3GPP TSG-CN Meeting #24 NP-040255
02 — 04 June 2004, Seoul, KOREA

Source: CN5 (OSA)
Title: 3 Rel-4 CRs 29.198-04 OSA API Part 4: Call control (Correction of
continueProcessing method for Generic Call Control Service)
Agenda item: 7.10 (OSA Enhancements [OSAL])
Document for: APPROVAL
Doc-1st- Spec | CR |Rev| Phase | Subject | Cat | Version | Doc-2nd- | Workite

NP-040255 29.198-04 067 |- Rel-4 Correction of continueProcessing method for F 4.8.0 N5-040098 OSAl
Generic Call Control Service (GCCS)

NP-040255 29.198-04-2 012 |- Rel-5 Correction of continueProcessing method for A 5.6.0 N5-040099 OSAl
Generic Call Control Service (GCCS)

NP-040255 29.198-04-2 013 |- Rel-6 Correction of continueProcessing method for A 6.0.1 N5-040101 OSAl

Generic Call Control Service (GCCS)

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040099
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

CHANGE REQUEST
® 29.198-04-2 CR 012 srey - % Curentverson: 5 g (%

CR-Form-v7

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: UICC apps |:| ME|:| Radio Access Network|:| Core Network
Title: ¥ Correction of continueProcessing method for Generic Call Control Service (GCCS)
Source: ¥ CN5 NTT (Atsushi lwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)
Work item code: 3 OSA1l Date: & 20/02/2004
Category: ¥ A Release: $ REL-5
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can Rel-4 (Release 4)
be found in 3GPP TR 21.900. Rel-5 (Release 5)

Rel-6 (Release 6)

Reason for change: 3 Currently it is not clear in the GCCS specification how the application resumes the
call processing after receiving the notification or event of interrupt mode. In
addition to that, there are some problems in the following cases:-

- The application specifies the interrupt mode to the answer event of the
routeReq() method to transfer the incoming call, and the applicatoin may just
want to continue the call processing after some application’s processes at the
answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.

- The enableCallNotification() can be set both
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even
if the application request both events as intterupt mode and the gateway can
detect both trigger, the application can only receive one or other of two events
since the application have to call routeReq() method to continue the
processing.

Summary of change: 3 To solve the above problem, we therefore propose to introduce
continueProcessing() method to GCCS as well as MPCCS, and add some text to
the Active State of State Transition Diagrams for IpCall for clarification of the way
to resume the call processing from the interrupted status.

We believe that there is no difference in the idea about interrupt mode between
GCCS and MPCCS. In order to further clearify the usage of continueProcessing,
methods that implicitly continues processing, i.e routeReq, releaseCall and
deassignCall, should state this.

Consequences if ¥ Can not support above cases.
not approved:

Clauses affected: ¥ 6.3,New6.3.9,7.2,7.24

Y [N
Other specs ¥} X Other core specifications ¥ Rel-6 29.198-04-2

affected: X | Test specifications
X | O&M Specifications

Other comments: ¥ Rel-5 Mirror CR of N5-040098.
Rel-6 Mirror CR in N5-040101.

6.3 Interface Class IpCall

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applinfo : in TpCallAppinfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. ‘answer' event) and ‘failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionl D: Specifies the sessionl D assigned by the gateway. Thisisthe sessionlD of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

| This operation continues processing of the call implicitly.

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCalllnfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unlessa
callFaultDetected is received by the application.

| This operation continues processing of the call implicitly.

Method

deassi gnCal | ()
This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of

call processing. If acall isde-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

| This operation continues processing of the call implicitly.

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of anotification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P INVALID NETWORK STATE
will be raised.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpComonExcepti ons, P INVALID SESSION | D, P | NVALI D NETWORK STATE

7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

. continueProcessing

IpAppCallControlManager.callEventNotify setCallChargePlan
"disconhect from called party"[monitor mode =

interrtit] ~routeRes, getCallinfoRes,

supen/iseCallé?ee[EamnfoReq
routeReq

setAdviceOfCharge
superviseCallReq

"call supervision Byent" superviseCallRes

"network event receivad for which was monitored[routeRes]

