page 4 (21)
EURESCOM White Paper

[image: image1.wmf][image: image1.wmf]
EURESCOM White Paper

White Paper

Non-functional aspects and requirements related to Parlay/OSA products

Author (s):

Geir Gylterud (Editor), Steinar Brede (Telenor R&D)

Michael Walkden, Rod Tye (BT)

Sergio Tognon (Telecom Italia Lab)

Johannes Schneider (Swisscom)

[image: image2.png]HQWY SUOREIIUNWLWOIS[3] Ul SaIpNIS 218a1.J1S pUB Yoieasay Joj ainiisu| ueadoiny

Petra Hoepner, Christian Egelhaaf (DT)

Table of Contents

31
Introduction

42
Non functional aspects and requirements

42.1
Availability, Reliability, Maintainability and Maintenance Support

42.1.1
Availability

42.1.2
Reliability

52.1.3
Maintainability

72.1.4
Maintenance Support

72.1.5
Tests and required results

92.2
Performance

92.2.1
Description

92.2.2
Methodologies for testing

102.2.3
Tests and required results

122.3
Load balancing

122.3.1
Description

122.3.2
Methodologies for testing

132.3.3
Tests and required results

142.4
Scalability

142.4.1
Description

142.4.2
Methodologies for testing

142.4.3
Tests and required results

142.5
Security

142.5.1
Description

152.5.2
Methodologies for testing

152.5.3
Tests and required results

152.6
Resilience

152.6.1
Description

152.6.2
Methodologies for testing

162.6.3
Tests and required results

162.7
Overload control

162.7.1
Description

162.7.2
Methodologies for testing

172.7.3
Tests and required results

183
Conclusion

194
Acknowledgements

205
Abbreviations

216
References

1 Introduction

EURESCOM project P1110 is performing an assessment of OSA/Parlay technologies. As a part of this work we also investigate the non-functional aspects of OSA/Parlay as related to e.g. availability, performance, scalability, etc.

The purpose of this White Paper is to give a summary of the non-functional aspects identified by the project as being essential to provide high quality of customer services within the OSA/Parlay model.

Parlay/OSA defines an architecture that enables operators and third party applications to make use of the network functionality through an open standardised interface (the Parlay/OSA API). It provides the glue between applications and service capabilities provided by the network, in such a way that applications become independent from the underlying network technology. It enables common service creation and a common service execution environment for real-time applications built on top of standard network protocols, such as H. 323, SIP, SMTP, MAP and INAP.

So far, much of the attention has been given to the functionality of the interfaces, covering Framework and different Service Capability Servers, and this functionality is steadily increasing by increasing functionality in existing interfaces and adding new types of interfaces. There are some OSA/Parlay implementations already in use, and more is planned to be deployed within the end of 2002. This forces both vendors and operators to also focus on the non-functional aspects of OSA/Parlay Gateways and Application Servers.

The operators have already for many years now gained experience supplying their subscribers with value-added services through the IN concept, and a lot of effort has been put into making these services reliable and thereby also highly available. This is reflected in the fact that the required availability for IN-type of services is said to be 99,999%. This is a very important criterion for this kind of services, that is, to be able to satisfy our customers/subscribers high demands for service quality. Although this strict requirement for availability might not be necessary or useful to impose on all kinds of OSA/Parlay services, it is essential that operators/3pty service providers get the ability to support the same service quality also for services provided by the OSA/Parlay concept.

Another very important aspect is that implementing OSA also means, breaking a “hole” in the thick walls operators (by the help of vendors) has built around their service platforms and core networks. It is vital that this “hole” is properly secured so that unauthorised actions can’t be performed and that the integrity of the core network is maintained.

The readers of this document should be reasonably familiar with OSA/Parlay concepts and should have basic knowledge of telecommunications. For further reading, please refer to the References section.

2 Non functional aspects and requirements

This section presents the non-functional aspects that have been identified as important related to the operation of platforms providing the OSA/Parlay interfaces. A description of each non-functional issue is given and for each issue possible methodologies for how to test the issue are discussed. A short description is also made of tests that should be performed to analyse the different aspects and their required results.

2.1 Availability, Reliability, Maintainability and Maintenance Support

Availability can be defined as the “percentage of time during which a system is operational and conforms to its specification” [1]. Availability is dependent on Reliability, Maintainability and Maintenance Support (definitions can be found in specification ITU E.800 [2]). Reliability and maintainability are completely given by the equipment. Thus, it is possible to test them considering only the characteristics of the equipment. Maintenance support, which contributes also to the availability, depends more on the operator’s processes and support organisation. It is not a characteristic of the equipment, and cannot be tested in the same way.

2.1.1 Availability

2.1.1.1 Description

High Availability implies that a system can always respond to all requests made to it, with response time in line with the vendor’s specification (or other reference values) and the operators requirements. The definition is valid both for a Parlay Gateway, a Parlay Application Server and for the cooperative work between those two.

