joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020595
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Source:
FTW (Ivan Gojmerac, Klaus Umschaden)

Title:
Interface Changes for Keeping Subscription Information Consistent
Agenda Item:

Document for:
Discussion

Category:

Work Item ID:

Doc Summary:
N5-020078, N5-020223, N5-020245, N5-020345; N5-020470
Specs involved:
ETSI ES201915-3 V.0.0.7 (Framework)
Problem

The client application may be assigned to a service only through a single service profile at a particular moment in time. (It may actually be assigned through any number of non-concurrent service profiles.)

This condition may be violated when performing addSAGMembers() and assign() method calls. Exception messages, which are used with these method calls are not well suited for standardized communication between the enterprise operator and the framework. For ensuring full interoperability between different enterprise operators and different frameworks, it is necessary to communicate the reason of the exception in a clear and structured manner.

[image: image1.png]o

Figure 1
Figure 1 shows an illegal state; the client application is assigned to two concurrent service profiles for a given service. The framework should never enter such a state; therefore the methods addSAGMembers() of the IpClientAppManagement interface and the method assign() of the IpServiceProfileManagement interface have to throw an exception indicating that the method call failed. Furthermore, the involved enterprise operator requires additional methods to request information about the conflict of the assignment / addition.

Proposal

Assuring that the client application is assigned to a service only through a single service profile at any given moment in time requires extensive consistency checks in the framework when two critical methods are called:

· The addSAGMembers() method from the IpClientAppManagement interface, and

· The assign() method from the IpServiceProfileManagement interface.

After having performed the consistency checks successfully, the framework performs the operation. This means that the entire method is executed. If the operation would lead to an illegal state, the framework throws an exception. This indicates, that the method has not been executed, because a conflict has been detected. In such a case of failure, no partial execution is performed. The enterprise operator is offered an additional method to query the reason of the latest conflict.

Resulting changes

8.3.1.1. Interface Class IpClientAppManagement

Inherits from: IpInterface.

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator must use the client application management interface, to which (s)he can subscribe as a privileged user. The client application management interface is intended for cases where an organisation wants to allow several client applications to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client applications and SAGs, delete them and to modify subscription related information concerning the client applications and the SAGs. Client applications use the subscribed services in the enterprise operator's name. The main task of client application management is to: · register, modify and delete client applications (Client Application Management), · manage groups of client applications, called Subscription Assignment Groups (SAG Management).

	<<Interface>>

IpClientAppManagement

	

	createClientApp (clientAppDescription : in TpClientAppDescription) : void

modifyClientApp (clientAppDescription : in TpClientAppDescription) : void

deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void

removeSAGMembers (sagID : in TpSagID, clientAppIDList : in TpClientAppIDList) : void

requestConflictInfo() : TpAddSagMembersConflictList

Method

addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise operator associated with the SAG is allowed to assign members to it, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service only through a single service profile at a particular moment in time. If this condition is violated, a “P_INVALID_ADDITION_TO_SAG” would be raised. In this case, no partial execution of this method is performed. The enterprise operator can query further information about this invalid addition using the method requestConflictInfo().
Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs : in TpClientAppIDList

The "clientAppIDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The clientApp objects are first created using the createClientApp() method. If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_APP_ID" would be raised.

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_CLIENT_APP_ID,P_INVALID_SAG_ID,P_INVALID_ADDITION_TO_SAG
Method

requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method addSagMembers() on this interface (i.e. Information about the invocation of addSagMembers() that raised a P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through a single service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG, where both, the client application and the SAG are already assigned to the same service through different service profiles. As this may happen in one method call for multiple client applications, a conflict list is generated.

It is only possible to retrieve information about the last conflicting addSagMembers() method call; information about previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList> : The description of the conflicts occurring at the latest invocation of addSagMembers(). Each conflict contains the following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is already assigned to the conflict generating service. It includes the current service profile.

c. theSAG, to which the conflict generating client application should be added. However, this SAG is already assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client application may be assigned to a service only through a single service profile at a particular moment in time.

d. the conflict generating service.

Parameters

No Parameters were identified for this method

Returns

TpAddSagMembersConflictList

The TpAddSagMembersConflictList parameter contains the list of conflicts of the last invocation of addSagMembers() that raised a P_INVALID_ADDITION_TO_SAG.

Raises

TpCommonExceptions,P_ACCESS_DENIED
8.3.1.2. Interface Class IpServiceProfileManagement

Inherits from: IpInterface.
This interface is used by the enterprise operator for the management of Service Profiles, which are defined for every subscribed service, and to assign/de - assign the Service Profiles to SAGs.

	<<Interface>>

IpServiceProfileManagement

	

	createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfileID

modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfileID : in TpServiceProfileID) : void

assign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

deassign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void
requestConflictInfo() : TpAssignSagToServiceProfileConflictList

Method

assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfileID is allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service only through a single service profile at a particular moment in time. If this condition is violated, a “P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT” would be raised. In this case, no partial execution of this method is performed. The enterprise operator can query further information about this invalid assignment using the method requestConflictInfo().
Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG to which Service Profile is to be assigned. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfileID does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED,P_INVALID_SAG_ID,P_INVALID_SERVICE_PROFILE_ID,
P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT

Method

requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method assign() on this interface (i.e. Information about the invocation of assign () that threw a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG to a service profile of a given service. If one or more client applications in this SAG are already assigned to service profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular moment in time. As this is prohibited, a conflict list is generated.

It is only possible to retrieve information about the last conflicting assign() method call; information about previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList> : The description of the conflicts occurring at the latest invocation of assign(). Each conflict contains the following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is already assigned to the conflict generating service. It includes the current service profile.

c. the conflict generating service.
The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of the assign() method. Therefore, they do not appear in the returned conflict list.
Parameters

No Parameters were identified for this method

Returns

TpAssignSagToServiceProfileConflictList

The TpAssignSagToServiceProfileConflict parameter contains the list of conflicts of the last invocation of assign() that raised a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT.

Raises

TpCommonExceptions,P_ACCESS_DENIED