"call ends : calling party disconnects" ~callEnded

“call ends: caling party abandoned" ~callEnded
"call ends : called party disconnects"[monidr for this event] ~callEnded, routeRes(party disconnegt)

“call ends: calling party digConnects"[no monitor for this event] ~callEnded

“fault detected"[fault cannot be communicated with network event] ~callFaultDetected

deassignCall
release

[no reports requested with getCallinfoRey AND
superviseCallReq |

"requested information ready"
“getCallinfoRes| superviseCallRes

[no reports requested with

"réquested information ready" ~ggtCallinfoRes, getCallinfoRe

superviseCallRes'

“fault|in retrieval of ipformation” ~getCallinfoErr,

uperviseCallErr . X . X
“fault in retrieval of informatigh" ~getCallinfoErr,

su| eCallErr

deassignCall

release .
timeout “callFaultDetected("timeout on release")

Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). Theinformation will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only

release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to rel ease the Call object and the Gateway collects the possible call
information requested with getCalllnfoReg() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

7.2.4 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq|(). It is aso allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P CALL MONITOR MODE INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), er routeReq(), release() or deassignCall() method.

7.2.5 1 Party in Call State

When the Call isin this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallinfoReq() should be issued before requesting a connection to a called party by means of
routeReq|().

When the calling party abandons the call before the application has invoked the routeReq|() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking call Ended().

When the called party answers the call, atransition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

7.2.6 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking call Ended().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. theapplication is monitoring for this event but not in interrupt mode. In this case atransition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and call Ended().

3. theapplication is not monitoring for this event. In this case the application isinformed by the gateway invoking
the callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040101
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

CHANGE REQUEST
® 29.198-04-2 CR 013 srey - % Cumentverson: g (1

CR-Form-v7

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: UICC apps |:| ME|:| Radio Access Network|:| Core Network
Title: ¥ Correction of continueProcessing method for Generic Call Control Service (GCCS)
Source: ¥ CN5 NTT (Atsushi Iwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)
Work item code: 3 OSA1l Date: & 20/02/2004
Category: ¥ A Release: 3 REL-6
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can Rel-4 (Release 4)
be found in 3GPP TR 21.900. Rel-5 (Release 5)

Rel-6 (Release 6)

Reason for change: 3 Currently it is not clear in the GCCS specification how the application resumes the
call processing after receiving the notification or event of interrupt mode. In
addition to that, there are some problems in the following cases:-

- The application specifies the interrupt mode to the answer event of the
routeReq() method to transfer the incoming call, and the applicatoin may just
want to continue the call processing after some application’s processes at the
answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.

- The enableCallNotification() can be set both
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even
if the application request both events as intterupt mode and the gateway can
detect both trigger, the application can only receive one or other of two events
since the application have to call routeReq() method to continue the
processing.

Summary of change: 3 To solve the above problem, we therefore propose to introduce
continueProcessing() method to GCCS as well as MPCCS, and add some text to
the Active State of State Transition Diagrams for IpCall for clarification of the way
to resume the call processing from the interrupted status.

We believe that there is no difference in the idea about interrupt mode between
GCCS and MPCCS. In order to further clearify the usage of continueProcessing,
methods that implicitly continues processing, i.e routeReq, releaseCall and
deassignCall, should state this.

Consequences if ¥ Can not support above cases.
not approved:

Clauses affected: ¥ 6.3,New6.3.9,7.2,7.24

Y|N
Other specs 3 X | Other core specifications 3

affected: X | Test specifications
X | O&M Specifications

Other comments: ¥ Rel-6 Mirror CR of N5-040098.

How to create CRs using this form:

6.3 Interface Class IpCall

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applinfo : in TpCallAppinfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. ‘answer' event) and ‘failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionl D: Specifies the sessionl D assigned by the gateway. Thisisthe sessionlD of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

| This operation continues processing of the call implicitly.

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCalllnfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unlessa
callFaultDetected is received by the application.

| This operation continues processing of the call implicitly.

Method

deassi gnCal | ()
This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of

call processing. If acall isde-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

| This operation continues processing of the call implicitly.