2.1.1.2 Methodologies for testing

Availability, being dependent of Reliability, Maintainability and Maintenance Support, is a verified by performing tests on those aspects. High Availability on a general level can be tested by introducing major failures that would lead to a switch of state in the case of an active/hot standby system configuration. The standby system should become active when the active system fails. In the case of a load sharing system configuration, it should be verified that load is shared amongst the remaining components when other major components involved fails.

2.1.2 Reliability

2.1.2.1 Description

Reliability can be defined as the “probability of a system performing its purpose adequately for the period of time intended under the operation conditions encountered” [3]. The definition is valid both for Parlay Gateway and for the server where applications run. The following sub aspects will be further discussed:

Stability

Stability aspects are relevant both to the IT and TLC fields. In general each software system has to be evaluated considering also that stability means a system must guarantee its performance in time. This implies that a system, in this case the Parlay Gateway and Application server, has to deal correctly and carefully with its software resources in order to avoid performance degradation due to mismanagement and release. Typical resources that require accurate management are memory (allocation, de-allocation etc.) and processes (activation, deactivation, inter-process communication etc.). Bad management or treatment can seriously affect a system performance.

Fault tolerance
Fault tolerance is the ability of a distributed computing system to recover from component failures without performing incorrect actions. It is required so as to have high reliability of equipment operation. The faults, which may occur during practical operation, should not affect the correct operation of the equipment and the system should continue processing. Inability to operate correctly should be indicated to the Network Operator or Service Provider via appropriate alarms.

This issue can be divided further into two sub-sections of Hardware and Software fault tolerance. In the case of Hardware, implementing fail-over systems for critical components will often take care of defects. However given a fault tolerant architecture it is still possible to suffer faults in Software and this is an independent issue needing testing.

Recoverability

In the context of a fault-tolerant distributed computing system, recoverability deals with the systems support for bringing the system back to a normal condition after a fault situation has been detected and repaired. This should cover both the ability of failed components themselves to restart and rejoin the system, and also the manual procedures to be performed for recovery.

2.1.2.2 Methodologies for testing

Stability

To execute stability verifications, a reference test configuration consisting of a network simulator linked to the System Under Test (SUT) has to be set up. Concerning stability, the Parlay Gateway – Application Server pair can be considered as a single entity (i.e. the SUT), even if they are distributed on different machines. The network simulator will use a traffic generator to simulate a load on the system.

Tests for stability verifications are done by running applications on the Application Server and loading the Parlay Gateway – Application Server system with the appropriate traffic level for a defined time period. The traffic level should be the maximum allowed by the system before loss of service or overload conditions are reached and the time period should be such as to guarantee an extensive usage of the various software resources. A period of not less than 24 hours is suggested. During the test, periodic verifications on resource usage (e.g. CPU) should be done.

Fault tolerance

Hardware failures: Any defects, which may occur during practical operation, shall be identified. These defects will then be applied to the Parlay Gateway (and/or Application Server) in the laboratory, and the reaction of the equipment will be observed.

Software errors: Software errors, which may occur, shall be generated, for example incorrect requests. These software errors will then be applied to the Parlay Gateway (and/or Application Server) in the laboratory and the operation of the equipment will be observed.

Recoverability
The method for testing system recoverability will be to introduce failures to the system and then measure the complexity and effort needed to restore the failed components back to the same configuration prior to the failure.

2.1.3 Maintainability

2.1.3.1 Description

Maintainability can mean searching for the cause of failure, correction of faults and verification of corrective actions. The following sub aspects will be further investigated:
Analyzability

The term analyzability in regards to maintenance defines the amount of effort required to diagnose the cause of a failure. System logs and other facilities for finding the cause of the failure plays an important role. Tools and methods implemented by suppliers for diagnosis of deficiencies or causes of failures should be evaluated.

Changeability

Changeability indicates the required amount of effort for modification or fault removal. This addresses the systems needed for modification, fault removal or for environmental change.
Maintenance stability

A modification of or correction to a system after a failure gives a risk of unexpected effects on the system. Maintenance stability is a measure of this risk.

Testability

After making modifications to a system tests are necessary to validate the modified SW. Testability gives a measure needed for validating the corrective actions.

2.1.3.2 Methodologies for testing

Analyzability

To evaluate the effort needed for diagnosis of a failure, a separate analysis for the Gateway and the Application server is needed. For both parts, the following elements must be considered:

· Examination of system logs.

· Identification of other diagnosis tools or methods to identify failures.

