
joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020591

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Source:
Telecom Italia Lab (Corrado MOISO, Sergio TOGNON)
Title:
Framework Information Model: a first analysis

Agenda Item:
Framework

Document for:
Discussion
Category:

Work Item ID:

OSA3 (3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 201 915-3, 3GPP TS 29.198-3

Table of contents

21
Introduction

22
Motivations

22.1
Scenarios

33
Analysis requirements

44
FIM: a first analysis

44.1
Entities and objects

44.2
Adopted approach

54.3
The model

54.3.1
Service Entities

64.3.2
Service Properties

74.3.3
Service Subscription

94.3.4
Service Discovery

104.3.5
Service Registration

115
Open issues

126
Conclusions

127
Acknowledgment

128
References

Introduction

The purpose of this contribution is to analyse aspects concerning the information model underlying the framework functions and APIs and to identify some open issues that need further investigation. This document was produced in the context of EURESCOM Project P1110 "Open Service Access: advantages and opportunities in service provisioning on 3G Mobile Networks".

It is important to point out that the Framework Information Model (FIM), and the related issues proposed and analysed, do not have any purpose of constraining Parlay gateways implementations, by defining a mandatory implementation of the data needed to implement the framework functions. The aim of this work is to define logical or functional entities and their relationships, in order to (1) better understand the behaviour of the framework interfaces and their operations and to (2) improve the definition of the framework. FIM could play the same role of state diagram for Service Interface, in order to understand the behaviour of Framework interfaces.

1 Motivations

This chapter discusses the motivations to investigate an information model for the Parlay/OSA Framework.

A model for the framework can address to several needs, coming from different actors in the possible business models, but the first reason to define such a model is to have an agreed, common view and a “common language” to address the same concepts when analysis related to complex data structures, relationships and objects, have to be done. Since the framework functionality seems to be the heart of a Parlay/OSA Gateway, the availability of a Framework Information Model appears more and more relevant.

The needs of to introduce new interfaces and functions (e.g. VHE support, User Profile, SLA support), or to improve the existing ones, make the FIM definition relevant also on the standard side. In particular, a clear definition of the objects belonging to the framework domain can help and shorten the analysis/modeling phase of possible new framework functions. Moreover, this model can help to highlight possible aspects to further investigate, in particular the relationships among entities managed by the different interfaces.

Vendors planning to develop Parlay/OSA Gateways have surely to face the problem of defining data/information models of their system, including a model of the framework functionality, but such models will be obviously tied to the specific implementation. In addition, parts of a FIM are already, implicitly, defined in the specification of current framework APIs, such as those concerning service subscription, service registration, and service properties.

The model, or parts of it, can also be used for educational purposes, since the FIM could become a useful middle-level description (between simple text and UML interface definition) of concepts of a certain complexity that at first can be difficult to approach.

The Framework Information Model has to be carefully structured, and defined at a proper detail level: not so deep to impose implementation constraints and not so abstract to hide aspects (namely entities, relationships, objects or other) that are needed to achieve the aforesaid objectives.

1.1 Scenarios

This section describes two possible scenarios/contexts that can take advantage of the FIM.

Service Registration

Before a service can be accessed and used, it has to be registered in the framework, where information on the available services is contained. The registration procedure is described in the specifications, as well as some relationships among the involved entities (namely Service Supplier Administrator, Framework, the Service that has to be registered); moreover some of the involved objects can be deduced from the interface definition, but a clear, high level view of the whole procedure is not available. Part of this issue can be covered by FIM.

Service Subscription

Even though the Service Subscription phase is described by the specification in some detail (e.g. in terms of a “Subscription Business Model”, defining high level actors and relationships, with pictures and text), it is not simple to analyse all the relationships among the various involved entities (e.g. the Enterprise Operator, the Framework and the Client Application, that have precise roles in the Service Subscription phase), or to have a clear vision, as an example, of all the SAG (Subscription Assignment Group) aspects. A more formal and detailed representation, including the relationship with analogous entities (e.g., Service Properties), is needed.

2 Analysis requirements

The Framework Information Model should be able to support analysis (as mentioned before, both standard oriented and implementation oriented) of several aspects. In particular the following functionality and matters should be addressed:

· Service Subscription and subscription management: objects and relationships description.

· Service Interface and Framework Interface subscription by applications: each involved entity should be correctly defined, together with the configuration data related to application subscription. Possible aspects related SLA constraints to applications subscription should be addressed as well.

· Services and service interfaces registration and configuration.

· Service discovery.

· Usage data management (e.g. logging data and relationships towards subscribers and Service Interfaces).

· Highlight aspect to deepen or clarify, concerning relationships among entities handled by the different interfaces.