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P INVALID NETWORK STATE
will be raised.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpComonExcepti ons, P INVALID SESSION | D, P | NVALI D NETWORK STATE

7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

. continueProcessing

IpAppCallConttolManager.callEventNotify setCallChargePlan
"disconhect from called party"[monitor mode =

interrtit] ~routeRes, getCallinfoRes,

supen/iseCallé?ee[EamnfoReq
routeReq

setAdviceOfCharge
superviseCallReq

"call supervision Byent" superviseCallRes

"network event receivad for which was monitored[routeRes]

"call ends : calling party disconnects" ~callEnded

“call ends: caling party abandoned" ~callEnded
"call ends : called party disconnects"[monidr for this event] ~callEnded, routeRes(party disconnegt)

“call ends: calling party digConnects"[no monitor for this event] ~callEnded

“fault detected"[fault cannot be communicated with network event] ~callFaultDetected

deassignCall
release

[no reports requested with getCallinfoRey AND
superviseCallReq |

"requested information ready"
“getCallinfoRes| superviseCallRes

[no reports requested with

"réquested information ready" ~ggtCallinfoRes, getCallinfoRe

superviseCallRes'

“fault|in retrieval of ipformation” ~getCallinfoErr,

uperviseCallErr . X . X
“fault in retrieval of informatigh" ~getCallinfoErr,

su| eCallErr

deassignCall

release .
timeout “callFaultDetected("timeout on release")

Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). Theinformation will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only

release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to rel ease the Call object and the Gateway collects the possible call
information requested with getCalllnfoReg() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

7.2.4 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq|(). It is aso allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P CALL MONITOR MODE INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), er routeReq(), release() or deassignCall() method.

7.2.5 1 Party in Call State

When the Call isin this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling

setCall ChargePlan(). The application can also request for charging related information by calling getCalllnfoReq|(). The
setCallChargePlan() and getCallinfoReq() should be issued before requesting a connection to a called party by means of
routeReq|().

When the calling party abandons the call before the application has invoked the routeReq|() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking call Ended().

When the called party answers the call, atransition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

7.2.6 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking call Ended().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. theapplication is monitoring for this event but not in interrupt mode. In this case atransition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and call Ended().

3. theapplication is not monitoring for this event. In this case the application isinformed by the gateway invoking
the callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040098
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

CHANGE REQUEST
3 290.198-04 CR 067 greyv _ & Current version: 4.80 3

CR-Form-v7

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: UICC apps |:| ME|:| Radio Access Network|:| Core Network
Title: ¥ Correction of continueProcessing method for Generic Call Control Service (GCCS)
Source: ¥ CN5 NTT (Atsushi lwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)
Work item code: 3 OSA1l Date: & 20/02/2004
Category: ¥ F Release: 3 REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can Rel-4 (Release 4)
be found in 3GPP TR 21.900. Rel-5 (Release 5)

Rel-6 (Release 6)

Reason for change: 3 Currently it is not clear in the GCCS specification how the application resumes the
call processing after receiving the notification or event of interrupt mode. In
addition to that, there are some problems in the following cases:-

- The application specifies the interrupt mode to the answer event of the
routeReq() method to transfer the incoming call, and the applicatoin may just
want to continue the call processing after some application’s processes at the
answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.

- The enableCallNotification() can be set both
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even
if the application request both events as intterupt mode and the gateway can
detect both trigger, the application can only receive one or other of two events
since the application have to call routeReq() method to continue the
processing.

Summary of change: 3 To solve the above problem, we therefore propose to introduce
continueProcessing() method to GCCS as well as MPCCS, and add some text to
the Active State of State Transition Diagrams for IpCall for clarification of the way
to resume the call processing from the interrupted status.

We believe that there is no difference in the idea about interrupt mode between
GCCS and MPCCS. In order to further clearify the usage of continueProcessing,
methods that implicitly continues processing, i.e routeReq, releaseCall and
deassignCall, should state this.

Consequences if ¥ Can not support above cases.
not approved:

Clauses affected: ¥ 4.1.1,4224

Y [N
Other specs ¥} X Other core specifications ¥ Rel-5/6 29.198-04-2

affected: X | Test specifications
X | O&M Specifications

Other comments: ¥ Rel-5/6 Mirror CRs 29.198-04-2 in N5-040099/101.

4.1.1 Interface Class IpCall
Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-mediacall. The call islimited to two party calls, athough it is possible to provide follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party hasfailed. Basically, this means that at most two legs can be in connected or routing state at any time.

