by a subsequent openMailbox, the session ID will be associated with the new session and has nothing to do with the closed session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.3.2 Method lock()

This method locks the mailbox so that only the requesting application can have access to this mailbox. Updates to the mailbox by other applications or the network are not permitted until the mailbox has been unlocked - attempts to do so result in the error code P_GMS_MAILBOX_LOCKED. When the application exits, however, all mailboxes locked by the application are unlocked automatically.

The service returns an error code P_GMS_LOCKING_LOCKED_MAILBOX when the application attempts to lock a mailbox that is locked.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not valid, the error code P_INVALID_SESSION_ID is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_LOCKING_LOCKED_MAILBOX
8.3.3 Method unlock()

This method unlocks a previously locked mailbox. An error is returned if the mailbox is already unlocked.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the locked mailbox. If the sessionID does not correspond to a locked mailbox, the error code P_GMS_UNLOCKING_UNLOCKED_MAILBOX is returned. If the application attempts to unlock a mailbox that is already locked by another application, the error code P_GMS_CANNOT_UNLOCK_MAILBOX is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_UNLOCKING_UNLOCKED_MAILBOX, P_GMS_CANNOT_UNLOCK_MAILBOX
8.3.4 Method getInfoAmount()

This method returns the number of mailbox information properties of the specified mailbox.

Returns: numberOfProperties

The number of properties associated with the folder. The number of properties is zero or positive.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Returns

TpInt32

Raises

TpCommonExceptions,P_INVALID_SESSION_ID
8.3.5 Method getInfoProperties()

This method returns the properties of a mailbox.

Returns: mailboxInfoProperties

The mailbox information properties (names and values) present in the folder.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the mailbox is located. Properties are numbered from zero.
numberOfProperties : in TpInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned.
Returns

TpMailboxInfoPropertySet

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_GMS_NUMBER_NOT_POSITIVE
8.3.6 Method setInfoProperties()

Sets the properties of a mailbox.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be updated in the mailbox is located. Properties are numbered from zero.
mailboxInfoProperties : in TpMailboxInfoPropertySet

This specifies the mailbox information properties (names and values) to be set in the mailbox. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_GMS_PROPERTY_NOT_SET,P_GMS_MAILBOX_LOCKED
8.3.7 Method openFolder()

This method opens a folder for the application, and returns a folder session ID and a reference to the interface of the folder opened.

The application can open more than one folder at the same time. The application is not allowed to open the same folder more than once at the same time. If the folder is already open, the error code P_GMS_FOLDER_IS_OPEN is returned.

Returns: folderReference

Specifies the reference to the opened folder.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder. If the folder ID given is not present, the error code P_GMS_INVALID_FOLDER_ID is returned.
Returns

TpMailboxFolderIdentifier

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_GMS_FOLDER_IS_OPEN,P_GMS_INVALID_FOLDER_ID,P_GMS_MAILBOX_LOCKED
8.3.8 Method createFolder()

This method creates a new folder in the mailbox.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

Specifies the identity of the folder. If the folder ID given is already present, the error code P_GMS_INVALID_FOLDER_ID is returned.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_GMS_INVALID_FOLDER_ID,P_GMS_MAILBOX_LOCKED
8.3.9 Method remove()

This method removes a mailbox from the messaging system for the application. Authentication information may be needed to remove the mailbox. If the application does not have sufficient privilege to remove the mailbox, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned.

Parameters

mailboxID : in TpAddress

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_GMS_INVALID_MAILBOX is returned. If the mailbox is locked then the error code P_GMS_MAILBOX_LOCKED is returned. If the mailbox is open then the error code P_GMS_MAILBOX_OPEN is returned.
authenticationInfo : in TpString

Authentication information needed for the application to remove a mailbox from the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be null. If the authentication information is not valid, the error code P_GMS_INVALID_AUTHENTICATION_INFORMATION is returned.
Raises

TpCommonExceptions,P_GMS_INSUFFICIENT_PRIVILEGE,P_GMS_INVALID_MAILBOX,P_GMS_MAILBOX_LOCKED,P_GMS_MAILBOX_OPEN,P_GMS_INVALID_AUTHENTICATION_INFORMATION
8.4 Interface Class IpMailboxFolder

