3GPP TSG CN Plenary Meeting #13
Beijing, China, 19" 21°% September 2001

NP-010466

Source: CN5 (OSA)
Title: CRs 29.198-03 Rel-4
Agenda item: 8.5
Document for: Approval

Doc- | Doc- | Spec |CR|Rev|Phas Subject Cat|Version [Version |Meeting |Workite

1st- | 2nd- e -Current| -New -2nd- m
Level | Level Level
NP- N5- 29.198- 002 Rel-4 | Changing references to JAIN F /41.0 4.2.0 N5-12 OSA1l
010466 010676 |03
NP- N5- 29.198- 003 Rel-4 | Update to the definitions of method F 1410 4.2.0 N5-12 OSA1l
010466 010534 |03 svcUnavailablelnd
NP- N5- 29.198- 004 Rel-4 | Only one subject per method invocation for |[F 4.1.0 4.2.0 N5-12 OSA1l
010466 010537 03 fault and load management
NP- N5- 29.198- 005 Rel-4 | Fault management is missing some *Err F 1410 4.2.0 N5-12 OSA1l
010466 010538|03 methods
NP- N5- 29.198- 006 Rel-4 | Method balance on Fault management F 410 42.0 N5-12 OSAl
010466 01053903 interfaces
NP- N5- 29.198- 007 Rel-4 | Change "TpString" into "TpOctetSets" in F 4.1.0 42.0 N5-12 OSAl
010466 010673|03 authentication and access
NP- N5- 29.198- 008 Rel-4 | Replacement of F 4.1.0 42.0 N5-12 OSAl
010466 010686 03 register/unregisterLoadController
NP- N5- 29.198- 009 Rel-4 | Redundant Framework Heartbeat F 1410 4.2.0 N5-12 OSA1l
010466 010688 |03 Mechanism
NP- N5- 29.198- 010 Rel-4 | Add a releaselnterface() method to F 1410 4.2.0 N5-12 OSA1l
010466 010689 03 IpAccess
NP- N5- 29.198- 011 Rel-4 | Removal of servicelD from F 1410 4.2.0 N5-12 OSA1
010466 010691 03 queryAppLoadReq()
NP- N5- 29.198- 012 Rel-4 | Addition of listinterfaces() method F 1410 4.2.0 N5-12 OSA1l
010466 01069503
NP- N5- 29.198- 013 Rel-4 Introduction and use of new Service F 1410 4.2.0 N5-12 OSA1l
010466 010697 03 Instance ID
NP- N5- 29.198- 014 Rel-4 ' P_UNAUTHORISED_PARAMETER_VALU F 4.1.0 42.0 N5-12 OSAl
010466 010699 |03 E thrown if non-accessible servicelD is

provided

NP- N5- 29.198- 015 Rel-4 | Introduction of Service Instance Lifecycle F 410 4.2.0 N5-12 OSAl
010466 010703 03 Management
NP- N5- 29.198- 016 Rel-4 | Add support for multi-vendorship F 410 4.2.0 N5-12 OSAl
010466 010708 03

NP- N5- 29.198- 017 Rel-4 'Removal of P_SERVICE_ACCESS_TYPE |F 4.1.0 4.2.0 N5-12 OSA1
010466 010712|03

NP- N5- 29.198- 018 Rel-4 | Confusing meaning of prescribedMethod F 410 4.2.0 N5-12 OSAl
010466 010713|03

NP- N5- 29.198- 019 Rel-4 | Aclient should only have one instance ofa |[F 1 4.1.0 4.2.0 N5-12 OSAl
010466 010714 03 given service

NP- N5- 29.198- 020 Rel-4 | Some methods on the IpApp interfaces F 410 4.2.0 N5-12 OSAl
010466 010715 03 should throw exceptions

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010676
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 29.198-03 CR 002 ® e _ ® Curentversion: 4.1.0 *

For HELP on using this form, see bottom of this page or look at the pop-up text over the $ symbols.

Proposed change affects: 3 (U)SIMD ME/UED Radio Access Networkl:] Core Network

Title: # Changing references to JAIN
Source: ¥ CN5
Work item code: 8 OSA1l Date: $ 30/08/2001
Category: ¥ F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: & Incorrect references to JAIN.
Summary of change: 8 Correct references to the JAIN.

Consequences if ¥ Potential legal ramifications
not approved:

Clauses affected: #® 1

Other specs E:S Other core specifications & All other parts of TS 29.198 Rel-4
affected: || Test specifications
|| o&m Specifications

Other comments: 3

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.

Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 1

Error! No text of specified style in document. 2 Error! No text of specified style in document.

1 Scope

The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

* Sequence Diagrams,

e ClassDiagrams;

« Interface specification plus detailed method descriptions;
e State Transition diagrams;

» Datadefinitions;

* IDL Description of the interfaces.

The process by which thistask is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with a number of JAIN™ Community member compani esthe JAHN-consortium.

3GPP

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010534
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
% 29.198-03 CR 003 ¥ ev _ # Curentversion: 4 1.0 ¥

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: ¥ (U)SIMEI ME/UE|:| Radio Access Networkl:l Core Network

Title: ¥ Update to the definitions of method svcUnavailableInd
Source: ¥ CN5
Work item code: 8 OSA1 Date: 3 30/08/2001
Category: ® F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP IR 21.900. REL-5 (Release 5)

Reason for change: # The descriptions of the svcUnavailablelnd method contain inconsistent use of the
terms service and service instance when referring to the service instance that
becomes unavailable. Within the method description, both terms are used
interchangeably as if they were the same thing. In the context of the method, it is
understood that the method is meant to refer to an instance of a service, rather
than a service. Therefore, some rewording is required to rectify this
inconsistency.

Summary of change: 8 The descriptions of the methods used to indicate service instance unavailability
in the supporting interfaces (IpAppFaultManager and IpFaultManager) lack
consistent use of the terms, and therefore should be corrected. Within the
descriptions of the methods in each of the interfaces, Lucent proposes to change
the word service to service instance where the service in question is meant to be
an instance of it.

Consequences if # The description for the method svcUnavailablelnd makes inconsistent use of the
not approved: terms service and service instance.

29.198-3 will be ambiguous and difficult to implement correctly — interworking will
be jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 83.1,83.2

Other specs 3 Other core specifications &
affected: Test specifications
O&M Specifications

Other comments: ¥

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:
http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked 3 contain pop-up help information about the field that they
are closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications
can be downloaded from the 3GPP server under ftp:/ftp.3gpp.org/specs/ For the latest version, look for the
directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG
meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in
front of the clause containing the first piece of changed text. Delete those parts of the specification which are
not relevant to the change request.

Resultant changes

8.3.1 Interface Class IpAppFaultManager

Method
svcUnavai | abl el nd()

| The framework invokes this method to inform the client application that it can no longer use its instance of the
indicated service. On receipt of this request, the client application must act to reset its use of the specified service
(using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service
instance and begin use of a different service instance).

8.3.2 Interface Class IpFaultManager

Method
svcUnavai | abl el nd()

This method is used by the client application to inform the framework that it can no longer useits instance of the
indicated service (either due to afailure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action. The framework assumes that the session
between this client application and service instance is to be closed and updates its own records appropriately as
well as attempting to inform the service instance and/or its administrator. Attempts by the client application to
continue using this session should be rejected.

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010537
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 004 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Only one subject per method invocation for fault and load management
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: ¢ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: & In the method descriptions for the IpLoadManager and IpFaultManager
interfaces, it is stated that the subject of the method can be framework and/or
services. However, the definition of the parameters only allows one or the other,
not both. Also, the use of the term “service”, in some places, should actually be
“service instance”.

Summary of change: 8 Lucent proposes to clarify that these methods can only be used for one
subject/entity at a time. Lucent also proposes to modify the sequence diagram in
6.2.7 to clarify that the fault is with the service instance belonging to that client
application.

Consequences if # The descriptions for the methods on the IpLoadManager and IpFaultManager
not approved: interfaces will be incorrect and confusing.

29.198-3 will be ambiquous and difficult to implement correctly — interworking will
be jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 6.2.7,8.3.1,8.3.2,and 8.3.8

Other specs 3 Other core specifications *
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://immww.3gpp.org/3G_Specs/CRs.him. Below is a brief summary:

1) Fill out the above form. The symbols above marked $ contain pop-up help information about the field that they are
closest to.

2)

3)

Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to

the change request.

Resulting changes

Lucent would like to make the following changes to the method descriptions for the |pLoadManager and
IpFaultManager and | pAppFaultManager interfacesto clarify that two invocations must be made if the results are
required for both the framework and services.

8.3.1 Interface Class IpAppFaultManager

Method
genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReq method invocation on the |pFaultM anager interface.

Parameters
faultStatistics : in TpFaultStatsRecord
The fault statistics record.
servicelDs : in TpServicel DLi st

Specifies the framework andfor services that are included in the general fault statistics record.-If the servicel Ds
parameter is an empty list, then the fault statistics are for the framework.

“Fheframework-is-designated-by-anuH-value:

8.3.2 Interface Class IpFaultManager

Method
activityTest Req()

The application invokes this method to test that the framework or itsinstance of a serviceis operational. On receipt of
this request, the framework must carry out atest onitself or on the client’s instance of the specified service, to check that
it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the

| pAppFaultManager interface.

Parameters
activityTestID : in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.
svclD : in TpServicel D
Identifies either the framework or a service for testing. The framework is designated by a null value.
Raises
TpComonExcepti ons, P_I NVALI D_SERVI CE_I D

Method
genFaul t St at sRecor dReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the

| framework must produce a fault statistics record, for either the framework andfor for the client’ s instances of the
specified services during the specified time interval, which is returned to the client application using the
genFaultStatsRecordRes operation on the | pAppFaultManager interface.

Parameters

timePeriod : in TpTinelnterva
The period over which the fault statistics are to be generated. A null value leaves thisto the discretion of the framework.
servicelDs : in TpServicel DLi st

designated-by-anutvalde. If this parameter is not an empty list, the fault statistics records of the client’s instances of the
specified services are returned, otherwise the fault statistics record of the framework is returned.

‘ Specifies either the framework angfor services to be included in the general fault statistics record. Fheframeworkts

Raises
‘ TpCommonExceptions—, _P_I NVALI D SERVI CE_| D

8.3.8 Interface Class IpLoadManager

Method
quer yLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or

| for its instances of the individual services-tsed-by-the-application.
Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
| empty list, the load statistics records of the client’s instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

tinmelnterval : in TpTinelnterva
Specifies the timeinterval for which load statistics records should be reported.

Raises
TpCommonExcept i ons, P_I NVALI D_SERVI CE_| D, P_SERVI CE_NOT_ENABLED

Method
regi st erLoadControl |l er ()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework andfor with its instances of the individual services used by the application.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and-or SCFsto be registered for load control. To register for framework load control-erly, the
servicel Ds is-adHparameter must be an empty list.

Raises
TpComonExcepti ons, P_I NVALI D SERVICE I D

Method
unr egi ster LoadControl |l er()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework andfor with its instances of the individual services used by the application.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework andfor the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list. Fheframework-ts-designated-by-anut-value:

Raises
TpComonExcepti ons, P_I NVALI D_SERVI CE_I D

Method
resuneNoti fication()
The client application uses this method to request the framework to resume sending it load management notifications

| associated with either the framework anefor with its instances of the individual services used by the application; e.g.
after a period of suspension during which the application handled atemporary overload condition.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework angfor the services for which the sending of notifications of load level changes by the
framework should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty

list.-Fheframework-is-designated-by-a-nul-value:
Raises
TpCommonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED

Method
suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
| associated with either the framework andfor with its instances of the individual services used by the application; e.g.
while the application handles a temporary overload condition.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework anédfor the services for which the sending of notifications by the framework should be
suspended. To suspend natifications for the framework, the servicel Ds parameter must be an empty list.Fheframework

. .
Raises
TpCommonExcept i ons, P_I NVALI D_SERVI CE_| D, P_SERVI CE_NOT_ENABLED

6.2.7 Fault Management: Framework detects a Service failure

The framework has detected that the-a service instance has failed (probably by the use of the heartbeat mechanism).
The framework updates its own records and informs ary-the client applications that-are-using the service instance to
stop.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should B

detect if a service instance
fails, for example via an
unreturned heartbeat. The
framework should inform
the application using that
service instance.