Thisinterface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applinfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. 'answer' event) and ‘failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddressis optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Returns call LegSessionl D: Specifies the sessionlD assigned by the gateway. Thisisthe sessionlD of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This alows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

This operation continues processing of the call implicitly.
Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

responseRequested : in TpCal |l Report Request Set
Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed.

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

ori gi nal Desti nati onAddress : in TpAddress
Specifiesthe origina destination address of the call.

redirecti ngAddress : in TpAddress
Specifies the address from which the call was last redirected.

applnfo : in TpCall Appl nf 0Set

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns
TpSessi onl D

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_I NVALI D_NETWORK_STATE, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallinfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unlessa
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.
Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cause : in TpCall Rel easeCause
Specifies the cause of the release.

Raises
TpConmonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D NETWORK_STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.
Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpComonExceptions, P_INVALID SESSION | D

Method
get Cal | I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises

TpComonExcepti ons, P_INVALI D SESSION | D

Method
set Cal | Char gePl an()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal | ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_INVALID SESSION | D

Method
set Advi ceOr Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

alClnfo : in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExceptions, P_INVALID SESSION | D

Method
get MoreDi al | edDi gi t sReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialed only afew digits. The application then gets a new call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialed digits, e.g. to perform screening.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

length : in Tplnt32
Specifies the maximum number of digitsto collect.

Raises
TpComonExceptions, P_INVALID SESSION | D

Method
supervi seCal | Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatment : in TpCall SuperviseTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
conti nuePr ocessi ng()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of anotification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P INVALID NETWORK STATE
will be raised.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpCommonExceptions, P INVALID SESSION ID, P INVALID NETWORK_STATE

4.1.2 Interface Class IpAppCall
Inherits from: Iplnterface

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessioniID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCalllnfoReport) : void
getCallinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callFaultDetected (callSessionID : in TpSessionlID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
rout eRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

event Report : in TpCall Report

Specifies the result of the request to route the call to the destination party. It aso includes the network event, date and
time, monitoring mode and event specific information such as release cause.

call LegSessionlD : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionlD returned at the routeReq() and can
be used to correlate the response with the request.

Method
rout eErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

call LegSessionlD : in TpSessionlD

Specifies the sessionl D of the associated call leg. This correspondsto the sessionl D returned at the routeReq() and can
be used to correlate the error with the request.

Method
get Cal | | nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallinfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeResin al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifiesthe call information requested.

Method
getCal | I nfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
supervi seCal | Res()

This asynchronous method reports a call supervision event to the application when it hasindicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTine : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seCal | Err ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Faul t Det ect ed()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call in which the fault has been detected.

fault : in TpCall Fault
Specifies the fault that has been detected.

Method
get MoreDi al | edDi gi t sRes()

This asynchronous method returns the collected digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

digits : in TpString
Specifies the additional dialled digitsif the string length is greater than zero.

Method
get MoreDi al | edDi gi t sErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallinfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessionID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

4.2 Generic Call Control Service State Transition Diagrams

4.2.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

"a call object hasterminated abnormally" I pAppCallControlManager.callAborted

create a Call object N pAppCall Control Manager.cal IEvent Notify

disableCallNotification "arrival of call related event"[notification active for this call event]/
enableCallNotification

createCall / create a Call obj...
"new" Active ‘

Creation of
CallControlManager
by Service Instance
Lifecycle Manager

IpAccess.terminateServiceAgreement

"notifications not possible"
IpAppCall Control Manager cal INotificationInteru pted

/-
@

"notifications possible again”
ApAppCallControlManager.callNotificationContinued

IpAccess.te minate Service A gre eme nt
disableCallNotification

"a call object hasterminated abnormally"
ApAppCallControlManager.callAborted

Notification te rminated ‘

J

Figure : Application view on the Call Control Manager

4211 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation call EventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

4212 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure. In this
state no requests for new notifications will be accepted.