Inherits from: IpService.
	<<Interface>>

IpMailboxFolder

	

	getInfoAmount (folderSessionID : in TpSessionID) : TpInt32

getInfoProperties (folderSessionID : in TpSessionID, firstProperty : in TpInt32, numberOfProperties : in TpInt32) : TpFolderInfoPropertySet

setInfoProperties (folderSessionID : in TpSessionID, firstProperty : in TpInt32, folderInfoProperties : in TpFolderInfoPropertySet) : void

putMessage (folderSessionID : in TpSessionID, message : in TpMessage, messageInfoProperties : in TpMessageInfoPropertySet) : void

getMessage (folderSessionID : in TpSessionID, messageID : in TpString) : IpMessageRef

close (mailboxSessionID : in TpSessionID, folderSessionID : in TpSessionID) : void

remove (mailboxSessionID : in TpSessionID, folderID : in TpString) : void

8.4.1 Method getInfoAmount()

This method returns the number of folder information properties of the specified folder.

Returns: numberOfProperties

The number of properties associated with the folder. The number of properties is zero or positive.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Returns

TpInt32

Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.4.2 Method getInfoProperties()

This method returns the properties of a folder.

Returns: folderInfoProperties

The folder information properties (names and values) present in the folder. Folder properties include parent folder, sub folders, number of messages contained, date created, date last accessed, and read/write access.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the folder is located. Properties are numbered from zero.
numberOfProperties : in TpInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned.
Returns

TpFolderInfoPropertySet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_NUMBER_NOT_POSITIVE
8.4.3 Method setInfoProperties()

Sets the properties of a folder.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be updated in the folder is located. Properties are numbered from zero.
folderInfoProperties : in TpFolderInfoPropertySet

This specifies the folder information properties (names and values) to be set in the folder. Folder properties that may be changed include parent folder, sub folders and read/write access. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_PROPERTY_NOT_SET
8.4.4 Method putMessage()

This method puts a message into an open mailbox folder. The message and the headers are transferred to the Messaging service. The message will be taken as is. No checking is done on the message. Further more, the message is assumed to be a simple message, that is, with no attachments. If the application knows the messaging system and understands the format to send attachments, it can do so. The service will not flag any inconsistencies if the formatting of the message is not correct.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
message : in TpMessage

The message to put into the mailbox.
messageInfoProperties : in TpMessageInfoPropertySet

This specifies the message information properties (names and values).
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.4.5 Method getMessage()

This method gets a message from an open mailbox folder. The message ID can be obtained by calling the getFolderInfo and getFolderInfoProperties or embedded in an event notification from the messaging service, with information on the mailbox and notifications contained in that operation.

Returns: message

The message associated with the messageID.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
messageID : in TpString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.
Returns

IpMessageRef

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_INVALID_MESSAGE_ID
8.4.6 Method close()

This method closes a specified folder. All subfolders of the folder are also closed.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderSessionID : in TpSessionID

Specifies the folder session ID of the folder to close.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.4.7 Method remove()

This method removes a folder from the mailbox. All subfolders of the folder are also removed. The folder must be already closed, otherwise the error code P_GMS_FOLDER_IS_OPEN is returned. If the application does not have sufficient privilege to remove the folder, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

Specifies the identity of the folder. If the folder ID given is not present, the error code P_GMS_INVALID_FOLDER_ID is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_INSUFFICIENT_PRIVILEGE, P_GMS_INVALID_FOLDER_ID, P_GMS_FOLDER_IS_OPEN
8.5 Interface Class IpMessage

Inherits from: IpService.
	<<Interface>>

IpMessage

	

	getInfoAmount (folderSessionID : in TpSessionID, messageID : in TpString) : TpInt32

getInfoProperties (folderSessionID : in TpSessionID, messageID : in TpString, firstProperty : in TpInt32, numberOfProperties : in TpInt32) : TpMessageInfoPropertySet

setInfoProperties (folderSessionID : in TpSessionID, messageID : in TpString, firstProperty : in TpInt32, messageInfoProperties : in TpMessageInfoPropertySet) : void

remove (folderSessionID : in TpSessionID, messageID : in TpString) : void

getContent (folderSessionID : in TpSessionID, messageID : in TpString) : TpMessage

8.5.1 Method getInfoAmount()

This method returns the number of message information properties of the specified message.

Returns: numberOfProperties

The number of properties associated with the message. The application can then use the information contained to decide whether to get the message or the message information properties from a mailbox folder. The number of properties is zero or positive.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
messageID : in TpString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.
Returns

TpInt32

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_INVALID_MESSAGE_ID
8.5.2 Method getInfoProperties()

This method returns the properties of a message.