1: svcUnavailablelnd()

i

The application mus
cease the use of this
service instance.

Client Application : IpAppFaultManager

Framework : IpFaultManager

The framework should detect if [
a senice fails, for example via

an unreturned heartbeat. The
framework informs all

applications that are using the
senice.

1: sweUnavailablelnd()

I

The application must
cease the use of this
senice instance.

1 The framework informs eaeh-the client application that is using the service instance that the serviceis

unavailable. The client application is then expected to abandon use of this service instance and access a different
service instance viathe usual means (e.g. discovery, selectService etc.). The client application should not need to re-
authenticate in order to discover and use an alternative service instance. The framework will aso need to make the

relevant updates to itsinternal records to make sure the service instance is removed from service and no client

applications are still recorded as using it.

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010538
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 005 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Fault management is missing some *Err methods
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: ¢ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: % In the fault management interfaces there are two sets of asynchronous methods,
aenFaultStatsRecordReq and *activityTestReq, which don’t have corresponding
Err methods. Lucent believes that this creates an imbalance, as the Res methods
exist, but the Err methods don't.

method interface Addition of method genFaultStatsRecordErr is made to all the interfaces which
currently have method genFaultStatsRecordRes, along with a new data type
TpFaultStatisticsError. An addition of method *activityTestErr is also made to the
interfaces which currently have method *activityTestRes.

Consequences if 3 The imbalance of methods is left in the interfaces. There are no methods to
not approved: correspond to *Err methods., and subsequently there is no way to report an error.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: # 8.3.1,8.3.2, and 15.4.2
Other specs #* Other core specifications S
affected: Test specifications

O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the specification
which are not relevant to the change request.

Me

Resulting changes
The following data type needs to be added to section 15.4:

15.4.21 TpFaultStatisticsError

Definestheerror code associated with a failed attenpt to retrieve any fault
statistics information.

P_FAULT_| NFO ERROR UNDEFI NED
P_FAULT | NFO UNAVAI LABLE

Undefined error

L= li=}

Fault statistics unavail able

8.3.1 Interface Class IpAppFaultManager

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult
activityTestErr (activityTestID : in TpActivityTestID) : TpResult

appActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportind (fault : in TpinterfaceFault) : TpResult

fwFaultRecoveryInd (fault : in TpinterfaceFault) : TpResult

svcUnavailablelnd (serviceld : in TpServicelD, reason : in TpSvcUnavailReason) : TpResult
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : TpResult

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) :
TpResult

fwUnavailablelnd (reason : in TpFwUnavailReason) : TpResult

sthod

Pa

activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

rameters

Me

activityTestID : in TpActivityTestlD
Used by the application to correlate this response (when it arrives) with the original request.

sthod

genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to

a genFaultStatsRecordReg method invocation on the | pFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatsError
Thefault statistics error.
servicelDs : in TpServicel DLi st

Specifies the framework or services that were included in the general fault statistics record request. |If the servicel Ds
parameter is an empty list, then the fault statistics were requested for the framework.

8.3.2 Interface Class IpFaultManager

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : TpResult
appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult
appActivityTestErr (activityTestID : in TpActivityTestID) : TpResult

svcUnavailablelnd (servicelD : in TpServicelD) : TpResult

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : TpResult

Method
appActivityTest Err ()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.
Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original request.

Ralses
TpCommonExceptions, P I NVALID ACTIVITY TEST |ID

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010539
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 29.198-03 CR 006 ® e _ ® Curentversion: 4.1.0 *

For HELP on using this form, see bottom of this page or look at the pop-up text over the $ symbols.

Proposed change affects: 3 (U)SIMD ME/UED Radio Access Networkl:] Core Network

Title: # Method balance on Fault management interfaces
Source: ¥ CN5
Work item code: 8 OSA1l Date: $ 30/08/2001
Category: ¥ F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: & The fault management interfaces currently are not very consistent. The presence
of the indicator methods is not completely consistent across interfaces, some
seem to be missing, resulting in an imbalance.

Summary of change: 8 Add method appUnavailablelnd to the IpAppFaultManagement and
IpFaultManagement interfaces.

Consequences if # The fault management interfaces will remain inconsistent with regards to the
not approved: indicator methods.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 8.3.1and8.3.2

Other specs 3 Other core specifications E
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.

Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 1

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

The proposals put forward by this contribution make references to IpFw and | pSvc interfaces that are not currently
within the scope of 3GPP but are within the scope of ETSI and Parlay. N5-010705 proposes the introduction of
these interfacesinto 29.198-3. This CR problem description and proposed solution must be read with the abovein
mind.

Problem

The fault management interfaces currently are not very consistent in two respects, firstly there seemsto be an
inconsistent use of a method naming convention, and secondly the presence of methods is not completely
consistent across interfaces, afew seem to be missing. The following details the problem discussion.

1. Lack of method naming convention — there are a few methods across the interfaces that convey a common
behaviour, yet are named differently. For instance, method svcUnavailablelnd on interface
I pAppFaultManager, method svcRemovallnd on interface | pFwFaultM anager, method svcUnavailablelnd on
interface | pFaultManager, and method svcUnavailablelnd on interface | pSvcFaultManager al share common
logical behaviour. However, svcRemovallnd in this case is not named in accordance with a pattern used by
the others.

2. Missing methods — some methods on an interface relate directly to other methods on another interface to
correlate to define a system-wide behaviour. For example, method svcUnavailablelnd on interface
I pSvcFaultManager isinvoked as a result of method svcUnavailablelnd on interface I pFaultM anager being
invoked. There are two methodsin the interfaces that should have corresponding methods as such, but do not.
Namely, appUnavailablelnd on IpSvcFaultManager, and appRemovallnd on interface | pSvcFaultM anager.

The table below summari ses the methods on the fault management interfaces that are the subject of the problems
discussed. The underline highlights the methods not named in a corresponding way to the others. “***” refersto a
missing method, with arrows indicating direction of correlation between methods from different interfaces.

| pAppFaultManagement | pFaultManagement | pFwFaultManagement | 1pSvcFaultManagement
SvcUnavailablelnd <--- --- svcRemovalind
*hr & --- appUnavailablelnd
svcUnavailablelnd -—> svcUnavailablelnd
e -—> appRemovallnd
Proposal

With regard to naming convention, L ucent proposes to

¢ Rename method svcRemovallnd on interface | pFwFaultM anagement to svcUnavailablelnd. According to the
description to the method, we believe that unavailable is more correctly related to the method’ s behaviour, as
it states” ... used by the service to inform the framework that it is about to become unavailable for use. ...”,
while removal refers that the service is removed which is not true.

¢ Rename method appRemovallnd on IpSvcFaultM anagement to appUnavailablelnd. Similarly, according to
the description to the method, we believe that unavailable is more correctly related to the method’ s behaviour,
asit states” ... to inform the service that a client application is ceasing its current use of the service ...”, while
removal refers more toward saying that the application is removed.

With regard to method consistency, Lucent proposes to
e Add method appUnavailablelnd to interface | pAppFaultM anagement, this method isto correspond to the
existing method appUnavailablelnd on interface | pFwFaultM anagement.

« Add method appUnavailablelnd to interface | pFaultManagement, this method is to correspond to the existing
method appUnavailablelnd (was appRemolvall nd before the renaming) on interface IpSvcFaultM anagment.

Resultant changes

8.3.1 Interface Class IpAppFaultManager

CR page 3

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult
appActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportind (fault : in TpinterfaceFault) : TpResult

fwFaultRecoverylnd (fault : in TpinterfaceFault) : TpResult

svcUnavailablelnd (serviceld : in TpServicelD, reason : in TpSvcUnavailReason) : TpResult
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : TpResult
fwUnavailablelnd (reason : in TpFwUnavailReason) : TpResult

appUnavailablelnd () : TpResult

Method
appUnavai | abl el nd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding. On receipt of thisindication, the application must end its current session with the service instance.

Parameters
No parameters were identified for this method.

8.3.2 Interface Class IpFaultManager

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svciD : in TpServicelD) : TpResult

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) :
TpResult

svcUnavailablelnd (servicelD : in TpServicelD) : TpResult
genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : TpResult

appUnavailableInd (servicelD : in TpServicelD) : TpResult

Method
appUnavai | abl el nd()

This method is used by the application to inform the framework that the it is ceasing its use of the service instance.
This may be aresult of the application detecting afailure. The framework assumes that the session between this

CR page 4

client application and service instance is to be closed and updates its own records appropriately as well as
attempting to inform the service instance and/or its administrator.

Parameters
servicelD : in TpServicelD
I dentifies the affected application.

Raises
TpConmmbnExcepti ons

CR page 5

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010673
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 29.198-03 CR 007 ¥ ev _ # Currentversionn 4 1.0 ¥

For HELP on using this form, see bottom of this page or look at the pop-up text over the $ symbols.

Proposed change affects: 3 (U)SIMD ME/UED Radio Access Network|:| Core NetworkD

Title: # Change "TpString" into "TpOctetSets" in authentication and access
Source: ¥ CN5
Work item code: 8 OSA1l Date: $ 30/08/2001
Category: ¥ F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 3 It was noted that some data that is to be sent transparently over the API is at the
moment still defined as TpString. As a string is not quaranteed to be translated
during transmission at the previous meeting in San Diego (May 2001) CN5
introduced a TpOctetSet that maps to a sequence of CORBA octets. This data-
type has been accepted to be used for the transparent charging data. However,
this data-type is also needed in the authentication and signing of Service Level
Agreements.

Summary of change: 8 Datatypes of data to be sent transparently over the API will be changed from
TpString to TpOctetSet.

Consequences if ¥ Authentication and service level agreement signing will not work.
not approved:

Clauses affected: ¥ 8.1.1,81.2,8.1.5,8.1.6

Other specs 3 Other core specifications E
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.

Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 1

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

4.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: Iplnterface.

<<Interface>>

IpAppAPILevelAuthentication

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpStringOctetSet, response : out
TpStringOctetSetRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

aut henti cat e()

This method is used by the framework to authenticate the client application using the mechanism indicated in
prescribedMethod. The client application must respond with the correct responses to the challenges presented by the
framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These

may be interleaved with authenticate() calls by the client application on the IpAPILevel Authentication interface. Thisis
defined by the prescribedM ethod.)

Parameters

prescri bedMethod : in TpAuthCapability

see selectEncryptionM ethod() on the IpAPIILevel Authentication interface. This parameter contains the agreed method
for authentication. If thisis not the same value as returned by selectEncryptionMethod(), then an error code
(P_INVALID_AUTH_CAPABILITY) isreturned.

chal l enge : in TpSt+ngQct et Set

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
[RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStr-nhgCct et Set Ref

Thisisthe response of the client application to the challenge of the framework in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Method
abort Aut henti cati on()

CR page 3

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to
abort the authentication process, (unless the application responded incorrectly to a challenge in which case no further
communication with the application should occur.) If this method has been invoked, calls to the requestAccess
operation on I pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client application
has been properly authenticated.