Services and Service Interfaces configurations are typically done through properties. In general, a property should be composed of a name, a type and a value (data or policy). Moreover, each property can be tied to validation rules. The model should be able to cover these aspects (and consider their relationship with service properties).

A further need is that the model should be easily extensible, to allow Service Interfaces incremental introduction. Each Service Interface is characterised by set of properties. Some of such properties can be defined by standards; other can be proprietary, marking out a particular implementation.

Finally, a precise requirement is, as already underlined, that the FIM must not place any implementation constraint, since it is not intended to define a mandatory reference model.

3 FIM: a first analysis

The initial analyses for a FIM definition here proposed consist of a formal UML description, in terms of set of Class Diagrams describing objects and relationships, together with a textual description of the objects and their attributes.

The model here contained needs refinements that should be object of future activities.

3.1 Entities and objects

The following entities are involved in the model:

· Network Operator: the operator that supplies and manages the gateway.

· Subscriber: an enterprise or a SP enabled to access functions or capabilities supplied by a Parlay/OSA Gateway, (via applications belonging to its domain).

· Application: an application in a subscriber domain.

· Service Interface: a Service Interface standard or proprietary.

· Framework Interface: a Framework Interface standard or proprietary.

· Service Supplier: an entity authorized to register some (implementations of) Service Interface (in a first approach it can be identified with the Network Operator; in some business models these two different entities can be split).

· Service Capability Feature: an implementation of a Service/Framework Interface.

Moreover, the following information should be included in the model:

· Log information: services and gateway usage data (by client applications).

· Service Subscription: the binding between an application and an interface (Service or Framework). It contains information concerning SLA constraints or customization elements (possibly modifiable by subscriber).

· SCF descriptor: the set of data characterizing an SCF as a provider’s product; it should contain implementation information (e.g. interface profiling, configurable elements, supported network protocols, supported interfaces version etc.).

· SCF configuration: the configuration description of an SCF registered by a Service Supplier (it could be an SCF descriptor specialization).

Part of this information is present in the various specifications of Framework Interfaces, but, at the moment, a complete analysis of the various relationships is lacking.

3.2 Adopted approach

The model, having the purpose to address the framework entities, can be obtained by means of the following steps:

· Define those objects that can be used to describe framework behaviour (starting from Parlay/OSA interfaces definitions, specifications and white papers).
· Define their “inter-working modalities” (i.e. relationships).

· Define, when possible/useful, the related Data Structures.

· Describe formally objects and relationships using UML (when possible/useful; e.g. via class diagrams).

The analysis considered the following versions of specifications XXXX

At the moment, the analysis covered the following framework aspects:

· Service Entity

· Service Subscription

· Service Discovery

· Service Registration

3.3 The model

The analysis done so far was focused on analysis and identification of relevant entities, objects and relationships existing “behind” the Parlay/OSA framework interfaces, as a starting point to define the Framework Information Model, which is currently composed of the class diagrams described below. These diagrams have been derived from the Framework Interfaces definitions and from the various textual specifications.

3.3.1 Service Entities

One of the most relevant class diagrams in FIM describes the Parlay/OSA Service entity taxonomy. It is important to define these objects since the framework treats them in several phases of Service lifecycle (e.g. when a Service is made available by a Registration, when an application attempts to find a Service having particular characteristics by a Discovery, when SLAs are defined).

In the proposed diagram the two fundamental relationships is-a and has-a are used to describe the classification.

One of the relevant aspects to be noted is that a Service Type has a ServiceTypeServiceProperties, and this is composed of StandardServiceProperties and ProprietaryServiceProperties (that can be absent); this means that a Service can have also ProprietaryServiceProperties, concerning non-standard feature (e.g. access to particular resource capabilities allowed by proprietary protocols). This characteristic allows NOs (or Service Suppliers) to differentiate their offer from competitors.

[image: image1.wmf]value can be

a data or a policy

ServiceProperty

name

type

mode

value

ProprietaryServiceProperties

1..*

1..*

StandardServiceProperties

1..*

1..*

ServiceTypeServiceProperties

0..*

0..*

1..*

1..*

ServiceType

serviceTypeName

ServiceProperties

Service

serviceID

ServiceSubscriptionProperties

ServiceContract

serviceContractID

serviceRequestor

billingContact

serviceStartDate

serviceEndDate

serviceTypeName

serviceID

(from Subscription)

ServiceProfileServiceProperies

ServiceProfile

serviceProfileID

1..*

1..*

Figure 1: Service Entities Class Diagram

3.3.2 Service Properties

An aspect closely tied to service entities is related to the various properties characterizing services.