Returns: messageInfoProperties

The message information properties (names and values) present in the message. Message properties include message format, read/unread, sent/unsent, message size, relevant dates and times, subject and addresses.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
messageID : in TpString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the message is located. Properties are numbered from zero.
numberOfProperties : in TpInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned.
Returns

TpMessageInfoPropertySet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_NUMBER_NOT_POSITIVE, P_GMS_INVALID_MESSAGE_ID
8.5.3 Method setInfoProperties()

This method sets the properties of a message.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
messageID : in TpString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the message is located. Properties are numbered from zero.
messageInfoProperties : in TpMessageInfoPropertySet

This specifies the message information properties (names and values) to be set in the message. Message properties that may be changed include read/unread status, subject and importance. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_INVALID_MESSAGE_ID, P_GMS_PROPERTY_NOT_SET
8.5.4 Method remove()

This method removes a message from the open mailbox folder. If the application does not have sufficient privilege to remove the message, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
messageID : in TpString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.
The message ID can be obtained by calling the getFolderInfo and getFolderInfoProperties or embedded in an event notification from the messaging service, with information on the mailbox and notifications contained in that operation. If the message cannot be removed, the error code P_GMS_MESSAGE_NOT_REMOVED is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_INSUFFICIENT_PRIVILEGE, P_GMS_MESSAGE_NOT_REMOVED, P_GMS_INVALID_MESSAGE_ID
8.5.5 Method getContent()

This method retrieves the message content.

Returns: content

Returns the message content.

Parameters

folderSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
messageID : in TpString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE_ID is returned.
Returns

TpMessage

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_GMS_INVALID_MESSAGE_ID
9 State Transition Diagrams

There are no State Transition Diagrams for the Generic Messaging SCF.

10 Data Definitions

This clause provides the generic messaging service data definitions necessary to support the API specification. All data types referenced but not defined in this clause are common data definitions which may be found in ES 202 915-2.

10.1 Event notification Definitions

10.1.1 TpMessagingEventName

Defines the name of event being notified. In phase 2 of the APIs, only the following events are supported.

	Name
	Value
	Description

	P_EVENT_GMS_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_GMS_NEW_MESSAGE_ARRIVED
	1
	GMS -New Message Arrived

10.1.2 TpMessagingEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

	
	Tag Element Type
	

	
	TpMessagingEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_GMS_NEW_MESSAGE_ARRIVED
	TpGMSNewMessageArrivedCriteria
	EventGMSNewMessage
Arrived

10.1.3 TpGMSNewMessageArrivedCriteria

Defines the Sequence of Data Elements that specify the criteria for a GMS New Message Arrived event.

	Sequence Element Name
	Sequence Element Type

	MailboxID
	TpAddress

	AuthenticationInfo
	TpString

10.1.4 TpMessagingEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

	
	Tag Element Type
	

	
	TpMessagingEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_GMS_NAME_UNDEFINED
	TpString
	EventNameUndefined

	P_EVENT_GMS_NEW_MESSAGE_ARRIVED
	TpGMSNewMessageArrivedInfo
	EventGMSNewMessage
Arrived

10.1.5 TpGMSNewMessageArrivedInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a GMS New Message Arrived event.

	Sequence Element Name
	Sequence Element Type

	MailboxID
	TpAddress

	FolderID
	TpString

	MessageID
	TpString

	NumberOfProperties
	TpInt32

10.2 Generic Messaging Data Definitions

10.2.1 IpMessagingManager

Defines the address of an IpMessagingManager Interface.

10.2.2 IpMessagingManagerRef

Defines a Reference to type IpMessagingManager.

10.2.3 IpAppMessagingManager

Defines the address of an IpAppMessagingManager Interface.

10.2.4 IpAppMessagingManagerRef

Defines a Reference to type IpAppMessagingManager.

10.2.5 IpMailbox

Defines the address of an IpMailbox Interface.

10.2.6 IpMailboxRef

Defines a Reference to type IpMailbox.

10.2.7 IpMailboxFolder

Defines the address of an IpMailboxFolder Interface.

10.2.8 IpMailboxFolderRef

Defines a Reference to type IpMailboxFolder.

10.2.9 IpMessage

Defines the address of an IpMessage Interface.