Changeability

By mimicking failures the changeability may be divided into the following severity groups:

· Self restoring failure

· Moderate (Reduced performance until manual interaction)

· Severe (discontinued operation)

The effort needed for the system to restore correct operation shall be identified and recorded in a number of test cases.
Maintenance stability

A qualitative risk analysis of the unexpected effects of failure shall be performed. By dividing the risk into three categories (High, medium and low risk) a quality measure may be achieved. These assessments shall be performed on a number of test cases.

Testability

It may not be possible to test some failures after corrective actions have been performed. A number of test cases will be used to validate the system after modifications have been made. By dividing the results from the test cases into the following categories, a qualitative measure of the testability may be achieved:

· Not testable

· Complicated testing

· Moderate testing

· Undemanding testing.
2.1.4 Maintenance Support

2.1.4.1 Description

Maintenance support depends on the operator’s organisation to provide the required support in case of failure. This will have an impact on the availability of the same order as reliability and maintainability. The maintenance support performance depends on the qualification of the personnel, the number of people available for support, the time required to activate them, the processes and the organisation of the support, etc. These are aspects that will highly influence the maintenance costs.

2.1.4.2 Methodologies for testing

The results of reliability and maintainability testing will help to specify the operator’s support organisation that enables to achieve a specified availability. This includes an evaluation of the number and qualification of personnel and required location of a maintenance organisation, and the specification of support processes.

2.1.5 Tests and required results

In order to get an idea about the availability, reliability and maintainability performance, as many tests as possible should be carried out by varying the test scenario or the set of test scenarios, and also by using long run times. The following sub-chapters give some examples of tests to be performed and the required results. The following tests and requirements are based on the assumption that the equipment under test provides redundancy in all parts having duplicated HW and software processes and communications means for the support of the strict requirements for availability and reliability. The tests should be adapted to the equipment under testing and each vendors/operators specifications and requirements.

2.1.5.1 ARM - Stability

Verify that GW and AS can handle a long-term test (72 h) when handling a mix of traffic. The amount of traffic through the GW should be at least 50% of the maximum number of handled transactions/hour for the system under test.

Run the test applications/network simulators continuously for a period of at least 72 hours generating a mix of service requests for all the supported SCSs. An equal amount of transactions should be generated by the different services.

Required result

No alarms or exceptions should have been generated during the test and all service requests should have been handled correctly.

No overload or out of resource problems should have been encountered.

2.1.5.2 ARM – SS7 controlled switch

Verifies that the GW can handle a controlled SS7 stack switch over.

Perform a SS7 stack switch with traffic running through the system. The traffic should contain a mix of service request.
Required result

The “standby” SS7 stack should become active and capable of handling traffic within 10 seconds. The traffic should continue to flow through the system once the stack switch is complete. Sessions active during the switch can be lost.

Alarms and relevant logging information should be generated.

2.1.5.3 ARM – SS7 process termination

Verifies that the GW can handle that one of the SS7 processes in the SS7 HA system is terminated.

The “active” SS7 process will be killed with traffic running through the system.

Required result

The “standby” SS7 stack should become master and capable of handling traffic within a very short period of time without interruption of service provisioning. The traffic should continue to flow through the system once the stack switch is complete. Sessions active during the switch could be lost.

Alarms and relevant logging information should be generated.

2.1.5.4 ARM – Parlay Service machine failure
Verify that the GW behaves correctly even if a machine running Parlay Services stops.

Shut down one of the machines running Parlay Services and restart the machine.

Required result

When one of the machines running Parlay services is shut down, the other machine running Parlay Services should handle all new traffic. When the machine turned on has finished booting, and an automatic restart of processes has been done, the machine should be ready to accept new traffic.

Alarms and relevant logging information should be generated.

2.1.5.5 ARM – Active database machine failure

Verify that the GW behaves correctly even if the machine running the active database stops. I.e. verify that the Data Base High Availability works as expected.

Shut down the machine running the active database and restart the machine.

Required result

When the machine with the active database is shut down, a database switchover should take place where the previously standby database becomes active within 10 seconds from the shutdown. The traffic should continue to flow through the system.

Alarms and relevant logging information should be generated.

A small amount of charging data and statistics could be lost.

2.1.5.6 ARM – Unplug GW <-> AS network cable

Verify that AS and GW can handle a network cable failure.

Unplug the network cable between AS and GW and reinsert the network cable

Required result

After reinsertion of the unplugged network cable the test applications should be able to continue their work.

2.1.5.7 ARM – Unplug SS7 signaling cable

Verify that GW can handle a SS7 signaling cable failure.

Unplug all SS7 signaling cables from “active” SS7 stack, and then reinsert the cables.