Parameters
No Parameters were identified for this method

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the client application of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

4.1.2 Interface Class IpAppAccess
Inherits from: I plnterface.

The Access client application interface is used by the Framework to perform the steps that are necessary in order to
allow it to service access.

<<Interface>>

IpAppAccess

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, digitalSignature : out TpStringOctetSetRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpStrirgOctetSet) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpStringOctetSet) : TpResult

Method
si gnSer vi ceAgr eenent ()

This method is used by the framework to request that the client application sign an agreement on the service. It is called
in response to the client application calling the selectService() method on the IpAccess interface of the framework. The
framework provides the service agreement text for the client application to sign. The service manager returned will be
configured as per the service level agreement. If the framework uses service subscription, the service level agreement
will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will
be arestriction of the registered properties. If the client application agrees, it signs the service agreement, returning its
digital signature to the framework.

CR page 4

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceTokenisinvalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is
returned.

agreenent Text : in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningAl gorithm

Thisis the algorithm used to compute the digital signature. If the signingAlgorithmisinvalid, or unknown to the client
application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digital Signature : out TpStrnhgCct et Set Ref
The digital Signature is the signed version of a hash of the service token and agreement text given by the framework.

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the framework to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken isused to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, an
error code (P_INVALID_SERVICE_TOKEN) isreturned.

termnationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digital Signature : in TpSt+ngCct et Set

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing a gorithm given when the service agreement was signed using signServiceAgreement(). The framework
uses this to confirm its identity to the client application. The client application can check that the terminationText has
been signed by the framework. If amatch is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) is returned.

Method
t erm nat eAccess()

The terminateAccess operation is used by the framework to end the client application's access session.

After terminateAccess() isinvoked, the client application will no longer be authenticated with the framework. The
client application will not be able to use the references to any of the framework interfaces gained during the access
session. Any callsto these interfaces will fail. If at any point the framework's level of confidence in the identity of the

CR page 5

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding
service agreements for that client application, and should take steps to terminate the client application’'s access session
WITHOUT invoking terminateAccess() on the client application. This follows a generally accepted security model
where the framework has decided that it can no longer trust the application and will therefore sever ALL contact with it.

Parameters

termnationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm: in TpSigningAl gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client
application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digital Signature : in TpSt+ngCct et Set

Thisisasigned version of a hash of the termination text. The framework uses thisto confirm its identity to the client
application. The client application can check that the terminationText has been signed by the framework. If amatchis
made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

4.1.3 Interface Class IpAPILevelAuthentication
Inherits from: |pAuthentication.

The API Level Authentication Framework interfaceis used by client application to perform its part of the mutual
authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the
Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) :
TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpStringOctetSet, response : out
TpStringOctetSetRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

sel ect Encrypti onMet hod()

The client application uses this method to initiate the authentication process. The framework returnsits preferred
mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the

framework within the capability of the client application cannot be found, the framework returns an error code
(P_NO_ACCEPTABLE_AUTH_CAPABILITY).

CR page 6

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

Parameters
aut hCaps : in TpAuthCapabilityList

Thisisthe means by which the authentication mechanisms supported by the client application are conveyed to the
framework.

prescri bedMet hod : out TpAut hCapabilityRef

Thisisreturned by the framework to indicate the mechanism preferred by the framework for the authentication process.
If the value of the prescribedM ethod returned by the framework is not understood by the client application, itis
considered a catastrophic error and the client application must abort.

Raises
TpConmmonExcept i ons, P_ACCESS DENI ED, P_NO ACCEPTABLE_AUTH_CAPABI LI TY

Method

aut henti cate()

This method is used by the client application to authenticate the framework using the mechanism indicated in
prescribedM ethod. The framework must respond with the correct responses to the challenges presented by the client
application. The clientAppl D received in the initiateAuthentication() can be used by the framework to reference the

correct public key for the client application (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedM ethod.

Parameters

prescri bedMethod : in TpAuthCapability

see selectEncryptionMethod(). This parameter contains the method that the framework has specified as acceptable for
authentication. If thisisnot the same value as returned by selectEncryptionMethod(), then the framework returns an
error code (P_INVALID_AUTH_CAPABILITY).

chal l enge : in TpCctet Set Stri-hg

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake A uthentication Protocol
[RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStr-nrgCct et Set Ref

Thisisthe response of the framework to the challenge of the client application in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_AUTH_CAPABI LI TY

Method
abort Aut henti cati on()

The client application uses this method to abort the authentication process. This method isinvoked if the client
application no longer wishes to continue the authentication process, (unless the application responded incorrectly to a
challenge in which case no further communication with the application should occur.) If this method has been invoked,

CR page 7

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

calls to the requestAccess operation on | pAPILevel Authentication will return an error code (P_ACCESS_DENIED),
until the client application has been properly authenticated.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons, P_ACCESS DEN ED

Method
aut henti cati onSucceeded()

The client application uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons, P_ACCESS_DEN ED

4.1.4 Interface Class IpAccess

Inherits from: Ipinterface.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName, fwinterface : out IpinterfaceRefRef) : TpResult

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, applinterface : in IpInterfaceRef,
fwinterface : out IpinterfaceRefRef) : TpResult

selectService (servicelD : in TpServicelD, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpStringOctetSet) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

Method
obtai nl nterface()

CR page 8

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface
references to other framework interfaces. (The obtai ninterfaceswWithCallback method should be used if the client
application is required to supply a callback interface to the framework.)

Parameters

interfaceNanme : in TplnterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceNameisinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

fwnterface : out |plnterfaceRef Ref
Thisisthe reference to the interface requested.

Raises
TpConmmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_| NTERFACE_NANVE

Method
obt ai nl nterfaceWthCal | back()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface
references to other framework interfaces, when it is required to supply a callback interface to the framework. (The
obtainlnterface method should be used when no callback interface needs to be supplied.)

Parameters

interfaceName : in TplnterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

applnterface : in IplnterfaceRef

Thisisthe reference to the client application interface, which is used for callbacks. If an application interface is not
needed, then this method should not be used. (The obtainl nterface method should be used when no callback interface
needs to be supplied.) If theinterface referenceisnot of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

fwnterface : out |plnterfaceRefRef
Thisisthe reference to the interface requested.

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| NVALI D_| NTERFACE_NAME, P_| NVALI D_| NT
ERFACE_TYPE

Method
sel ect Servi ce()

This method is used by the client application to identify the service that the client application wishesto use. If the client
application is not alowed to access the service, then an error code (P_SERVICE_ACCESS DENIED) is returned.

CR page 9

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

Parameters

servicelD: in TpServicelD

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

servi ceToken : out TpServi ceTokenRef

Thisisafreeformat text token returned by the framework, which can be signed as part of a service agreement. This will
contain operator specific information relating to the service level agreement. The serviceToken has alimited lifetime. If
the lifetime of the serviceT oken expires, a method accepting the serviceToken will return an error code
(P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expireif the client application or framework
invokes the endAccess method on the other's corresponding access interface.

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SERVI CE_I D

Method
si gnSer vi ceAgr eenent ()

This method is used by the client application to request that the framework sign an agreement on the service, which
alows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the service is returned to the client application. The service manager
returned will be configured as per the service level agreement. If the framework uses service subscription, the service
level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client
application, which will be arestriction of the registered properties. If the client application is not allowed to access the
service, then an error code (P_SERVICE_ACCESS _DENIED) is returned.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

agreenent Text : in TpString

Thisisthe agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningAl gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the
framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

si gnat ur eAndSer vi ceMgr : out TpSi gnat ur eAndSer vi ceMyr Ref

This contains the digital signature of the framework for the service agreement, and a reference to the service manager
interface of the service.
structure TpSignatureAndServiceMgr {
digitalSignature: TpString;
serviceMgrinterface: 1plnterfaceRef;
b
The digital Signature is the signed version of a hash of the service token and agreement text given by the client
application.
The serviceMgrinterface is areference to the service manager interface for the selected service.

CR page 10

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| NVALI D_AGREEMENT TEXT, P_I NVALI D_SER
VI CE_TOKEN, P_I NVALI D_SI GNI NG_ALGORI THV P_SERVI CE_ACCESS_DENI ED

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the client application to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token isused to
identify the service agreement to be terminated. If the serviceTokenisinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

termnationText : in TpString
Thisis the termination text describes the reason for the termination of the service agreement.

digital Signature : in TpStrirgCOct et Set

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework
uses thisto check that the terminationText has been signed by the client application. If a match is made, the service
agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) isreturned.

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SERVI CE_TOKEN, P_I NVALI D_SI GN
ATURE

Method
endAccess()

The endAccess operation is used by the client to request that its access session with the framework isended. After itis
invoked, the client application will no longer be authenticated with the framework. The client application will not be
able to use the references to any of the framework interfaces gained during the access session. Any callsto these
interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

Thisisalist of properties that can be used to tell the framework the actions to perform when ending the access session
(e.0. existing service sessions may be stopped, or left running). If aproperty is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_PROPERTY

CR page 11

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010686
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 008 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Replacement of register/unregisterLoadController
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: 8 REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: % The IpLoadManager interface contains methods called registerLoadController and
unregisterLoadController. When the description of these methods is looked at, it
can be seen that these methods are concerned with the creation and destruction
of requests for load control change notifications.

Summary of change: # Lucent proposes to rename these methods as createlLoadlLevelNotification and
destroyLoadLevelNotification, following a naming convention set for notifications
for FW event notification and also for service-based notifications.

Consequences if # The method names will remain inconsistent with the other notification methods
not approved: within the framework and in the service APIs.

29.198-3 will be ambiquous and difficult to implement correctly — interworking will
be jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 6.2.5,8.3.8,and 9.3.3

Other specs 3 Other core specifications *
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://immww.3gpp.org/3G_Specs/CRs.him. Below is a brief summary:

1) Fill out the above form. The symbols above marked $ contain pop-up help information about the field that they are
closest to.

CR page 1

2)

3)

Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to

the change request.

CR page 2

Resultant Changes

As aresult of these changes, and also the introduction of loadL evelNotification in a previous meeting, the sequence
diagram 6.2.5 and the State Transition Diagram in 9.3.3 are changed.

8.3.8 Interface Class IpLoadManager

Inherits from: Iplnterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the |load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies what
load management rules the framework should follow for the specific client application. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is
represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock athread into
waiting whilst atransaction performs. To handle responses and reports, the client application devel oper must implement
the IpAppLoadM anager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's |oad manager interface, by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : TpResult
queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController createLoadLevelNotification(servicelDs : in TpServicelDList) : TpResult
unregisterboadController destroyLoadLevelNotification(servicelDs : in TpServicelDList) : TpResult
resumeNotification (servicelDs : in TpServicelDList) : TpResult

suspendNotification (servicelDs : in TpServicelDList) : TpResult

Method

registerloadControellercreat eLoadLevel Notification()

The client application uses this method to register to receive notifications of load level changes associated with the
framework and/or with individual services used by the application.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and SCFsto be registered for load control. To register for framework load control only, the
servicel Dsisnull.

Raises
TpComonExceptions, P_INVALID SERVICE I D

Method
unregisterloadControllerdest royLoadLevel Noti fication()

The client application uses this method to remove its request for notifications of load level changes associated with the
framework and/or with individual services used by the application.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework
is designated by anull value.

Raises
TpComonExceptions, P_INVALID SERVICE I D

6.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function
based on policy.