4.2.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

IpApng}(ljl_Co rolManager.callEv entNotify

“call ends : called party disconnects"[
"callends: calling party/dis connects"[no monitor f or this event] “callEnded

“fault detected"[fault

Network R eleased

release
[no reports reques ted Avith getCallinf\pReq AND
superyiseCallReq] dea: Call

‘réquested inforn
su

“faul

setCallChargePlan
isconrgct from called party "[monitor mode =
t] routeRes, getCallinfoRes,

SuDeWisecﬂlﬁeﬁlllnfoReq

setAdviceOf Charge
superviseCallReq

routeReq m
\ { Q/ Active
1 Party in

Call ’\

“connection to called party
unsuccessful'[monitor mode = interrupt]
“outeRes
“routing aborted or invalid address" “routeErr

2 Parties in
Call

“call ends : calling party disconnects" “callEnded

"call ends: cdlling party abandoned" “callEnded

onitor for this event] “callEnded, routeRes(party disconnect)

cannot be cgmmunicated with network event] “callFaultDetected

dealssignCall

"network ev ent rec

“call supervisiohev ent"superviseCallRes

iy ed for which was monitored[routeRes]

nation ready "\"getCallinfoRes,
perviseCallR
in retrieval information" "getCallinfoErr,
uperviseCallErr

Finished

4221

deassignCall
release

iseCallErr

Application
Released

“requested il
“getCallinfoRe

"faul inretrieva of inforpiation” "getCallinfoEm,

formation ready "
5, superviseCallRes

()

timeout “callFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prev ent the object from occupuing
resources.

Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recovery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination

AN

Figure : Application view on the IpCall object for 3GPP

Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). Theinformation will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to

state Finished.

42272 Finished State

In this state the call has ended and no call related information isto be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application hasto release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
a so responsible for destroying it when the object is no longer needed.

4.2.2.3 Application Released State

In this state the application has requested to rel ease the Call object and the Gateway collects the possible call
information requested with getCalllnfoReg() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

4224 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is aso allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan..

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P CALL MONITOR MODE INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), er routeReq(), release() or deassignCall() method.

4225 1 Partyin Call State

When the Call isin this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can a so request for charging related information by calling getCalllnfoReq(). The
setCallChargePlan() and getCallinfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking call FaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application hasinvoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, atransition will be made to the 2 Partiesin Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

4.2.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking call Ended().
When the called party disconnects different situations apply:

1. theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case atransition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and call Ended().

3. theapplication is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and atransition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