Required result

When unplugging the SS7 signaling cables form the “active” stack, all new traffic should be sent using the SS7 signaling cables of previously “standby” stack. After reinsertion of the cables, the previously unplugged cables should be ready to handle traffic.
2.2 Performance

2.2.1 Description

The performance issue can cover several aspects, depending on the contexts and on the systems it is applied to. In general this issue should deal with all the aspects that describe and evaluate system behaviour when it is loaded and in a normal situation (namely, without failure conditions). The following sub aspects will be further discussed:

Throughput

The throughput in a Parlay system represents the number of messages that can be sent from the network to the Application Server or vice versa. The throughput of the Parlay Gateway will have an upper limit that will be tested. Both the maximum frequency of requests and the maximum number of objects that can be instantiated simultaneously will be measured.

Latency

Latency is the delay introduced by the Parlay Gateway for the data flow between the network and the application server. This will be considered for both directions. It is important that this latency does not exceed certain values, especially when handling ongoing calls, where a typical maximum latency time could be 100 ms.

Response Time

This is the time a system takes to respond to an inquiry or request. An example in Parlay terms could be the time between an initial query from the network and the next message sent by the Parlay Gateway in the case of a Client Application using a Call Control SCS with the INAP protocol. Considering the “Call Control and User Interaction test application” (reference application in the project) the response time could be evaluated between an InitialDP (INAP operation for initial query) and the corresponding ConnectToResource (INAP operation needed to play an announcement).

2.2.2 Methodologies for testing

For carrying out performance tests, an interconnected Application Server, Parlay Gateway and Network Simulator are required.

The performance measurements for a specified case can be measured by specifying and varying the following conditions:

1. The load on the Parlay Gateway due to other functions which the Gateway must perform simultaneously

2. The delay of the Network Simulator. This delay should vary, as the delay of a real network can vary depending on different network conditions.

3. The frequency with which the message sequences are triggered in the Application Server and sent through Parlay Gateway and Network Simulator.

Throughput

The throughput in the Parlay Gateway should be determined for a set of requests originating in the Application Server and in the network, e.g. a location information request, a user status request, network and Application Server initiated calls etc.. The maximum frequency of sequential requests and the maximum possible number of simultaneous requests will be determined.

The throughput for a specified request is measured in two ways:

1. The frequency of sequential requests is increased, until the Gateway fails.

2. The number of simultaneous, identical requests, which require the simultaneous instantiation of an object is increased until the gateway fails.

Latency

Message sequences should be specified for which the delay, D in the Parlay Gateway is determined, e.g. a location information request or a user status request from the Application Server. The sequence starts in the Application Server, goes through the Parlay Gateway into the Network Simulator and then goes back through the Parlay Gateway to the Application Server. The start time is when the request leaves the Application Server, and the end time occurs when the response is received back in the Application Server. The measured times includes the delay in the Network Simulator, which must be subtracted to obtain the Parlay Gateway delay.

Response Time

Response Time evaluations are performed by running applications on the Application Server and determining the elapsed time between message flows, i.e. the elapsed time between a “stimulus” message sent by the underlying network is received in the Parlay Gateway and the corresponding “response” message is returned by the Parlay Gateway to the underlying network or the elapsed time between a “stimulus” message sent by an Application Server is received in the Parlay Gateway and the corresponding “response” message is returned by the Parlay Gateway to the Application Server.

Using message pairs, several Response Time evaluations can be done: maximum and minimum, mean and variance and other statistic metrics. These measurements can be done with various traffic levels, and using different test applications depending on specific needs, e.g. based on what kind of functionality that will be used by applications deployed in the networks(Call Control, User Location, User Status, Messaging etc.).

2.2.3 Tests and required results

The main objective of these tests is to test the ability of the platform(s) to perform according to its specifications with regards to throughput, latency and response time. The platform is e.g. tested to see whether the specified throughput in TPS (Transactions Per Second) is reached.

Test service(s) should be used to generate the appropriate number of messages and a network simulator can be used to simulate traffic in the network.

It is possible to combine latency and response time tests to optimise execution times, configuration activities and equipment usage.

As an example, detailed tests are specified for Call Control, but similar tests could be made for each SCF available as indicated in paragraph 2.2.3.3.

Throughput – Application initiated call

Verifies that GW is capable of handling the specified amount of application-initiated multiparty calls.

Use the test application to start application initiated calls, with n participants in each call (n≥2), for one hour at a speed of X calls per second. Where X is the specified number of application initiated calls supported on the equipment under testing and n is the number of participants supported. Several tests could be performed, varying the variables of number of participants n and calls per second X

Required result

When the test application initiates calls with n participants in each call at a speed of X calls per second, GW should be able to handle all calls without getting overloaded.

2.2.3.1 Throughput – Network initiated call

Verifies that GW is capable of handling the specified amount of network initiated calls.

Have the network simulator to initiate calls for one hour at a speed of X calls per second. Where X is the specified number of network initiated calls supported on the equipment under testing. A test application should handle simple forwarding of the calls.

Required result

When the network simulator initiates calls for one hour at a speed of X calls per second, GW should be able to handle routing of all calls without getting overloaded.