Figurel

. IpAppLoadManager

: IpLoadManager

1: createLoadLevelNotification()

Framework detects its
load condition change
and initiates load control
action

N

2: load change detection & policy evaluation

——— 3: loadLevelNotification()

—

=2 |

5: loadLev

1
This is the
implementation detail

4: load change dejgctio & policy evaluation

otification()

—

This is the
implementation detail

6: destroyLoadLevelNotification() T

9.3.3 State Transition Diagram for IpLoadManager

“load change™loadLevelNotification reportLoad
\queryAppLoadRes[load statistics requested by LoadManager]
| v W\/ queryAppLoadErr| load statistics requested by LoadManager]

createLoadLevelNotification \(1 queryLoadReq

ACTIVE

destroylLoadLevelNotification \

IpAccess,obtain
nlhterfaceWithCallback

\ \‘“
\ susp?ndNotification[all notifications suspended]
\

g \ N
resumeNotification

\

\ reportLoad L

[\ | queryAppLoadRes] load statistics requested by LoadManager]
\

queryAppLoadErr| load statistics requested by LoadManager]
queryLoadReq

NOTIFICATION
SUSPENDED
destroyLoadLevelNotification

All States

IpAccess.endAccess

®

Figure2

IDLE

In this state the application has obtained an interface reference to the IpLoadManager from the |pAccess interface.
ACTIVE

In this state the application has indicated its interest in notifications by performing a createloadL evelNotification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNotification(), resumeNotification() or suspendNoatification() on the application side of

interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

NOTIFICATION SUSPENDED

Dueto, e.g. atemporary load condition, the application has requested the load manager to suspend sending the load
level notification information.

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010688
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 009 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Redundant Framework Heartbeat Mechanism
Source: ¥ CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: ¢ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 8 Current mechanism is redundant

Summary of change: 8 The mechanism proposed involves requesting a heartbeat, and then monitoring for
that heartbeat. If the beat is not received then it can be decided that the subject of
the monitor is no longer running. Policies will then determine the behaviour.

Consequences if # The heartbeat mechanism will remain redundant and confusing.

not approved: Failure to adopt this CR would result in divergence between the 3GPP R4

specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 8.3and6.2.6

Other specs #* Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

CR page 1

Problem

The current heartbeat mechanism seems unintuitive. In the current mechanism, a service or client
application, if it doesn’t trust it's availability, can request the framework to monitor it. The result of this is that
the framework sends a message to the service/client application at a specified interval. If the service/client
application does not respond to this message, they are deemed to have failed the heartbeat and
consequently are probably no longer running.

This is effectively a polling mechanism and seems to be redundant. There are already activityTestReq
methods on the Ip*FaultManager interfaces which perform exactly this functionality. This leaves two options:

* Remove the heartbeat mechanism from the specification; or
« Rework the heartbeat mechanism into something different and useful.

Also, it doesn'’t really seem sensible for something to request the monitoring of itself. Why would it do this? If
an interface believes that it is not going to perform correctly, then it should use other means of informing the
other party, rather than requesting them to keep on checking it periodically.

One of the parameters to the enable*Heartbeat() methods is a duration. This is supposed to represent the
interval between heart beats. It is confusing for this parameter to be of type TpDuration, as the definition of
TpDuration states that if a —2 value is passed in, then the duration is infinite (definitely no use within a
heartbeat mechanism)!

Proposal

Lucent proposes to modify the existing heartbeat functionality so that it is no longer redundant. The
mechanism we propose involves requesting a heartbeat, and then monitoring for that heartbeat. If the beat is
not received then it can be decided that the subject of the monitor is no longer running. Policies will then
determine the behaviour.

We would also like to propose removing the session ID from these interfaces. It doesn’'t seem to make
sense for an entity to have parallel heartbeat sessions with the same framework/service/client application. A
method exists to change the heartbeat interval. An entity can request a long interval for a steady background
heartbeat, shorten the interval if it desires more frequent pulses, and then restore the previous interval
afterwards. There seems to be no need for parallel heartbeat sessions, and the interleaving of heartbeats
that would result.

Also, the relationship between an IpHeartBeat(Mgmt) interface and an application is a 1-2-1 relationship (no

client application ID is passed across the interface). Every time a new heartbeat interface is obtained using
obtaininterfaceWithCallBack() a new interface instance will be created.

Resulting changes

Lucent would like to modify the description of the heartbeat process.

Lucent would like to rename the send() method on IpHeartBeat and IpAppHeartBeat to something more
representative of its function. We would propose renaming it to pulse().

We would like to change the duration parameter in the enable*Heartbeat() methods to “interval” of type
TpInt32.

Lucent would also like to remove the sessionID parameter from the interfaces.

We feel that the State Transition Diagrams given in sections 9.3.1 and 9.3.2 of 29.198-3 do not add any extra
information and that these interfaces are not really state-based, anyway. We therefore propose removing
these interfaces from the specification.

8.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: Iplnterface.
Thisinterface allows theinitialisation of a heartbeat supervision of the Framewerk-client application by the Client
apphcationframework. -Si . ves-al

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (duration-interval : in FpBurationTpInt32, fwinterface : in IpHeartBeatRef,session—in
FpSessionlb) : TpResult

disableAppHeartBeat (session—in-TFpSessiontb) : TpResult

changeTimePeriod-changelnterval (duratien-interval : in FpBurationT pInt32;-session—inFpSessientb) :
TpResult

Method
enabl eAppHeart Beat ()

With this method, the framework registers-atinstructs the client application for-heartbeat-supervision-of-iselfto begin
sending its heartbeat to the specified interface at the specified interval.

Parameters
‘ duratien—interval : in FpburatienTpl nt 32
The time interval in milliseconds between the heartbeats.
fwnterface : in | pHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.
. A TBS oRLL
tertifics the heart on.

Method
dlsabIeApprartBeat()

AHews |nstructs the s
heartbeat.

tionclient application to cease the sending of its

Parameters

. . Tos . L
ldentifiesthe heartbeat-session:None identified.

Method
changeTirnePerioedchangel nterval ()

Allows the administrative change of the heartbeat perioedinterval.

Parameters
duratien—interval : in FpburatienTpl nt 32
The time interval in milliseconds between the heartbeats.
: . .
tontifies the ion.

8.3.4 Interface Class IpAppHeartBeat

Inherits from: Iplnterface.
The Heartbeat Appl|cat|on mterface is used by the Framework to supervise-send the client aApplication its heartbeat.

<<Interface>>

IpAppHeartBeat

send-pulse (session—inFpSessiontB) : TpResult

Method
sendpul se()

Thisisthemethod-the framework usesi ! aise-al
ne#eﬂatteeemesbaeleatter—&eettam—ueer-defmedrttme—thls method to send |ts heartbeet to the cllent appllcatlon The
application will be expecting a pulse at the end of every interval specified in the parameter to the

| pHeartBeatM gmt.enabl eHeartbeat() method. | the pulse() is not received within the specified interval, then the
framework can be deemed to have failed the heartbeat.

Parameters

. . Tos . L
ldentifiesthe heartbeat-session:None identified.

8.3.5 Interface Class IpHeartBeatMgmt

Inherits from: Iplnterface.
Thisinterface allowsthe |n|t|al|set|on of a heartbeat supervision of the dwntappheattenframeNork by achent
application. . ,

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (duratien-interval : in FpburationTpInt32, applnterface : in IpAppHeartBeatRef—session—
outTpSessionibRef) : TpResult

disableHeartBeat (session—inFpSessioniB) : TpResult

changeTFimePeriod-changelnterval (duration-interval : in FpPurationT pInt32,-session—in-FpSessioniD) :
TpResult

Method
enabl eHear t Beat ()

With this method, the client application registers-atinstructs the framework for-heartbeat-supervision-of-itselfto begin
sending its heartbeat to the specified interface at the specified interval.

Parameters
duration—interval : in FpburatienTplnt 32
The durationtime -interval _in milliseconds between the heartbeats.

appl nterface : in | pAppHeart Beat Ref
This parameter refers to the callback interface the heartbeat is calling.

TpCommonExcept i ons-P+HNVALL-D-SESSI-ON-D

Method
di sabl eHear t Beat ()

tronl nstructs the framework to cease the sending of its

ldentifiesthe heartbeat-session:None identified.

Raises
TpComonExcept i onsP+HNVALFD-SESSION-HD

Method
changeTinePerioedchangel nterval ()

Allows the administrative change of the heartbeat periodinterval.

Parameters
duration—interval : in FpburatienTplnt 32

The time interval in milliseconds between the heartbeats.
. - ToS . I
Raises
TpComonExcept i onsP+HNVALLD-SESSHON-HD

8.3.6 Interface Class IpHeartBeat

Inherits from: Iplnterface.
| The Heartbeat Framework interface is used by the client application to supervise the Frameworksend its heartbeat.

<<Interface>>

IpHeartBeat

send-pulse (session—inFpSessiontB) : TpResult

ne#wameem&sbaeleaﬁer—&eeﬁam—usepdenned&meﬁhe cllent appllcatlon uses thls method to send |ts heartbeat to

the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the
| pAppHeartBeatM gmt.enabl eAppHeartbeat() method. |f the pulse() is not received within the specified interval, then
the framework can be deemed to have failed the heartbeat.

e-session-None identified.

Raises

TpComonExcept i ons

6.2.6 Heartbeat Management: Start/perform/end heartbeat supervision ef-of
the application

Framework

IpHeartBeat IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

|

3: pulse()

Ih

— | At a certain point of
time the framework
decides to stop
heartbeat supervision

4: disableHeartBeat()

Application

IpAppHeartBeat IpHeartBeatMgmt

1 enabIeHéartBeat()

2: send()

0

— | At a certain point of
time the application
decides to stop
heartbeat supenision

4: disableHeartBeat ()

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application’s health and disables the
heartbeat mechanism. If the heartbeat was not received from the application within the specified interval, the
framework can decide that the application has failed the heartbeat and can then perform some recovery action.

IpAccess.obtaininterface

IpAcdess.obtaininterfaceWithCallback

Application not
‘ supenised

N

@ Mccess

y) enableHeartBeat

disableHeartBeat

Application supenised

do/ periodically request Application for heartbeat by invoking send() method on IpAppHeartBeat

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

FW supervsed by
Application

IpAppHeartBeatMgmt.disableA ppHeartBeat

IpAccess.endAccess

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010689
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 010 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Add a releaselnterface() method to IpAccess
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: 8 REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 3 An entity using the framework currently uses obtaininterface or
obtaininterfaceWithCallback to obtain interfaces such as the load management
interfaces, or the heartbeat interfaces. Currently the only way in which these
interfaces can be released is by ending the access session. When the access
session is ended, all interface references given out during the session are no
longer accessible. However, an entity using the framework may not need or desire
to keep ALL of the interfaces it has obtained for the entire lifetime of an access
session, which could last quite some time. This is holding framework resources
unnecessarily.

Summary of change: Lucent proposes the addition of a releaselnterface method to the IpAccess and
IpFwAccess interfaces. This will allow the entity using the framework to be able to
release any of the interfaces it has obtained at any point during the access
session, thus removing the need to hold the interfaces (and the accompanying
resources) unnecessarily.

Consequences if 3 Framework resources will be retained unnecessarily until the ending of the access
not approved: session.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 8.16

Other specs #* Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

CR page 1

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:
http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked 3 contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp:/ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

Me

Resulting changes

One new method and its description should be added to the IpAccess interface.