10.2.10 IpMessageRef

Defines a Reference to type IpMessage.

10.2.11 TpFolderInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a folder.

	
	Tag Element Type
	

	
	TpFolderInfoPropertyName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_MESSAGING_FOLDER_ID
	TpString
	MessagingFolderID

	P_MESSAGING_FOLDER_MESSAGE
	TpString
	MessagingFolderMessage

	P_MESSAGING_FOLDER_SUBFOLDER
	TpString
	MessagingFolderSubfolder

	P_MESSAGING_FOLDER_DATE_CREATED
	TpDateAndTime
	MessagingFolderDateCreated

	P_MESSAGING_FOLDER_DATE_CHANGED
	TpDateAndTime
	MessagingFolderDateChanged

10.2.12 TpFolderInfoPropertyName

Defines a specific folder information property name.

	Name
	Value
	Description

	P_MESSAGING_FOLDER_UNDEFINED
	0
	Undefined

	P_MESSAGING_FOLDER_ID
	1
	The fully qualified ID of this folder (i.e. including parent folder ID and mailbox ID)

	P_MESSAGING_FOLDER_MESSAGE
	2
	Indicates the ID of a message

	P_MESSAGING_FOLDER_SUBFOLDER
	3
	The fully qualified ID of a subfolder (i.e. including parent folder ID and mailbox ID)

	P_MESSAGING_FOLDER_DATE_CREATED
	4
	Indicates the date created

	P_MESSAGING_FOLDER_DATE_CHANGED
	5
	Indicates the date last changed

10.2.13 TpFolderInfoPropertySet

Defines a Numbered Set of Data Elements of TpFolderInfoProperty.

10.2.14 TpMailboxFolderIdentifier

Defines the Sequence of Data Elements that identify a folder.

	Sequence Element Name
	Sequence Element Type

	Mailbox folder
	IpMailboxFolderRef

	SessionID
	TpSessionID

10.2.15 TpMailboxIdentifier

Defines Sequence of Data Elements

 that identify a mailbox.
 the
	Sequence Element Name
	Sequence Element Type

	Mailbox
	IpMailboxRef

	SessionID
	TpSessionID

10.2.16 TpMailboxInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a mailbox.

	
	Tag Element Type
	

	
	TpMailboxInfoPropertyName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_MESSAGING_MAILBOX_ID
	TpAddress
	MessagingMailboxID

	P_MESSAGING_MAILBOX_OWNER
	TpString
	MessagingMailboxOwner

	P_MESSAGING_MAILBOX_FOLDER
	TpString
	MessagingMailboxFolder

	P_MESSAGING_MAILBOX_DATE_CREATED
	TpDateAndTime
	MessagingMailboxDateCreated

	P_MESSAGING_MAILBOX_DATE_CHANGED
	TpDateAndTime
	MessagingMailboxDateChanged

10.2.17 TpMailboxInfoPropertyName

Defines a specific mailbox information property name.

	Name
	Value
	Description

	P_MESSAGING_MAILBOX_UNDEFINED
	0
	Undefined

	P_MESSAGING_MAILBOX_ID
	1
	The ID of the Mailbox

	P_MESSAGING_MAILBOX_OWNER
	2
	The owner of the mailbox

	P_MESSAGING_MAILBOX_FOLDER
	3
	The fully qualified ID of a folder (i.e. including parent folder ID and mailbox ID)

	P_MESSAGING_MAILBOX_DATE_CREATED
	4
	Indicates the date created

	P_MESSAGING_MAILBOX_DATE_CHANGED
	5
	Indicates the date last changed

10.2.18 TpMailboxInfoPropertySet

Defines a Numbered Set of Data Elements of TpMailboxInfoProperty.

10.2.19 TpMessage

This data type is identical to a TpLongstring, and defines the message content.

10.2.20 TpMessageFormat

Defines the format of a message.