2.2.3.2 Throughput – SCF specific traffic

Verifies that GW is capable of handling the specified amount of SCF specific requests.

For each SCF supported, use test application/network simulator to initiate requests for one hour at a speed according to the throughput supported. The SCFs tested could e.g. be of type User Location (e.g. tests of throughput regarding retrieval of terminal locations), User Status (e.g. tests of throughput regarding retrieval of terminal status), Messaging (e.g. tests of throughput regarding sending and reception of e-mails, SMSs), etc.

Required result

The GW should be able to handle all requests without getting overloaded for the throughput tested.

2.2.3.3 Throughput – Mixed traffic

Verifies that GW is capable of handling the specified throughput with a mix of traffic.

Use test application(s)/network simulator to generate a mix of traffic (using all SCFs supported) for one hour at a speed according to the throughput supported.

Required result

The GW should be able to handle all requests without getting overloaded.

2.2.3.4 Latency - Application initiated call

Verify that the latency in AS and GW for outgoing traffic from the application to the network is less than or equal to the expected value when the system is running at maximum load.

1. Use the test application to setup and de-assign calls for one hour at maximum speed according to specifications.

2. Determine the delay DAI between the call to the “route” method on a call leg (t0AI) belonging to the last call created and the corresponding Connect
 message is sent to the network simulator (t1AI).

Required result

DAI = t1AI - t0AI should be as low as possible and will vary with HW/SW performance characteristics.

2.2.3.5 Latency - Network initiated call

Verify that the latency in AS and GW for incoming traffic from the network to the application is less than or equal to the expected.

1. Start the simulation of Network Initiated calls at maximum speed according to specifications using the network simulator

2. Determine the delay DAI between the InitialDP message arriving from the network (t0NI) as a consequence of the last call being initiated and the application is notified about the new call when receiving a callEventNotify message from the Gateway (t1NI)

Required result

DNI = t1NI - t0NI should be as low as possible and will vary with HW/SW performance characteristics.
2.2.3.6 Response time - Network initiated call
Verifies the response time of AS and GW is as. The response time is considered to be the elapsed time between an InitialDP message arriving from the network and the corresponding Connect message is sent as a response.

Note that the time spent in the test application is also included in the response time.

1. Start the simulation of Network Initiated calls at maximum speed according to specifications using the network simulator

2. Use a test application to create a new call leg and route the call leg to a destination.

3. Determine the elapsed time between the InitialDP message is received in the Gateway from the network simulator (t0) and the corresponding Connect message is sent back to the network simulator (t1)

Required result

The average of the response time = t1 - t0 should be as low as possible and will vary with HW/SW performance characteristics.

2.3 Load balancing

2.3.1 Description

Load balancing applies to the way the application and gateway handle Parlay/network transactions, i.e. the way the workload is distributed between the system resources. The Load balancing implementation is vendor dependent, as this functionality is related to the platform and the architecture, and no detailed constraints or indications are contained within the current Parlay standards. In general, it is expected that Load balancing can be managed by appropriately configuring the systems, or defining rules or policies to drive the systems behavior.
In the context of Parlay, two main areas regarding load-balancing have been identified; load balancing of client applications and load balancing of SCFs.

With regard to client applications, the most relevant situation is load balancing between multiple instances of the same application. On the SCS side, some Parlay Gateway implementations can allow the existence of multiple instances of an SCS, possibly running on different CPUs. The following methodology details the client application load balancing tests, as this is considered the most relevant aspect.

2.3.2 Methodologies for testing

Load balancing verifications at the Parlay Gateway and Application Server level are dependent on the way in which the functionality is implemented on the systems. As these tests require specific knowledge of the systems architecture and the configuration tools supplied by the vendor it is only relevant to provide the following general guidelines on test methodology.

If the system under test supports load balancing capabilities, the tests to be executed must define load balancing policies, configuration of these policies and verification of their correct application, given appropriate system loading. If recovery of application failures via load balancing is supported, it is important to run one or more tests which focus on this aspect so as to verify that if an instance of an application becomes unavailable, the load is re-distributed amongst the remaining instances.

Verification of load balancing behaviour can be achieved by correlating information collected from the monitoring tools available on the system under test, from the network simulator and from further monitor equipment that can be placed in the test configuration.

2.3.3 Tests and required results

The experiments will be designed so as to verify the platforms ability to perform correct load balancing, and to deal with application failure via load balancing, i.e. re-directing all traffic to other instances of an application if one enters an “out of service” state.

As an example, detailed tests are specified for Call Control, but similar tests could be made for each SCF available as indicated in paragraph 2.3.3.4.

2.3.3.1 Load balancing - Application initiated calls

Verify that the GW can distribute the load over the available processes.

Use test application(s) to setup and de-assign calls at maximum speed according to specifications.