8.1.6 Interface Class IpAccess

Inherits from: Iplnterface.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName, fwinterface : out IpinterfaceRefRef) : TpResult

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, applinterface : in IpinterfaceRef,
fwinterface : out IpIinterfaceRefRef) : TpResult

selectService (servicelD : in TpServicelD, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpString) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

releaselnterface(interfaceName : in TpinterfaceName) : TpResult

sthod

Pa

rel easel nterface()

The client application uses this method to release a framework interface that was obtained during this access session.

rameters

Ra

interfaceNane . in TplnterfaceNane

Thisis the name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P INVALID INTERFACE NAME exception. If the interface has not been given to the client application
during this access session, then the P TASK REFUSED exception will be thrown.

SES

TpCommonExceptions, P _ACCESS DEN ED, P_I NVALI D_| NTERFACE NAME

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010691
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
% 29.198-3 CR 011 ¥ ev _ # Curentversion: 4 1.0 ¥

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: ¥ (U)SIMEI ME/UE|:| Radio Access Networkl:l Core Network

Title: ¥ Removal of servicelD from queryAppLoadReq()
Source: ¥ CN5
Work item code: 8 OSA1 Date: 3 30/08/2001
Category: ® F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP IR 21.900. REL-5 (Release 5)

Reason for change: 3 One of the parameters to queryAppLoadRed() in IpAppLoadManager interface is
servicelDs of type TpServicelDList, which the specification currently states as
representing “the application and/or the services for which load statistic records
should be reported”.

However, there is no need for this parameter as it makes little sense for the
Framework to request an APL to provide Load statistics records for the services it
is using. The requested information would have been passed to the APL via the
Framework itself anyway, and therefore the Framework must already be aware of
this. If it doesn’t have this information then it would be a better approach for it to
request the information from the service instances directly.

Summary of change: 3 servicelDs parameter is removed from IpAppLoadManager.queryAppLoadReq().
Consequences if # ServicelDs parameter in IpAppLoadManager.queryAppLoadRed() is has no
not approved: function and confuses the API.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 837

Other specs & Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1

2)

3)

Fill out the above form. The symbols above marked & contain pop-up help information about the field that they
are closest to.

Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications
can be downloaded from the 3GPP server under ftp:/ftp.3gpp.org/specs/ For the latest version, look for the
directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG

meetings.
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the

specification just in front of the clause containing the first piece of changed text. Delete those parts of
the specification which are not relevant to the change request.

Resultant changes

8.3.7 Interface Class IpAppLoadManager

<<Interface>>

IpAppLoadManager

queryAppLoadReq (servicelbs—inTFpServicelDList-timelnterval : in TpTimelnterval) : TpResult
queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : TpResult
resumeNotification () : TpResult

suspendNotification () : TpResult

Method
quer yAppLoadReq()

timelnterval : in TpTimelnterval
Specifiesthe time interval for which load statistic records should be reported.

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010695
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
* 29.198-03 CR 012 ¥ ev _ # Curentversion: 410 ¥

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: ¥ (U)SIMD ME/UED Radio Access Networkl:] Core Network

Title: ¥ Addition of listinterfaces() method
Source: ¥ CN5
Work item code: 38 OSA1 Date: 8 30/08/2001
Category: ¥ F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: # Assuming a client is aware of the interfaces that the framework supports, then the
client is able to obtain the interface reference using
obtaininterface()/obtaininterfaceWithCallback with the interfaceName as the
parameter. However, the client only has knowledge of the availability of the pre-
arranged interfaces and currently has no way to discover dynamically which
interfaces are actually supported by the framework.

method interface method listinterfaces() along with its description are added to IpAccess.
TplnterfaceNameList type is also introduced.

Consequences if # A client application is not able to discover interfaces at run time, and therefore has
not approved: access to only pre-arranged interfaces.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: 3 Chapter 8.1.6 and 15.1

Other specs & Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:

CR page 1

Comprehensive information and tips about how to create CRs can be found at:
http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the specification
which are not relevant to the change request.

CR page 2

Proposal

The proposal isto add alistinterfaces() method to the I pAccess interface, which would enable the client to obtain alist
of the interfaces supported by the framework. This prevents the client from having to invoke obtainlnterface() for the
interface they want in the hope that it is available to them.

Resultant Changes

The effect of this proposal is a change to the IpAccess interface and Framework Data Definitions. One new
method and description are added. One new data definition is added.

8.1.6 Interface Class IpAccess

Interface Class IpAccess

<<Interface>>

IpAccess

obtaininterface(interfaceName: in TpinterfaceName, fwinterface: out IparlayInterfaceRefRef): TpResult

obtaininterfaceWithCallback(interfaceName: in TpinterfaceName, applnterface: in IparlaylnterfaceRef,
fwinterface: out IparlaylnterfaceRefRef): TpResult

selectService(servicelD: in TpServicelD, serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in
TpSigningAlgorithm, signatureAndServiceMgr: out TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpEndAccessProperties) : TpResult

listinterfaces(frameworklInterfaces: out TplnterfaceList) : TpResult

Method
listlnterfaces()

The client application uses this method to obtain the names of all interfaces supported by the framework. |t can
then obtain the interfaces it wishes to use using either obtainlnterface() or obtainl nterface\WithCallback().

Parameters

framewor kl nterfaces : out TplnterfaceNanelLi st
The frameworkl nterfaces parameter contains alist of interfaces that the framework makes available.

Raises
TpConmmbnExcepti ons, P ACCESS DEN ED

15.1.33 TpinterfaceNameL.ist

CR page 3

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

CR page 4

3GPP TSG_CNS5 (Open Service Access — OSA)

Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST

% 29.198-03 CR 013 ¥ ev _ # Curentversion: 4 1.0 ¥

For HELP on using this form, see bottom of this page or look at the pop-up text over the $ symbols.

Proposed change affects: ¥ (U)SIMEI ME/UE|:| Radio Access Networkl:l Core Network

N5-010697

Title: # Introduction and use of new Service Instance ID
Source: ¥ CN5
Work item code: 8 OSA1 Date: 3 30/08/2001
Category: ¥ F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP IR 21.900. REL-5 (Release 5)

Consequences if
not approved:

Summary of change: &

Reason for change: # The individual service instances need to set up access sessions with the

Framework and obtain separate Integrity Management interfaces. This then allows
them to provide load, fault and heartbeat information to the Framework on an
individual basis. Currently, this is not possible, and the specification is confused
over what should be performed on a per-service basis and what should be
performed on a per-service instance basis.

This requires that a new servicelnstancelD is introduced. The servicelnstancelD is
generated by the Framework and passed to the Service Factory. It is used when
the service instance exchanges integrity management interfaces with the
framework.

This service instance ID will be used by the framework to correlate requests for
service integrity management statistics with the service instance for that client
application.

¥ 29.198-3 will be ambiguous and difficult to implement correctly — interworking will
be jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Other specs
affected:

Clauses affected:

Other comments:

¥ 15.1,12.1.1

3 Other core specifications 3
Test specifications
O&M Specifications

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:
http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked 8 contain pop-up help information about the field that
they are closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS
Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP
specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.ora/specs/ For the latest version,
look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the
March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in
front of the clause containing the first piece of changed text. Delete those parts of the specification which are
not relevant to the change request.

Proposal to introduce a new Service Instance ID data type and use it in place
of servicelD for authentication and access

Problem Description

It isunclear from the specification what the nature of the relationship is between service instances
and the Framework.

One view isthat the Framework is unaware of the existence of the instances themselves and only
has knowledge of the “service”. Essentially this means that an entity representing the service (and
identified by the servicel D) sets up an access session with the Framework and obtains all of the
Integrity Management interfaces.

The problem is that the Framework cannot then identify which instance of a service an invocation
of Integrity Management methods bel ongs on and therefore information such as load level and
fault statistics can only apply collectively to all instances of a service. In addition, if an application
wants to indicate that it can’t use an instance and therefore wants to end its session the “service”
has to determine which instance is being terminated as the Framework has no way of doing this.

The other view is that the individual instances set up access sessions with the Framework and
obtain separate Integrity Management interfaces. This alows them to provide load, fault and
heartbeat information to the Framework on an individua basis.

Solution

We believe that the Integrity Management functionality must happen on a per-instance basis for
useful information to be available to the application that is using the service instance. Therefore
the instance needs to have an access session available when it is created.

To do thisit will need to authenticate with the Framework (using keys that perhaps have been
passed to it by the Factory on creation) and then requestAccess. It will need to identify itself to the
Framework in order that the Framework can determine which interfaces belong to which instance.

This requires that a new servicelnstancel D isintroduced. The servicelnstancel D is generated by
the Framework and passed to the Service Factory.

It could either be used in the intiateAuthentication call in place of servicel D, or it could be added
to either the requestAccess or obtainlnterface* methods, as outlined in the options below.

Option 1 — Use servicelnstancelD in initiateAuthentication

The Framework would need to correlate the servicel nstancel D to a key in order to complete the
authentication process. This could possibly be done by only assigning keys at the servicel D
domain level, thus using the same key for all instances.

Option 2 — Add servicelnstancelD to requestAccess

In other words, the servicel D is used to authenticate but then the access session being started by
the service instance is identified to the Framework using the instance ID. From then on, any
interfaces obtained by the instance can be correlated by the Framework.

It is possible that a single entity representing all of the interfaces could do the authentication (eg
the Factory) and then pass the authentication interface reference to each of the instancesit creates.

One drawback to this approach is that the method signature for requestAccess changes and the new
version is only appropriate on the FW-SV C side. Another possible issue is what happensiif the
single entity becomes no longer authenticated and all of the access sessions are killed? In that case
the single entity would need to be able to inform the instances.

Option 3 — Add servicelnstancelD to obtaininterface*

Again, the servicel D is used to authenticate but requestAccess is effectively done under the guise
of the servicelD. Theinstance ID isthen only used as each required interface is obtained.

It would be possible for asingle entity to set up a single access session and provide a reference to
the FW interface to each instance (again at creation of the instance). Again aproblem arisesif the
access sessionislost, asall interfaces obtained during that session are also lost. The single entity
would require the ability to inform the instances and give them a new access interface reference.

Again adrawback is the need to update the method signatures.

Recommendation

Our recommendation is that Option 1 is chosen as having the smallest impact on the API.

Resultant Changes

The following changes are required: -

1. A new datatype— TpServicelnstancel D

2. A new parameter of thistype added to createServiceManager()
3. A new TpDomainIDType value

Note that the definition of TpServicelD is currently misleading and it is suggested that the update
shown below is made.

15.1.15 TpServicelD

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifiesa
registered annstance-ef-a SCF interface. The string is automatically generated by the Framework

15.1.33 TpServicelnstancelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an
instance of aregistered SCF interface. The string is automatically generated by the Framework

15.1.4 TpDomainIDType

Defines either the framework or the type of entity attempting to access the framework
Name Value Description
P_FW 0 The framework

P_CLI ENT_APPLI CATI ON A client application

P_ENT_OP An enterprise operator

1
2

P_SERVI CE_| NSTANCEREG-STERED-SERWA-CE 3 A registered service
4

P_SERVI CE_SUPPLI ER A service supplier

12.2 Service Factory Interface Classes

The IpSvcFactory interface allows the framework to get access to a service manager interface of aservice. Itis
used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that isthe initial point of contact for the service. E.g.,
the generic call control service uses the IpCall ControlManager interface.

12.2.1 Interface Class IpSvcFactory

Inherits from: Iplnterface.

<<Interface>>

IpSvcFactory

c|reateServiceManager (application : in TpClientAppID, instancelD : in TpServicelnstancelD,
serviceProperties : in TpServicePropertyList, serviceManager : out IpServiceRefRef) : TpResult

Method
creat eSer vi ceManager ()

This method returns a new service manager interface reference for the specified application. The service
instance will be configured for the client application using the properties agreed in the service level agreement.