The Service properties set should allow defining various aspects of a Parlay service. Since it has several groups of characteristics (e.g. “static” and “dynamic” aspects), different kind of properties can be identified. A classification of the possible service properties can be helpful in various contexts, such as standards, Service Level Agreements, gateways implementation and other.

The properties classification should take into account the following items:

· Service properties “scope”. Some properties are global, i.e. valid at any level e.g. the Service Type Name, other are “implementation specific” in the sense that they are meaningful only if related to a service implementation, like the network protocol used by a vendor supplying Parlay Services (e.g. a Parlay CC Service for INAP).

· Service Properties typology. Different kind of Service Properties can be identified, namely Service Properties for interface implementation profiling, and Service Properties to restrict service use (e.g. to define SLA constraints): their relationships with the other entities (e.g., subscribers, service type) have different meaning. At the moment this distinction is not yet considered.

· “Lifetime” of service properties. Some property starts being significant only in particular moments of services lifecycle; for instance some property set is meaningful at “service subscription” time (e.g. the maximum number of allowed leg for a client application). This aspect is linked to SLA matters (i.e. use of service properties to make effective SLA conditions).

The following picture shows an example of service properties classification, represented as an UML Object Diagram, based on the class diagram of Figure 1. A simple Parlay Multiparty Call Control Service (MPCCS) is described, together with some its typical service properties.

Concerning the service properties scope, it can be noticed that the “Service Type Name” is global, whereas the network protocol is meaningful at a Service level; and in that point, a range value (1..10) is significant for the number of the legs involved in a call. Going down to properties related to different MPCCS Instances, that are tied to different client applications and whose characteristics are defined in the subscription phase, it can be seen that the leg number property is (or it can be) restricted to a particular value.

It can also be observed that the meaning of the Leg Number service property changes: at MPCCS Service level it means that this particular MPCCS can support services managing up to ten legs (and obviously the lower network has to be able to manage ten leg calls or more), whereas the same property related to Instance A means that client application A uses up to 2 legs, i.e. its SLA includes such a condition).

[image: image2.wmf]MPCCS :

ServiceType

MPCCS SP :

ServiceTypeServiceProperties

MPCCS :

Service

protocol = INAP :

ServiceProperty

MPCCS

instance A

Leg Number = 1..10 :

ServiceProperty

protocol =

INAP

Leg Number =

2

MPCCS

instance A SP

MPCCS

instance B

MPCCS

instance B SP

protocol =

INAP

Leg Number =

5

ServiceTypeName = "MultiParty Call

Control Service" : ServiceProperty

MPCCS SP :

ServiceProperties

MPCCS vendor's

implementation

Figure 2: Simple example of Service Properties classification (Object Diagram)

3.3.3 Service Subscription

This component is very important and quite complex, due, among other things, to the number of involved entities; a formal description in this case can be particularly helpful. (Service Subscription is defined in Parlay, but it is not yet included in OSA specifications.)

The relationships Signs Contract, Uses Service, Authorizes, among EnterpriseOperator, ParlayFramework and ClientApplication, together with considerations on the modeling of this phase, have been deduced (besides the interfaces definition) from the picture included in [1], paragraph 4.17: it is a “use case-like” description of the various entity roles.

The manages relationship (cyan arrows) indicates the objects the EnterpriseOperator deals with.

The is-a and has-a relationships allow having an immediate representation of the SAG (Subscription Assignment Group) structure: a SAG is a set of Client Applications having assigned the same set of service features. Each Client Application is part of at least one SAG, which can contain one or more Client Applications. Moreover, the EnterpriseOperator manages service contracts and service profiles, which have the following functions (from [1]):

· The enterprise operator subscribes to a number of services by creating a service contract with the Parlay Framework for each service. Each service subscription is described by a service contract, which defines the conditions for the service provision.

· A service contract restricts the usage of a service at subscription time. A service contract contains one or more Service Profiles, one for each client application or SAG in the enterprise operator domain.

· A Service Profile contains the service parameters, which further restrict the corresponding parameters in the service contract in order to adapt the service to the client application’s needs. A service profile is a restriction of the service contract in order to provide restricted service features to a client application or a SAG. It is identified by a unique ID in the enterprise operator domain and contains a set of service properties, which defines the restricted usage of service allowed for that client application or SAG.