Required result

The traffic should be evenly distributed among the load-sharing instances that handle the calls in the GW.

2.3.3.2 Load balancing - Network initiated calls

Verify that the GW can distribute the load over the available processes.

Use network simulator(s) to setup and de-assign calls at maximum speed according to specifications.

Required result

The traffic should be evenly distributed among the load-sharing instances that handle the calls in the GW.

2.3.3.3 Load balancing - Mixed calls

Verify that the GW can distribute the load over the available processes.

Use test application(s) and network simulator(s) to setup and de-assign calls at maximum speed according to specifications.

Required result

The traffic should be evenly distributed among the load-sharing instances that handle the calls in the GW.

2.3.3.4 Load balancing - SCF specific load

Verify that the GW can distribute the load over the available processes.

For each SCF supported, use test application(s)/network simulator to initiate requests at a maximum speed according to specifications.

Required result

The traffic should be evenly distributed among the load-sharing instances that handle the SCF specific functionality in the GW.

2.4 Scalability

2.4.1 Description

Scalability can be defined as the impact on performance as more entities (e.g. processes, devices etc.) are added to the system. Scalability is important as it demonstrates the ability of the platform to adapt to changing capacity. It should be possible to increase performance by adding more components. This requires a modular design with replication of critical components and load sharing between independent, co-operating entities. Ideally, a scalable platform will allow the operator to provide for the capacity that is required by the actual demand, and to upgrade this capacity as soon as the demand changes.

2.4.2 Methodologies for testing

Due to the system-specific nature of scalability, which depends upon the way the functionality is implemented in the system, it is only possible to provide general guidelines on the methodology for testing.

The method used by the vendor to provide scalability must be understood. For the Parlay Gateway this may be hardware, e.g. servers, CPUs, network interfaces, etc., or software, e.g. vendor specific support software, Parlay framework, Parlay services, management software etc. It can be assumed that the scalability method employed by the vendor will work if the equipment is configured and installed correctly. The following questions can then be used to test the scalability:

· What is the minimum/maximum capacity?

· What is the granularity of capacity increase?

· What equipment must be added in order to achieve a specific capacity increase?

In order to carry out the tests, the vendor equipment must be capable of configuring the minimum capacity, maximum capacity, as well as the minimal capacity increase.

An aspect to clarify is the definition of the capacity. We propose to use the throughput, as capacity definition, which is generally applicable and vendor independent.

2.4.3 Tests and required results

Basing the scalability tests on throughput figures, requires that the throughput is measured for all Parlay services (call control, user interaction, etc) including the Parlay Framework. The strategy for scalability tests will be the definition of a suitable set of test applications or combinations, which are then used for throughput measurements for the different equipment capacities.
2.5 Security

2.5.1 Description

Security comprises the measures taken to protect a system. The quality of protection (QoP) achieved depends on security functions or mechanisms applied in a system regarding the following security properties as defined in [4]:
· Confidentiality (data confidentiality): Information is not made available to or disclosed to unauthorised individuals, entities, or processes (i.e., to any unauthorised system entity).

· Integrity (data integrity): The property that data has not been changed, destroyed, or lost in an unauthorised or accidental manner. This deals with constancy of, and confidence in, data values and not with the information that the values represent or the trustworthiness of the source of the values.

· Accountability: The property of a system (including all of its system resources) that ensures that the actions of a system entity may be traced uniquely to that entity, which can be held responsible for its actions. Accountability permits detection and subsequent investigation of security breaches.

· Availability: The property of a system or a system resource being accessible and usable upon demand by an authorised system entity, according to performance specifications for the system; i.e., a system is available if it provides services according to the system design whenever users request them.

2.5.2 Methodologies for testing

In contrast to other non-functional aspects security is more difficult to test, as it is impossible to attack a system in all possible ways with the scope of evaluating its quality of protection. The methodology for the testing of security functionality is therefore delimited to the strategic analysis of:

· the existence of security services to establish countermeasures against risks, e.g.: Data confidentiality service, Data integrity service, Availability service, Authentication services etc.

· the implementation of existing security services, i.e. the set of security functions and mechanisms applied (possibly at different layers of the tested system).

· the dynamic adaptability of security services and mechanisms to the requirements of the target environment, e.g. by the definition of security policies (which describe a set of rules and practices that specify or regulate how a system or organisation provides security services to protect sensitive and critical system resources) or other security configuration and management means.
2.5.3 Tests and required results

It is a difficult task to test all aspects of Security. Often one has to rely on an analysis of the documentation of the vendor. Where feasible, practical experiments might also be defined, based on the analysis results. Since this is “platform” functionality, no particular constraints on the test services to be used are foreseen and test experiments will be vendor specific.