Parameters
application : in TpdientAppl D
Specifies the application for which the service manager interface is requested.

instancel D : in TpServicel nstancel D

Specifies the Service Instance |D to be associated with the instance of the service. The Service Factory should
pass this ID to the instance it creates.

servi ceProperties : in TpServicePropertyli st

Specifies the service properties and their values that are to be used to configure the service instance. These
properties form a part of the service level agreement. An example of these propertiesis alist of methods that
the client application is allowed to invoke on the service interfaces.

servi ceManager : out | pServiceRef Ref

Specifies the service manager interface reference for the specified application ID.
Raises

TpComonExcepti ons, P_I NVALI D PROPERTY

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010699
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 014 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: ¥ P UNAUTHORISED PARAMETER VALUE thrown if non-accessible servicelD is
provided
Source: ¥ CN5
Work item code: 3 OSA1l Date: 8 30/08/2001
Category: ¥ F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: & A number of methods on the IpLoadManager and IpFaultManager interfaces take
either a single servicelD or a list of servicelDs as a parameter. An APL should
only be allowed to invoked these methods if it has access to the specified
service(s) (signed a service agreement), as it is insecure to allow an APL to query
the fault or load statistics for someone else’s instance of a service.

Summary of change: & It is proposed that any method on the IpLoadManager and IpFaultManager
interfaces that accepts either a single servicelD or a list of servicelDs as a
parameter should check that the APL has signed a service agreement for the
specified service(s). If not, then the P UNAUTHORISED PARAMETER VALUE
exception should be thrown, with the string field of the exception indicating the
servicelD at fault.

Consequences if 3 Applications would be able to query information on other people’s instances of a
not approved: service.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 8.3.2,838

Other specs #* Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

CR page 1

1)

2)

3)

Fill out the above form. The symbols above marked 3 contain pop-up help information about the field that they are
closest to.

Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

Problem

A number of methods on the IpLoadManager and IpFaultManager interfaces take either a single servicelD or
a list of servicelDs as a parameter. An APL should only be allowed to invoked these methods if it has access
to the specified service(s) (signed a service agreement), as it doesn’t seem to make sense to allow an APL to
guery the fault or load statistics for someone else’s instance of a service.

Proposal

When a service agreement has been signed, that is when the FW operator agrees to provide a service to the
application. This agreement most likely includes some kind of quality of service parameters (e.g. the
maximum number of faults allowed before the agreement is to be terminated). It is only then that an APL
should have access to this data.

Lucent proposes that any method on the IpLoadManager and IpFaultManager interfaces that accepts either a
single servicelD or a list of servicelDs as a parameter should check that the APL has signed a service
agreement for the specified service(s). If not, then the

| P_SERVICE _ACCESS DENIEDUNAUTHORISED PARAMETER VALUE exception should be thrown, with
the string field of the exception indicating the servicelD at fault.

Resulting changes

8.3.2 Interface Class IpFaultManager

Method
activityTest Req()

The application invokes this method to test that the framework or a service is operational. On receipt of this request, the
framework must carry out atest on itself or on the specified service, to check that it is operating correctly. The
framework reports the test result by invoking the activity TestRes method on the | pAppFaultM anager interface. If the
application does not have access to a service instance with the specified servicel D, the

P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of the exception
shall contain the corresponding servicelD.

Parameters

activityTestID : in TpActivityTestlD
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svclD : in TpServicelD
Identifies either the framework or a service for testing. The framework is designated by a null value.
Raises
TpComonExcepti ons, P_I NVALI D SERVI CE | D, P UNAUTHORI SED PARAMVETER VALUE

Method
svcUnavai | abl el nd()

This method is used by the client application to inform the framework that it can no longer use the indicated service
(either due to afailure in the client application or in the service). On receipt of this request, the framework should take
the appropriate corrective action. The framework assumes that the session between this client application and service
instance isto be closed and updates its own records appropriately as well as attempting to inform the service instance
and/or its administrator. Attempts by the client application to continue using this session should be rejected. If the
application does not have access to a service instance with the specified servicel D, the

P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of the exception

| shall contain the corresponding servicelD.

Parameters

servicelD : in TpServicelD
I dentifies the service that the application can no longer use.

Raises
TpComonExceptions , P_I NVALI D_SERVI CE_| D, P UNAUTHORI SED PARAMETER VALUE

Method
genFaul t St at sRecor dReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for the framework and/or for specified services during the specified
time interval, which is returned to the client application using the genFaultStatsRecordRes operation on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

Parameters

timePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

servicelDs : in TpServicel DLi st

Specifies the framework and/or servicesto be included in the general fault statistics record. The framework is
designated by a null value.

Raises
TpComonExcept i ons—, _P_I'NVALI D_SERVI CE_I D, P_UNAUTHORI SED PARAMETER VALUE

8.3.8 Interface Class IpLoadManager

Method
guer yLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for individual services used by the application. If the application does not have access to a service instance with
the specified servicel D, the P UNAUTHORISED PARAMETER VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, load statistics records of the specified services are returned, otherwise the load statistics record of the
framework is returned.

timelnterval : in TpTinmelnterval
Specifies the time interval for which load statistics records should be reported.

Raises
TpCommonExcept i ons, _P_I NVALI D_SERVI CE_I D, _P_SERVI CE_NOT_ENABLED,
P UNAUTHORI SED PARAMETER VALUE

Method
regi st erLoadControl |l er ()

The client application uses this method to register to receive notifications of load level changes associated with the
‘ framework and/or with individual services used by the application. _If the application does not have accessto a service

instance with the specified servicel D, the P UNAUTHORISED PARAMETER VALUE exception shal be thrown.
The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and SCFsto be registered for load control. To register for framework load control only, the
servicel Dsisnull.

Raises
TpComonExcepti ons, P_I NVALI D SERVI CE_| D, P UNAUTHORI SED PARAMETER VALUE

Method
unr egi ster LoadControl | er()

The client application uses this method to unregister for notifications of load level changes associated with the
‘ framework and/or with individual services used by the application. _If the application does not have accessto a service

instance with the specified servicel D, the P UNAUTHORISED PARAMETER VALUE exception shal be thrown.
The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework
is designated by anull value.

Raises
TpComonExcept i ons, _P_I'NVALI D SERVI CE I D, P UNAUTHORI SED PARANVETER VALUE

Method
resunmeNotification()
The client application uses this method to request the framework to resume sending it load management notifications

associated with the framework and/or with individual services used by the application; e.g. after a period of suspension
‘ during which the application handled a temporary overload condition._ If the application does not have accessto a

service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_ VALUE exception shall be
thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and/or the services for which the sending of notifications of load level changes by the
framework should be resumed. The framework is designated by a null value.

Raises
TpCommonExcept i ons, _P_I NVALI D_SERVI CE_I D, _P_SERVI CE_NOT_ENABLED,
P UNAUTHORI SED PARAMETER VALUE

Method
suspendNotification()
The client application uses this method to request the framework to suspend sending it load management notifications

associated with the framework and/or with individual services used by the application; e.g. while the application handles
‘ atemporary overload condition._ If the application does not have access to a service instance with the specified

servicelD, the P UNAUTHORISED PARAMETER VALUE exception shall be thrown. The extralnformation field
of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework and/or the services for which the sending of notifications by the framework should be
suspended. The framework is designated by a null value

Raises
TpComonExcept i ons, _P_I NVALI D_SERVI CE_I D, _P_SERVI CE_NOT_ENABLED,_
P UNAUTHORI SED PARAMETER VALUE

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010703
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 015 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: 88 (U)SIMD ME/UED Radio Access Networkl:l Core Network

Title: & Introduction of Service Instance Lifecycle Management
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: 8 REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP IR 21.900. REL-5 (Release 5)

Reason for change: # There is no method that the Framework can invoke on the Service instance to
indicate that the Session has been terminated unless the Service implements the
IpSvcFaultManager interface. Even if that interface is supported the Framework
shouldn’t be using those methods if, for example, the Service Aareement should
be terminated because the contract governing its terms expires. There needs to
be a method that the framework can invoke to terminate the service instance.

Summary of change: # It is proposed that a new interface, IpServicelnstanceLifecycleManager, is
introduced. This interface will replace the IpSvcFactory interface. The existing
method on IpSvcFactory (createServiceManager) is carried over to the new
interface. In addition a new method — destroyServiceManager — is supported.

Consequences if 3 There will be no way to terminate a service instance which does not implement the
not approved: fault management interfaces. This means that the service instance cannot be
terminated and will therefore hold resources indefinitely.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: # 6.4,10.1,10.2,12.2,13.2

Other specs 3 Other core specifications *
affected: Test specifications
O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://Amww.3gpp.org/3G_Specs/CRs.him. Below is a brief summary:

1) Fill out the above form. The symbols above marked 3 contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

Current Situation

A service instance is brought into existence when the Application invokes signServiceAgreement on the Framework.
The Framework uses a Service Factory to create the instance, and areferenceto it is returned to the Application.

It could be considered then that a Session between the Application and Service instance has been started.
This Session is considered to be ended under the following conditions :-

The Application invokes | pAccess.terminateServiceAgreement()

The Application invokes | pFaultManager.svcUnavailabl el nd()

The Service instance invokes | pFwFaultM anager.appUnavail ablel nd()

The Service instance invokes | pFwFaultM anager.svcRemoval Ind()

The Framework invokes | pSvcFaultM anager.svcUnavailablelnd() — as a result of item 2 above

The Framework invokes | pSvcFaultManager.appRemovalInd() — possibly as aresult of item 2 above

(If the service instance invokes either of the above |pFwFaultManager methods the Framework needs to pass that
information on to the application, which can then decide whether to end the service agreement or not. Currently, the
I pAppFaultManager interface is lacking an appRemovallnd method so this cannot be done. Likewise, the

I pFaultManager is lacking a svcUnavailablel nd which the application could invoke to inform the framework that it is
having trouble with the service.)

Issue

Thereis currently no method that the Framework can invoke on the Service instance to indicate that the Session has
been terminated unless the Service implements the I pSvcFaultM anager interface. Even if that interface is supported the
Framework shouldn’'t be using those methods if, for example, the Service Agreement should be terminated because the
contract governing its terms expires. There needsto be a method that the framework can invoke to terminate the service
instance.

Proposal

The original proposal in N5-010577 is superceded as aresult of discussions held at the meeting in Sophia Antipolis. The
new proposal follows.

It is proposed that a new interface, | pServicelnstancelifecycleManager, is introduced. Thisinterface will replace the
I pSvcFactory interface.

The existing method on | pSvcFactory (createServiceManager) is carried over to the new interface. In addition a new
method - destroyServiceManager — is supported.

When an Application wants to end the session it has with a Service it invokes terminateServiceAgreement() on the
Framework’ s IpAccess interface and the Framework will invoke destroyServiceManager() on the Service's Service
Instance Lifecycle manager.

Resultant Changes

a New IpServicelnstancelifecycleManager interface
Q IpSvcFactory interface removed
@ The announceServiceAvailability method must be updated

In addition numerous sequence diagrams, class diagrams and text which include the |pSvcFactory interface or refer to
the service factory need to be updated.

Note: The service factory is referenced in the sequence diagram in section 10.2.1. This has been changed in this
contribution to reference the service instance lifecycle manager, but the change will not show up properly.

Note that N5-010697 introduces the service instance id to the createServiceM anager method of 1pSvcFactory so this
should be carried over into the new | pServicel nstancelL ifecycleManager.

12.2.1 Interface ClasspSveFactory

12.2 Service Factery-Instance Lifecycle Manager Interface Classes

The HpSveFactory-| pServicel nstancel ifecycleM anager interface allows the framework to get access to a service

manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface
reference to the application. Each service has a service manager interface that istheinitial point of contact for the
service. E.g., the generic call control service uses the IpCallControlManager interface.