	Name
	Value
	Description

	P_MESSAGING_MESSAGE_FORMAT_UNDEFINED
	0
	Undefined

	P_MESSAGING_MESSAGE_FORMAT_TEXT
	1
	Non-specific text format

	P_MESSAGING_MESSAGE_FORMAT_BINARY
	2
	Non-specific binary format

	P_MESSAGING_MESSAGE_FORMAT_UUENCODED
	3
	UUENCODED format

	P_MESSAGING_MESSAGE_FORMAT_MIME
	4
	MIME format

	P_MESSAGING_MESSAGE_FORMAT_WAVE
	5
	WAVE audio format

	P_MESSAGING_MESSAGE_FORMAT_AU
	6
	AU audio format

10.2.21 TpMessageInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a message.

	
	Tag Element Type
	

	
	TpMessageInfoPropertyName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_MESSAGING_MESSAGE_ID
	TpString
	MessagingMessageID

	P_MESSAGING_MESSAGE_SUBJECT
	TpString
	MessagingMessageSubject

	P_MESSAGING_MESSAGE_DATE_SENT
	TpDateAndTime
	MessagingMessageDateSent

	P_MESSAGING_MESSAGE_DATE_RECEIVED
	TpDateAndTime
	MessagingMessageDate
Received

	P_MESSAGING_MESSAGE_DATE_CHANGED
	TpDateAndTime
	MessagingMessageDateChanged

	P_MESSAGING_MESSAGE_SENT_FROM
	TpAddress
	MessagingMessageSentFrom

	P_MESSAGING_MESSAGE_SENT_TO
	TpAddress
	MessagingMessageSentTo

	P_MESSAGING_MESSAGE_CC_TO
	TpAddress
	MessagingMessageCCTo

	P_MESSAGING_MESSAGE_BCC_TO
	TpAddress
	MessagingMessageBCCTo

	P_MESSAGING_MESSAGE_SIZE
	TpInt32
	MessagingMessageSize

	P_MESSAGING_MESSAGE_PRIORITY
	TpMessagePriority
	MessagingMessagePriority

	P_MESSAGING_MESSAGE_FORMAT
	TpMessageFormat
	MessagingMessageFormat

	P_MESSAGING_MESSAGE_FOLDER
	TpString
	MessagingMessageFolder

	P_MESSAGING_MESSAGE_STATUS
	TpMessageStatus
	MessagingMessageStatus

10.2.22 TpMessageInfoPropertyName

Defines a specific message information property name.

	Name
	Value
	Description

	P_MESSAGING_MESSAGE_UNDEFINED
	0
	Undefined

	P_MESSAGING_MESSAGE_ID
	1
	The identity of the message

	P_MESSAGING_MESSAGE_SUBJECT
	2
	The subject of the message

	P_MESSAGING_MESSAGE_DATE_SENT
	3
	Indicates the date send

	P_MESSAGING_MESSAGE_DATE_RECEIVED
	4
	Indicates the date received

	P_MESSAGING_MESSAGE_DATE_CHANGED
	5
	Indicates the date last changed

	P_MESSAGING_MESSAGE_SENT_FROM
	6
	Indicates the sender

	P_MESSAGING_MESSAGE_SENT_TO
	7
	Indicates the Sent To addressees

	P_MESSAGING_MESSAGE_CC_TO
	8
	Indicates the Copied To addressees

	P_MESSAGING_MESSAGE_BCC_TO
	9
	Indicates the Copied Blind addressees

	P_MESSAGING_MESSAGE_SIZE
	10
	Indicates the size of the message in bytes

	P_MESSAGING_MESSAGE_PRIORITY
	11
	Indicates the priority of the message

	P_MESSAGING_MESSAGE_FORMAT
	12
	Indicates the format of the message

	P_MESSAGING_MESSAGE_FOLDER
	13
	The fully qualified ID of the folder in which the message is stored

	P_MESSAGING_MESSAGE_STATUS
	14
	The status of the message

10.2.23 TpMessageInfoPropertySet

Defines a Numbered Set of Data Elements of TpMessageInfoProperty.

10.2.24 TpMessagePriority

Defines the priority of a message.

	Name
	Value
	Description

	P_MESSAGING_MESSAGE_PRIORITY_UNDEFINED
	0
	Undefined/Normal

	P_MESSAGING_MESSAGE_PRIORITY_HIGH
	1
	High priority

	P_MESSAGING_MESSAGE_PRIORITY_LOW
	2
	Low priority

10.2.25 TpMessageStatus

Defines the status of a message.