2.6 Resilience

2.6.1 Description

The objective of these tests is to assess the platform's ability to function correctly in the face of adverse conditions. Such conditions may be either accidental, for example incorrect data or method calls from poorly programmed applications, or deliberate such as a malicious operator attempting to interfere with another operators' applications.

2.6.2 Methodologies for testing

2.6.2.1 Application Separation

The test requires a special application, which the gateway sees as two separate applications. The two parts communicate by a mechanism separate from the gateway and invisible to it. One part creates a call while the other attempts to steal it.

2.6.2.2 Protection against misuse

Invalid Input - These tests investigate the effects of supplying invalid input data to the OSA gateway products. Such data might arise from a well intentioned but poorly written application or from a malicious application. Some examples include: Null CORBA pointers, Receipt of Corrupt Data, Method call out of sequence, Out of range enumerated type, etc.

Threading tests - The tests should perform unexpected actions while a gateway thread is in existence. The following examples shall be covered: Third party call set-up, Incoming Call, Infinite loop, Release from inside an event, Terminating service agreement inside an event.

2.6.2.3 Inter-ORB operability

This test observes the ability of the product to work across different ORBs. A simple application will be chosen and implemented using different versions of ORB. These will be different for the Application Server and the Gateway.

2.6.3 Tests and required results

The strategy here is to subject the platform to a variety of adverse conditions, and check to what extent it is able to function normally. The adverse conditions are not necessarily restricted to valid Parlay behaviour, but should be such as might occur in real use. For the test to succeed, invalid behaviour from one application should not cause disruption to the service received by other applications. For each of the topics and features mentioned, specific applications shall be created in order to test the system response.

2.7 Overload control

2.7.1 Description

Overload control is categorised as the way in which an entity treats traffic in excess of the highest capacity it can process. A software system, in this case a Parlay Gateway, must be able to protect itself from overload conditions by activating appropriate mechanisms. During critical conditions (i.e. traffic peaks) a service degradation can be admitted, but the service itself has to remain active, and when critical conditions are no longer present, service performance has to be restored. Moreover, the functionality supplied by the system must not be interrupted, or should not be affected by overload besides pre-defined limits (e.g. CPU full-usage in critical conditions could inhibit or delay some process).

2.7.2 Methodologies for testing

The overload control testing will be based on a full Parlay system including an Application Server, Parlay Gateway and Network Simulator. In addition to these components it may be necessary to monitor actual traffic "on the wire" using a protocol analyser placed either between application server and gateway or between gateway and network simulator. The following cases will be studied:

· Network simulator loads Parlay Gateway

· Application server loads Parlay Gateway

· Parlay Gateway loads application server

· Parlay gateway loads network

· Integrity Management Interface Interaction

· Overload policy

· Retry simulation

During the tests, system parameters such as CPU usage, memory usage and network port usage will be monitored to allow the application loading to be monitored.

2.7.3 Tests and required results

A number of experiments will be performed to investigate the system throughput as overload conditions are reached in the system, either overloading the network, gateway or application server. A basic test application shall be used for the tests in each case.

2.7.3.1 Overload control – Network Initiated requests

Verifies that GW is capable of handling load in excess of what is supported for network initiated requests.

Use network simulator to generate traffic at a speed exceeding the throughput supported for a period of time.

Required result

The GW should handle an overload situation correctly by rejecting additional requests in an overload situation and return to normal operation when the load goes back to normal condition.

2.7.3.2 Overload control – Network Initiated requests

Verifies that GW is capable of handling load in excess of what is supported for application initiated requests.

Use test application(s) to generate a traffic at a speed exceeding the throughput supported for a period of time.

Required result

The GW should handle an overload situation correctly by rejecting additional requests in an overload situation and return to normal operation when the load goes back to normal condition.

2.7.3.3 Overload control – Mixed requests

Verifies that GW is capable of handling load in excess of what is supported using a mix of traffic.

Use test application(s)/network simulator to generate a mix of traffic (using all SCFs supported) at a speed exceeding the throughput supported for a period of time.

Required result

The GW should handle an overload situation correctly by rejecting additional requests in an overload situation and return to normal operation when the load goes back to normal condition.

3 Conclusion

This document discusses non-functional aspects related to the evaluation of Parlay/OSA gateways and application servers. It describes methods for how these aspects can be tested and gives examples of tests that can be performed and the requirements as for what results are required as outcome of these tests.

The list of non-functional aspects is long and more aspects can surely be found. It should nevertheless cover the most important aspects to be considered when examining platforms of this kind.

It should be clear that high availability performance achieved trough a high performance of reliability and maintainability is considered a very important aspect. For Parlay/OSA, where platforms are distributed and also managed by different parties (operator/3pty), it will be a real challenge to achieve the required level of availability of the services provided.