[image: image3.wmf]Subscription

Assignment

Group

EntOPAccount

entOPAccountID

SAGMember

ServiceContract

serviceContractID

serviceRequestor

billingContact

serviceStartDate

serviceEndDate

serviceTypeName

serviceID

ServiceProfileServiceProperies

(from Parlay entities)

SAG

SAG ID

1..*

1..*

ParlayFramework

(from Parlay Framework)

EnterpriseOperator

entOpID

enterpriseOperatorProperties

(from Parlay entities)

Signs Contract

manages

ServiceProfile

serviceProfileID

(from Parlay entities)

1..*

1..*

1..*

1..*

ClientApplication

clientAppID

clientApplicationProperties

(from Parlay entities)

1..*

1..*

Authorizes

Uses Service

1

1

Figure 3: Subscription phase Class Diagram

3.3.4 Service Discovery

Through this framework interface the client application try to find a Service having the required parameters. This is represented via the uses interfaces relationship between ClientApplication and ParlayFramework, the makes available relationship between ParlayFramework and ServiceType, and the discovers relationship, that binds ClientApplication and Service.

[image: image4.wmf]e.g.: Call

Control

i.e. SCF;

e.g.: a particular

vendor's CC,

h.323 CC...

Client Application

looks for the

Service(s) compliant

to its needs.

ServiceType

serviceTypeName

(from Parlay entities)

ParlayFramework

(from Parlay Framework)

makes available

Service

serviceID

(from Parlay entities)

ClientApplication

clientAppID

clientApplicationProperties

(from Parlay entities)

uses interfaces

0..*

0..*

discovers

Figure 4: Service Discovery phase Class Diagram

3.3.5 Service Registration

Through this framework interface the Service Supplier executes a set of steps to make available new services to client applications. The uses interfaces relationship between ServiceSupplier and ParlayFramework and the supports relationship between ParlayFramework and ServiceType are self-explaining; the discovers* relationship between ServiceSupplier and ServiceType is related to the search phase of the service types supported by the framework, and the registers relationship links the ServiceSupplier to the Service to make available. The Service is equipped with a ServiceFactory: this is represented by the has-a relationship.

[image: image5.wmf]e.g.: GCCS (Call

Control Interfaces)

i.e. Interface

implementation

(Gateway side);

e.g.: a particular

vendor's CC,

h.323 CC...

Service Supplier looks

for the Service(s)

supported by the

Framework.

Dinamic objects

creation/deallocation

function (i.e. the service

managers whose

references are given to

the Client Applications)

ParlayFramework

(from Parlay Framework)

ServiceType

serviceTypeName

(from Parlay entities)

supports

ServiceSupplier

(from Parlay entities)

uses interfaces

0..*

0..*

discovers*

Service

serviceID

(from Parlay entities)

0..*

0..*

registers

ServiceFactory

(from Parlay entities)

Figure 5: Service Registration phase Class Diagram

4 Open issues

The analyses on the derived class diagrams and on the various specifications have identified the following open issues to be further investigated:

· Relationships among objects handled by different interfaces. The FIM analysis highlighted that there are situations in which different interfaces can acts on the same entity or on linked entities, but currently each interface is defined independently: this can hide possible links to entities not directly handled by that interface, or even possible side-effects.

· Service Contracts. The detail of the relationships between Service Contract and the other service-related entities (e.g. Service, ServiceProfile, ServiceSubscriptionProperties etc.) need further analysis, e.g., to understand their role in the definition of SLA clauses.

· Service Properties typology. The classification of service properties should be further investigated, in order to address the issues mentioned in Section 4.3.1.

· Service Properties in Service Discovery. The selection of service interfaces performed by Service Discovery should be influenced by the service properties and the subscription data. Further investigations on this issue are required.

The different naming adopted by OSA and Parlay specifications, complicates the use of the specifications belonging to the two ambits (e.g. Parlay Service vs. Service Capability Feature). The adoption of a common naming would allow a simpler approach to the concepts, and would make easier the understanding of the different standards. Currently a mapping between the different naming conventions can be found in [2], paragraph 3.1.

5 Conclusions

This contribution described a single information model underlying the different framework interfaces.

This FIM is only a starting point, since it requires refinements both in depth (detail level) and in width (other entities should be identified and defined, e.g. those related to usage data management, and more views, i.e. Class Diagrams, are needed), but a methodology has been identified, and several open issues were identified.

6 Acknowledgment

The authors would like to thank you the participants of EURESCOM Project P1110, for their helpful comments. In particular:

Michael Walkden, Nick Edwards, David Foster (BT)

Milan Jankovic, Borislav Odadzic (Community of Yugoslav PTT)

Gaute Nygreen, Geir Gylterud (Telenor)

Brendan de Bruijn (Eircom)

Uwe Herzog (EURESCOM)
7 References

[1] Parlay APIs, Framework Interfaces, Client Application View – Version 3.1.

[2] 3GPP TS 29.198: OSA API R4 – The API specification

[image: image6.wmf]TELECOM

LAB

ITALIA

[image: image7.wmf]TELECOM

LAB

ITALIA

_1045990285.doc

TELECOM

LAB

ITALIA