Annex B (informative):
Change history

Change history

Date TSG# |TSG Doc. [CR [Rev |Subject/Comment Old New
Mar 2001 CN_11 |NP-010134 [047 |- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 [1.0.0
June 2001 CN_12 [NP-010327 |-- -- Approved at TSG CN#12 and placed under Change Control 2.0.0]4.0.0
Sep 2001 CN_13 [NP-010467 |001 |-- Changing references to JAIN 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |002 |-- Correction of text descriptions for methods enableCallNotification and (4.0.0 |4.1.0
createNotification
Sep 2001 CN_13 [NP-010467 |003 |-- Specify the behaviour when a call leg times out 4.0.0 [4.1.0
Sep 2001 CN_13 |[NP-010467 (004 |-- Removal of Faulty state in MPCCS Call State Transition Diagram and |4.0.0 [4.1.0
method callFaultDetected in MPCCS in OSA R4
Sep 2001 CN_13 [NP-010467 (005 |-- Missing TpCallAppInfoSet description in OSA R4 4.0.0 |4.1.0
Sep 2001 CN_13 |[NP-010467 |006 |-- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 |4.1.0
Sep 2001 CN_13 |NP-010467 |007 |-- Introduction of MPCC Originating and Terminating Call Leg STDs for |4.0.0 [4.1.0
IpCallLeg
Sep 2001 CN_13 [NP-010467 |008 |-- Corrections to SetChargePlan() Addition of PartyToCharge parmeter [4.0.0]4.1.0
Sep 2001 CN_13 |NP-010467 |009 |-- Corrections to SetChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 |010 |-- Remove distinction between final- and intermediate-report 4.0.0 [4.1.0
Sep 2001 CN_13 |[NP-010467 |011 |-- Inclusion of TpMediaType 4.0.0 |4.1.0
Sep 2001 CN_13 |[NP-010467 |012 |-- Corrections to GCC STD 4.0.0 |4.1.0
Sep 2001 CN_13 |[NP-010467 |013 |-- Introduction of sequence diagrams for MPCC services 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 (014 |-- The use of the REDIRECT event needs to be illustrated 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |015 |-- Corrections to SetCallChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 (016 |-- Add one additional error indication 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |017 |-- Corrections to Call Control — GCCS Exception handling 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 (018 |-- Corrections to Call Control — Errors in Exceptions 4.0.0 |4.1.0
Dec 2001 CN_14 |[NP-010597 |019 |-- Replace Out Parameters with Return Types 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |020 |-- Removal of time based charging property 4.1.0 |4.20
Dec 2001 CN_14 [NP-010597 |021 |-- Make attachMedia() and detachMedia() asynchronous 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |022 |-- Correction of treatment datatype in superviseReq on call leg 4.1.0 |4.20
Dec 2001 CN_14 [NP-010597 |023 |-- Corrections to Call Control Data Types 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |024 |-- Correction to Call Control (CC) 4.1.0 |4.20
Dec 2001 CN_14 [NP-010597 |025 |-- Amend the Generic Call Control introductory part 4.1.0 [4.2.0
Dec 2001 CN_14 |[NP-010597 |026 |-- Correction in TpCallEventType 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |027 |-- Addition of missing description of RouteErr() 4.1.0 |4.20
Dec 2001 CN_14 |[NP-010597 |028 |-- Misleading description of createAndRouteCallLegErr() 4.1.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |029 |-- Correction to values of TpCallNotificationType, 41.0 |4.20
TpCallLoadControlMechanismType
Dec 2001 CN_14 [NP-010695 |030 |-- Correction of method getLastRedirectionAddress 4.1.0 |4.20
Mar 2002 CN_15 |NP-020106 |031 |-- Add P_INVALID_INTERFACE_TYPE exception to 42.0 |43.0
IpService.setCallback() and IpService.setCallbackWithSessionID()
Mar 2002 CN_15 |[NP-020106 |032 |-- Correction of Event Subscription/Natification Data Type 4.2.0 14.3.0
Mar 2002 CN_15 |NP-020106 |033 |-- Correction of parameter name in IpCallLeg.routeReq() and in 420 (430
IpCallLeg.setAdviceOfCharge()
Mar 2002 CN_15 [NP-020106 |034 |-- Clarification of ambiguous Event handling rules 4.2.0 [4.3.0
Jun 2002 CN_16 |[NP-020180 (035 |-- Correction to TpCallChargePlan 4.3.0 |4.4.0
Jun 2002 CN_16 |[NP-020180 |036 |-- Correction to CAMEL Service Property values 4.3.0 [4.4.0
Sep 2002 CN_17 [NP-020424 (057 |-- Correction on use of NULL in Call Control API 440 |45.0
Mar 2003 CN_19 |[NP-030020 |058 |-- Correction of status of methods to interfaces in clause 6.3 45.0 |4.6.0
Mar 2003 CN_19 [NP-030020 |059 |-- Correction to TpReleaseCauseSet in Multi Party Call Control 450 [4.6.0
Mar 2003 CN_19 |NP-030020 |060 |-- Correction to Sequence Diagrams to remove incorrect Framework 45.0 |4.6.0
references
Mar 2003 CN_19 |[NP-030020 |061 |-- Correction to User Interaction Prepaid Sequence Diagrams 45.0 |4.6.0
Mar 2003 CN_19 [NP-030020 |062 |-- Correction to remove unused TpCallChargeOrder 450 [4.6.0
Mar 2003 CN_19 [NP-030020 (063 |-- Correction to TpCallEventCriteriaResult in Generic Call Control 450 |4.6.0
Mar 2003 CN_19 |[NP-030020 |064 |-- Correction of status of methods to interfaces in clause 7.3 45.0 |4.6.0
Jun 2003 CN_20 |[NP-030238 |065 |-- Correction of the description for callEventNotify & reportNotification 4.6.0 |4.7.0
Dec 2003 CN_22 |[NP-030544 |066 |-- Correction of description in superviseRes and superviseCallRes 4.7.0 |4.8.0

	NP-040255.doc
	29198-04-2CR012.doc
	29198-04-2CR013.doc
	29198-04CR067.doc