Regarding performance, some figures are estimated related to requirements for latency and response times. Regarding throughput, it is difficult to set any specific figures for required levels of throughput at this point. If we look at the IN-world, where until quite recently Call Control has been the main functionality offered, one often finds the term Transactions Per Second used to quantify throughput. A transaction can be defined as a cycle starting from the point where a notification from the network is received (e.g. an InitialDP message) and ending when a response is sent back (e.g. a Connect message) to the network. A small system is typically capable of handling 10-20 TPS, while a medium system handles 50-100 TPS. A large system should be able to handle 200-500 TPS.

The throughput in a Parlay/OSA scenario will be more complicated to calculate. Partially because the functionality is more complex, spanning from simple Call Control, to complex multiparty/multimedia calls and also including messaging, mobility and other capabilities, but also due to the fact that we do not have the necessary experience related to what functionality and how much of that functionality (combination of number of calls, messages, location requests etc.) the applications will use.

The experience gained with the existing and impending implementations of Parlay/OSA platforms into real networks will hopefully give us an even better understanding of the operational requirements for this kind of platforms.

4 Acknowledgements

The author would like to thank the participants of EURESCOM project P1110:
· BT

· Deutsche Telekom

· eircom

· Swisscom

· Telecom Italia Lab

· Telenor AS

· Community of Yugoslav Posts, Telegraphs and Telephones

for their dedicated work and valuable input to this paper trough their work in the project.

5 Abbreviations

	3GPP
	3rd Generation Partnership Program

	API
	Application Programming Interface

	ARM
	Availability, Reliability, Maintainability

	CAMEL
	Customised Application for Mobile Network Enhanced Logic

	CAP
	CAMEL Application Part

	CDR
	Charging Data Record

	CORBA
	Common Object Request Broker Architecture

	IN
	Intelligent Network

	INAP
	Intelligent Network Application Part

	ISDN
	Integrated Services Digital Network

	ISP
	Internet Service Provider

	ISUP
	ISDN User Part

	MAP
	Mobile Application Part

	MMS
	Multimedia Messaging Service

	ORB
	Object Request Broker

	OSA
	Open Service Access

	PNO
	Public Network Operator

	PSTN
	Public Switched Telephone Network

	QoS
	Quality of Service

	RFI
	Request For Information

	SCF
	Service Capability Feature

	SCP
	Service Control Point

	SCS
	Service Capability Server

	SIP
	Session Initiation Protocol

	SLA
	Service Level Agreement

	SMS
	Short Message Service

	SNMP
	Simple Network Management Protocol

	SS7
	CCITT Signalling System number 7

	SSL
	Secure Socket Layer

	SSP
	Service Switching Point

	VHE
	Virtual Home Environment

	WAP
	Wireless Application Protocol

6 References

[1] Reliability, Availability, Maintainability and Safety Assessment, Alain Villemeur, John Wiley & Sons, Chichester, 1992.
[2] ITU-T E.800, Terms and definitions related to quality of service and network performance including dependability, 1994

[3] A. L. Reibman and M. Veeraraghavan, “Reliability Modelling: an Overview for System Designers”, IEEE Comp., Apr. 1991.

[4] RFC2828, R. Shirey, Internet Security Glossary, May 2000, http://www.imc.org/rfc2828
[5] The Parlay group: http://www.parlay.org
[6] Open Service Access for 3GPP: http://www.3gpp.org

Abstract

This White Paper assesses the non-functional aspects of Parlay/OSA technology. Parlay and OSA define a new approach to service provisioning that will enable the open services market. This White Paper provides an overview of non-functional aspects related to Parlay/OSA products and gives input to requirements that have to be fulfilled before deploying this technology in live networks.

The White Paper is based on results from the work done in EURESCOM project P1110: “Open Service Architecture: advantages and opportunities in service provisioning on 3G Mobile Networks”.

� Connect and InitialDPare operations defined in the INAP SS#7 protocol while callEventNotify is a method defined by OSA/Parlay. When a call is initiated in the network and a trigger is set up in a switch (SSP) to detect the initiation of this call, the call will be halted while the SSP sends an InitialDP message to the Parlay GW to ask for directions for how to process the call. The GW forwards this “notification” to an application using the callEventNotify method and when the application replies (e.g. by forwarding the call to a specific number), this will finally lead to a Connect messing being sent from the GW to the SSP.

SYMBOL 227 \f "Symbol" 2002 EURESCOM Participants in Project P1110

SYMBOL 227 \f "Symbol" 2002 EURESCOM Participants in Project P1110

[image: image3.png]HQWY SUOREIIUNWLWOIS[3] Ul SaIpNIS 218a1.J1S pUB Yoieasay Joj ainiisu| ueadoiny

_1001918073.doc

_1028542382.doc
[image: image1.png]HQWY SUOREIIUNWLWOIS[3] Ul SaIpNIS 218a1.J1S pUB Yoieasay Joj ainiisu| ueadoiny