12.2.1 Interface Class IpServicelnstancelLifecycleManager

I nherits from: Iplnterface.

The I pServicel nstancel ifecycleM anager interface allows the Framework to create and destroy Service Manager
| nstances.

<<Interface>>

IpServicelnstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD, serviceManager : out IpServiceRefRef) : TpResult

destroyServiceManager (servicelnstancelD : in TpServicelnstancelD) : TpResult

Méethod
cr eat eSer vi ceManager ()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Parameters
application : in TpdientAppl D
Specifies the application for which the service manager interface is requested.

servi ceProperties . in TpServicePropertyli st

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form apart of the service level agreement. An example of these propertiesis alist of methods that the client application
is allowed to invoke on the service interfaces.

servi celnstancel D . in TpServicel nstancel D
Specifies the Service Instance ID that the new Service Manager isto be identified by.

servi ceManager : out | pServi ceRef Ref
Specifies the service manager interface reference for the specified application ID.

Ralses
TpConmmonExcepti ons, P | NVALI D PROPERTY

Méethod
dest r oySer vi ceManager ()

This method destroys an existing service manager interface reference. This will result in the client application being
unable to use the service manager any more.

Parameters

servi celnstance . in TpServicel nstancel D
Identifies the Service Instance to be destroyed.

Ralses

TpConmonExcept i ons

6.4 Trust and Security Management Sequence Diagrams

6.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application getsalist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needs to actually get away to useit.

Thisis achieved by the following two steps:

1 Service Selection: first step - selectService
In thisfirst step the Application identifies the SCF version it hasfinally decided to use. Thisis done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application anew identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.
Inputis:

in servicelD
Thisidentifies the SCF required.
And output:

out serviceToken
Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.
2: Service Selection: second step - signServiceAgreement
In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the meansto actually useit. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle managerservieefactery the Framework retrieves this
interface and returnsit to the Application. The service properties suitable for this application are also fed to the SCF
(viathe servieefacterylifecycle manager interface) in order for the SCS to instantiate an SCF version that is suitable for
this application.
Input:

in serviceToken
Thisistheidentifier that the network and Application have agreed to privately use for a certain version of SCF.

in agreementText
Thisisthe agreement text that isto be signed by the Framework using the private key of the Framework.

in signingAlgorithm
Thisisthe algorithm used to compute the digital signature.
Output:

out signatureAndServiceMgr
Thisis areference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

10.1 Service Registration Sequence Diagrams

10.1.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

1 Registration: first step - register service
The purpose of thisfirst step in the process of registration isto agree, within the network, on anameto call, internally,
anewly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come
from different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicelD.
This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).
The following input parameters are given from the SCSto the Framework in thisfirst registration step:

in serviceTypeName
Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").

in servicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isatriplet (ServicePropertyName,
ServicePropertyVauelist, ServicePropertyMode).
. ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed
in the SCF data definition).
. ServicePropertyValuelist isanumbered set of types TpServicePropertyVaue; TpServicePropertyVaueisa
string that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data definition).

ServicePropertyMode is the value of the property modes (e.g. "mandatory™, meaning that all properties of this
SCF must be given values at service registration time).
The following output parameter results from service registration:

out servicelD
Thisisastring, automatically generated by the Framework of this network, based on the following:

astring that contains a unique number, generated by the Framework;

astring that identifies the SCF name (e.g. "P_MPCC");

a concatenation of strings that identify the SCF specialization, if any.
Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.
2: Registration: second step - announce service availability
At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to useit. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called servicefactorylifecycle manager, is used. The role of the
lifecycle managerservicefactoery isto control the life cycle of an interface, or set of interfaces, and provide clients with
the references that are necessary to invoke the methods offered by these interfaces. The starting point for a client to use
an SCF isto obtain an interface reference to a lifecycle managerservieefactery of the desired SCF.
A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle managerservieefactory for it that will allow client to useit. Then it will inform the
Framework of the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework
makes the new SCF (identified by the pair [servicel D, servicelnstancel ifecycleM anagerservieeractoryRef])
discoverable.
The following input parameters are given from the SCS to the Framework in this second registration step:

in servicelD
Thisistheidentifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the servicel D, to know which SCF it is.

in servieeFacteryRefservicel nstancel ifecycleM anagerRef
Thisisthe interface reference at which the servicefacterylifecycle manager of the new SCF is available. Note that the
Framework will have to invoke the method createServiceManager() in thisinterface, any time between now and when it
accepts the first application requests for discovery, so that it can get the service manager interface necessary for
applications as an entry point to any SCF.

10.2 Service Factory-Instance Lifecycle Manager Sequence Diagrams

10.2.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding sections.

AppLogic : IDAppAccess : IpAppCallC : Iplnitial : IpAccess GenericCallControlService : : IpCallControlManager
IpServicelnstance
Lifecych
1 1
'We assume that the application is already authenticated and discovered the service it wants to use ﬁ
L
1: selectService()

2: signServiceAgreement()

3: signServiceAgreement()

r(_) 5: new()

6 new()
. | }
7: setCallback()
gl
1 The application selects the service, using a servicel D for the generic call control service. The servicelD could
have been obtained via the discovery interface. A ServiceToken is returned to the application.
2: The framework signs the service agreement.
3: The client application signs the service agreement. As aresult a service manager interface reference (in this
case of type IpCallControlManager) is returned to the application.
4. Provided the signature information is correct and all conditions have been fulfilled, the framework will request

the service identified by the servicel D to return a service manager interface reference. The service manager isthe initia
point of contact to the service.

5: The servieefactorylifecycle manager creates a new manager interface instance (a call control manager) for the
specified application. It should be noted that thisis an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

6: The application creates a new | pAppCallControlManager interface to be used for callbacks.

7. The Application sets the callback interface to the interface created with the previous message.

13.2 Service Faetery-Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for the Service Faeterylnstance Lifecycle Manager.

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010708
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
% 29.198-03 CR 016 ¥ ev _ # Curentversion: 4 1.0 ¥

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: ¥ (U)SIMEI ME/UE|:| Radio Access Networkl:l Core Network

Title: ¥ Add support for multi-vendorship
Source: ¥ CN5
Work item code: 8 OSA1 Date: 3 30/08/2001
Category: ® F Release: ¥ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP IR 21.900. REL-5 (Release 5)

Reason for change: 3 By having specified only the interfaces for registration and service factory, the 3GPP
specification does not allow multi-vendorship asit is not possible for an SCS based on the
TS 29.198 from one vendor to work with the FW implementation of another vendor. At
this moment there is e.g. no support for obtaining access to the OSA framework, the
integrity management, etc between an SCS and the FW in the TS 29.198. Therefore there
is no way to fulfill multi-vendorship.

In addition, in order to support e.g. registration of new Service Capabilities that are within
the same domain as the Framework it is required to unambigously specify on how trusted
SCSs obtain access to the OSA Framework. At this moment, however, the specification is
not clear on how trusted entities would gain access to the OSA Framework. Therefore,
there is currently also no support for multi-vendorship within a single domain.

Summary of change: 3 The multi-vendorship requirement can be fulfilled when the complete set of interfaces
between Framework and Services, as present in the scope of ETSI SPAN 12 and Parlay
3.0, isadopted in the TS 29.198. Therefore in this CR the complete set of interfaces
between SCS and FW isintroduced. This allows support for multi-vendorship (in multiple
domains).

For the multi-vendorship within a single domain a new sequence in the Trust and Security
Management is introduced (section 10.1.1) to show how trusted parties obtain accessto
the OSA Framework.

Consequences if ¥ No support for multi-vendorship.
not approved:

Clauses affected: ¥ 10

Other specs & Other core specifications S
affected: Test specifications
O&M Specifications

3GPP

Other comments: ¥

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.

Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

10 Framework-to-Service Sequence Diagrams

10.1 Trust and Security Management Sequence Diagrams

10.1.1 |Initial Access for trusted parties

The following figure shows atrusted party (SCS), typically within the same domain as the Framework, accessing the
OSA Framework for the first time. Trusted parties don’'t need to be authenticated and after contacting the Initial
interface the Framework will indicate that no further authentication is needed and that the SCS can immediately gain
access to other framework interfaces. Thisis done by invoking the requestA ccess method.

: IpSvcAPILevelAuthentication Service : IpFwinitial Fram ework . IpDFwAPILevelAuthentication

1: initiateA uthentication()
|
I

2: authenticationSucceeded()

|
|
|
|
/‘
|
|

‘ ‘ 3‘: requestAccess(‘)	
\ \ \ \	
\ \ \ \

1: Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public” (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2. Authentication Succeeded

Based on the domainl D information that was supplied in the Iniate Authentication step, the Framework knows it deals
with atrusted party and no further authentication is needed. Therefore the Framework provides the authentication
succeeded indication.

3. Reguest Access

The Application invokes requestAccess on the Framework's APl Level Authenticaiton interface, providing in turn a
reference to its own access interface. The Framework returns areference to its access interface.

10.2 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

10-110.3 Service Registration Sequence Diagrams

10-3210.3.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

3GPP

92}
n

I;:_)FWServica?egistration

1: registerSenice()

2: announceSenviceAvailability()

1: Registration: first step - register service

The purpose of thisfirst step in the process of registration is to agree, within the network, on anameto cal, internaly, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicelD.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in thisfirst registration step:
in serviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
in servicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty is atriplet (ServicePropertyName,
ServicePropertyValuelist, ServicePropertyMode).

ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in the
SCF data definition).

ServicePropertyValuelist isanumbered set of types TpServicePropertyVaue; TpServicePropertyValueisastring
that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data definition).

ServicePropertyMode is the value of the property modes (e.g. "mandatory"”, meaning that al properties of this SCF
must be given values at service registration time).

The following output parameter results from service registration:
out servicelD

Thisisastring, automatically generated by the Framework of this network, based on the following:
a string that contains a unique number, generated by the Framework;

astring that identifies the SCF name (e.g. "P_MPCC");

3GPP

a concatenation of strings that identify the SCF specialization, if any.

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2. Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of anew SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point”, called service factory, is used. Therole of the service factory isto
control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary to
invoke the methods offered by these interfaces. The starting point for a client to use an SCF isto obtain an interface
reference to a factory of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a factory for it that will allow client to useit. Then it will inform the Framework of the value of
the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the new SCF
(identified by the pair [servicel D, serviceFactoryRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:
in servicelD

Thisistheidentifier that has been agreed in the network for the new SCF; any interaction related to the SCF needsto
include the servicel D, to know which SCF it is.

in serviceFactoryRef

Thisisthe interface reference at which the service factory of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in this interface, any time between now and when it accepts the first
application requests for discovery, so that it can get the service manager interface necessary for applications as an entry
point to any SCF.

Service Factory Sequence Diagrams

10-2.110.4.1 _ Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding sections.

3GPP

Applogic : IpAppAccess : IpAppCallControlManager . IplInitial : IpAccess [GenericCaliControlService : | : IpCallControlM
‘ IpSv cFactory
e assume that the application s already authenticated and discovered thesewice it wants to use ﬁ
' 1: selectsérv\ce() ' '
\ 2: signServiceAgreement() = \
M 3: signServiceAgreement() ! !
iceManager(_), 5: new() ,
6: new() ' B '
, 7: setCallback() ,

1: The application selects the service, using a servicel D for the generic call control service. The servicel D could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: Theframework signs the service agreement.

3: Theclient application signs the service agreement. Asaresult a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

4. Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the servicel D to return a service manager interface reference. The service manager istheinitial
point of contact to the service.