	Name
	Value
	Description

	P_MESSAGING_MESSAGE_STATUS_READ_MESSAGE
	0
	Read message

	P_MESSAGING_MESSAGE_STATUS_UNREAD_MESSAGE
	1
	Unread message

	P_MESSAGING_MESSAGE_STATUS_FORWARDED_MESSAGE
	2
	Forwarded message

	P_MESSAGING_MESSAGE_STATUS_REPLIED_TO_MESSAGE
	3
	Replied to message

	P_MESSAGING_MESSAGE_STATUS_SAVED_OR_UNSENT_
MESSAGE
	4
	Saved or unsent message

	P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_DELIVERED
	5
	Notification of a delivered message

	P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_READ
	6
	Notification of a read message

	P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_NOT_DELIVERED
	7
	Notification of a message that was not delivered

	P_MESSAGING_MESSAGE_STATUS_NOTIFICATION_THAT_A_MESSAGE_WAS_NOT_READ
	8
	Notification of a message that was not read

10.2.26 TpMessagingFault

Defines the cause of the messaging fault detected.

	Name
	Value
	Description

	P_MESSAGING_FAULT_UNDEFINED
	0
	Undefined

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_GMS_CANNOT_UNLOCK_MAILBOX
	Mailbox is locked by another application

	P_GMS_FOLDER_IS_OPEN
	Action cannot be performed because the folder is open

	P_GMS_INSUFFICIENT_PRIVILEGE
	The application has insufficient privilege to perform this action

	P_GMS_INVALID_AUTHENTICATION_INFORMATION
	Authentication Information is not valid

	P_GMS_INVALID_FOLDER_ID
	The folder ID is invalid (does not exist if opening a folder, already exists if creating a folder)

	P_GMS_INVALID_MAILBOX
	Chosen Mailbox Address is invalid

	P_GMS_INVALID_MESSAGE_ID
	The message ID is invalid / does not exist

	P_GMS_LOCKING_LOCKED_MAILBOX
	Attempt to lock an already locked mailbox

	P_GMS_MAILBOX_LOCKED
	Action cannot be performed because the mailbox is locked by another application

	P_GMS_MAILBOX_OPEN
	Action cannot be performed because the mailbox is already open

	P_GMS_MESSAGE_NOT_REMOVED
	The message cannot be removed

	P_GMS_NUMBER_NOT_POSITIVE
	A negative number of properties was requested

	P_GMS_PROPERTY_NOT_SET
	The property cannot be changed

	P_GMS_UNLOCKING_UNLOCKED_MAILBOX
	Attempt to unlock an unlocked mailbox

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

Annex A (normative):
OMG IDL Description of Generic Messaging SCF

The OMG IDL representation of this interface specification is contained in a text file (gms.idl contained in archive es_20291509IDL.ZIP) which accompanies the present document.

Annex B (informative):
Record of changes

The following is a list of the changes made to this specification for each release. The list contains the names of all changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change information that is important to the reader is put in the Others part of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table allowing the reader to know when the actual change was made.

B.1 Interfaces

B.1.1 New

	Identifier
	Comments

	Interfaces added in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.1.2 Deprecated

	Identifier
	Comments

	Interfaces deprecated in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.1.3 Removed

	Identifier
	Comments

	Interfaces removed in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.2 Methods

B.2.1 New

	Identifier
	Comments

	Methods added in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.2.2 Depreciated

	Identifier
	Comments

	Methods depreciated in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.2.3 Modified

	Identifier
	Comments

	Methods modified in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.2.4 Removed

	Identifier
	Comments

	Methods removed in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.3 Data Definitions

B.3.1 New

	Identifier
	Comments

	Data Definitions added in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.3.2 Modified

	Identifier
	Comments

	Data Definitions modified in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.3.3 Removed

	Identifier
	Comments

	Data Definitions removed in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.4 Service Properties

B.4.1 New

	Identifier
	Comments

	Service Properties added in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.4.2 Depreciated

	Identifier
	Comments

	Service Properties depreciated in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.4.3 Modified

	Identifier
	Comments

	Service Properties modified in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.4.4 Removed

	Identifier
	Comments

	Service Properties removed in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.5 Exceptions

B.5.1 New

	Identifier
	Comments

	Exceptions added in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.5.2 Modified

	Identifier
	Comments

	Exceptions modified in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.5.3 Removed

	Identifier
	Comments

	Exceptions removed in ES 202 915-9 version 1.1.1 (Parlay 4.0)

	
	

B.6 Others

History

	Document history

	v.0.0.1
	June 2002
	1st Draft ES 202 915-09 (Parlay 4.0) following CN5#18 Budapest

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

[image: image9.wmf]_1065009619.doc