5. The service factory creates a new manager interface instance (acall control manager) for the specified application. It
should be noted that thisis an implementation detail. The service implementation may use other mechanism to get a
service manager interface instance.

6. The application creates a new | pAppCallControlManager interface to be used for callbacks.

7. The Application sets the callback interface to the interface created with the previous message.

10.5 Integrity Management Sequence Diagrams

10.5.1 Load Management: Client and Service Load Balancing

3GPP

Application : Framework : Framework : Senvice :
IpAppLoadManager IpLoadManager IpLoadManager IpSvcLoadManager

Framework checks
application load.

1: queryAppLoadReq()

: 2: queryAppLoadRes() U

/U Depending on the load, the
framework maychose to stop

sending notifications to the
application, to allowits load to
reduce.

3: suspendNotification()

LF U ' 4: querySvcLoadReq()

The framework may then check
the load on the service, and take
action if (according to the load
balancing policy) if required.

5: querySvcLoadRes()

r u

10.5.2 Load Management: Service callback registration and load control

This sequence diagram shows how a service creates aload level notification request for itself and the framework
invokes |oad management function based on policy.

3GPP

: IpSvcl.oadManager : IpFwLoadManager,

1: createLoadLevelNotification()

Framework detects its . . .
L 2: load change detection & policy evaluation
load condition change
and initiates load control @\l
action ——_3: loadLevelNotification() \\
T \
1
— This is the

implementation detail

4: load change delgctio & policy evaluation

—

This is the
implementation detail

5: loadLevelNotification()

6: destroyLoadLevelNotification()

105-210.5.3 Fault Management: Service requests Framework activity test

3GPP

Framework : Senice :

IpFwFaultManager IpSwvcFaultManager
1: activity TestReq() : The Senice requests that the
Framework does an activity test.
u\ The Framework is identified as the
‘ target of the test by a NULL appld

parameter value.

2: activityTestRes()

1: The service asks the framework to carry out its activity test. The service denotes that it reguires the activity test done
for the framework, rather than an application, by supplying aNULL value for the applD parameter.

2. Theframework carries out the test and returns the result to the service.

10.5.310.5.4 Fault Management: Service requests Application activity test

3GPP

Senvice : Framework : Framework : Application :
IpSwvcFaultManager IpFwFaultManager IpFwFaultMa... IpAppFaultManager

‘ 1: activityTestReq()
U w The Framework checks appld

parameter to identify which Application
the test is directed at, and
comunicates internally to Framework
interface to the Application.

: 2: appActivityTestReq()

| g

The application
carries out the
activity test and

returns the result to
the Framework.

: 3: appActivityTestRes()

| Internal Framework ! .
| Communications. '
4: activityTestRes() ‘ ‘

i H

1. The service asks the framework to invoke an activity test on aclient application, the application is identified by the
appld parameter.

2. Theframework asks the application to do the activity test. It is assumed that there is internal communication
between the service facing part of the framework (i.e |pFwFaultM anager interface) and the part that faces the client

application.
3: The application does the activity test and returns the result to the framework.

4: The framework internally passes the result from its application facing interface (I pFaultM anager) to its service
facing side, and sends the result to the service.

10.5410.5.5 Fault Management: Application requests Service activity test

3GPP

Client Application : Framework : Framework : Senice :
IpAppFaultManager IpFaultManager IpFaultManager IpSwcFaultManager

The client application asks the
framework to carry out the
activity test on a senvice.

1: activity TestReq()

] g

The Framework identifies which
senice the test is directed at by the
swcID parameter, and
communicates internally with the
appropriate framework interface.
Which invokes the call on the
senice.

2: swcActivity TestReq()

Tt

Senice does test and
returns the result.

: swActivity TestRes()

iy u

Framework passes result
internally from senice facing
part to application facing part,
and sends the result to the
application.

4: activity TestRes()

) |

1. Theclient application asks the framework to invoke an activity test on a service, the serviceisidentified by the
svcld parameter.

2. The framework asks the service to do the activity test. It is assumed that there is internal communication between
the application facing part of the framework (i.e IpFaultM anager interface) and the part that faces the service.

3. The service does the activity test and returns the result to the framework.

4. Theframework internally passes the result from its service facing interface (IpFwFaultM anager) to its application
facing side, and sends the result to the client application.

3GPP

10.5.510.5.6 Fault Management: Application detects service is unavailable

Client Application : Framework : Framework : Senice :
IpAppFaultManager IpFaultManager IpFault Manager IpSwcFault Manager

The application detects that
the senvice is not responding,
so it informs the framework via
the sweUnavailableind method
and then ceases use of the
senice.

: sweUnavailablelnd()

The framework informs the
senvice that the application
is no longer using it.

2: appRemovalind()

I

1. Theclient application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework and takes action to stop using this
service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The
client application should not need to re-authenticate in order to discover and use an alternative service instance.

2. The framework informs the service instance that the client application was unable to get a response from it and has
ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the
client application as one of the users of this service instance. The service or framework may then decide to carry out an
activity test to see whether there is a general problem with the service instance that requires further action.

10.6 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

10.7 Heartbeat Management: Start/perform/end heartbeat
supervision of the service

3GPP

Framework

IpHeartBeat IpSvcHeartBeatMgmt

1: enableSvcHeartBeat()

2: pulse()

N

3: pulse()

Ih

— | At a certain point of
time the framework
decides to stop
heartbeat supervision

4: disableHeartBeat()

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decidesthat it is satisfied with the service s health and disables the heartbeat mechanism. |f the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

3GPP

Framework-to-Service Class Diagrams

<<lInterface>>
IpSvcAccess
from Senice Interfaces)

*terminateAccess()

<<uses>> .

<<Interface>>
pSwcAPILewlAuthentication
(from Senvice Interfaces)

®authenticate()
*%abortAuthentication()

AN

<Interface>>
IpFwinitial
(from Framework interfaces)

<<lInterface>>
IpFwAccess
(from Framework interfaces)

[Y R AP P o A
radtnentcatighoucceeaeal)
\

<<uses>> '

<<Interface>>
IpFWA PlLevelAuthentication
(from Framework interfaces)

*initiateAuthentication()

%obtaininterface()

*%obtaininterfaceWithCallback()

*®endAccess()

®selectEncryptionMethod()
%authenticate()
®abortAuthentication()

[P R PR P Aadn
radtnenticationsucceeaedl)

"/

<<Interface>>
IpFwAuthentication
(from Framework interfaces)

*requestAccess()

Figure: Trust and Security Management Package Overview

3GPP

<Interface>>
IpFwServiceDiscovery

(from Framework interfaces)

%listSeniceTypes()
*describeSeniceType()
*discoverSenice()
%|istRegisteredSenices()

Figure: Service Discovery Package Overview

<<Interface>>
IpFwSeniceRegistration
(rom Framework interfaces)

*registerSenice()
*announceSeniceAvailability ()
%unregisterSenice()
*describeSenice()
*unannounceSenice()

Figure: Service Registration Package Overview

3GPP

<<Interface>>
IpS\cFactory
from Senice Interfaces)

%createSeniceManager()

<<Interface>>

Figure: Service Factory Package Overview

<<Interface>>
IpSvcLoadManager

querySvcLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotificatio...
suspendNotification()
resumeNotification()

<<uses>> '

<<Interface>>
IpSvcFaultManager

activity TestRes()
svcActivity TestReq()
fwFaultReportind()
fwFaultRecoveryInd()
fwUnavailableind()
svcUnavail ableind()
appRemovalind()

genFaultStatsRecordRes()

<<Interface>>
IpS\cOAM

systemDateTimeQuery()

<<Interface>>
IpFwLoadManager

<<uses>>

<<Interface>>
IpFwFaultManager

IpSvcHeartBeatMgmt e —
IpSvcHeartBeat
enableSvcHeartBeat()
disableSwcHeartBeat() |1 0..n
. send()
changeTimePeriod()
<<uses>> | <<uses>> '
<<Interface>>
IpFwHeartBeatMgmt <<Interface>>
IpFwHeartBeat
enableHeartBeat() 1 0.n
disableHeartBeat() send()
changeTimePeriod()

reportLoad ()
queryLoadReq()
querySwvcLoadRes()
querySwvc LoadErr()
registerLoadController()
unregister_oadController()
suspendNotific ation()
resumeNatification()

activity TestReq|()
swcActivity TestRes()
appUnavailablelnd()

genFaultStatsRecordReq()

swcRemovalind()

Figure: Integrity Management Package Overview

3GPP

<<uses>> '

<<Interface>>
IpPFWOAM

systemDate...

<<Interface>>
IpSvcEventNotification
(from Senvice Interfaces)

*reportNotification()
*notificationTerminated()

'\
N

<<uses>> |

<<Interface>>
IpFwEventNotification

(rom Framework Interfaces)

*createNotification()
*destroyNotification()

Figure: Event Notification Package Overview

3GPP

12 Framework-to-Service Interface Classes

12.1 Trust and Security Management Interface Classes

12.1.1 Interface Class IpFwinitial

Inherits from: | plnterface.

The service entity gains areference to the |pFwlnitial interface for the Framework provider that it wishes to access. This
may be gained through a URL, a stringified object reference, etc. At this stage, the service entity has no guarantee that
thisis areference to the Framework provider. The service entity uses this interface to initiate the authentication process
with the Framework provider. The IpFwlnitial interface supports the initiateA uthentication operation to allow the
authentication process to take place. This operation must be the first invoked by the service entity. Invocations of other
operations will fail until authentication has been successfully completed.

<<lInterface>>

[pFwinitial

initiate Authentication (svcDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method
I nitiateAut hentication()

The service entity uses this method to initiate the authentication process.

Returns <fwDomain> : This provides the service entity with a framework identifier, and areference to cal the
authentication interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authl nterface: I plnterface;
L The

domainl D parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the service
entity. The authl nterface parameter is a reference to the authentication interface of the framework. The type of this
interface is defined by the authType parameter. The service entity uses this interface to authenticate with the
framework.

Parameters

svcDomain : in TpAut hDomain

This identifies the service entity to the framework, and provides areference to the entity's authentication interface.
structure TpAuthDomain {
domainlD:TpDomainiD;
authl nterface: | pl nterface;
I
The domainlD parameter is an identifier either for an existing registered service (i.e. TpServicel D) or for a service
supplier (i.e. TpServiceSupplierlD). It isused to identify the service (supplier) to the framework, (see authenticate() on
IpFWAPILevel Authentication). If the framework does not recognise the domaini D, the framework throws the
P INVALID DOMAIN ID exception. The authlnterface parameter is areference to call the authentication interface of

3GPP

the service (supplier). The type of thisinterface is defined by the authType parameter. If the interface reference is not of
the correct type, the framework throwsthe P INVALID INTERFACE TY PE exception.

aut hType : in TpAut hType

This identifies the type of authentication mechanism requested by the service entity. It provides the opportunity to use
an alternative to the OSA Authentication interface, e.q. an implementation specific authentication mechanism like
CORBA Security, using the FwAuthentication interface, or Operator specific Authentication interfaces. OSA
Authentication is the default authentication mechanism (P OSA_ AUTHENTICATION). If

P OSA AUTHENTICATION is selected, then the svcDomain and fwDomain authl nterface parameters are references
to interfaces of type IpSvc/FWAPILevel Authentication. If P AUTHENTICATION is selected, the authlnterface
parameters are refereces to interfaces of type | pSvc/FwA uthentication which is used when an underlying distibution
technology authentication mechanism is used.

Returns
TpAut hDonai n

Raises
TpCommonExceptions, P INVALI D DOVAIN I D, P | NVALI D | NTERFACE TYPE,
P | NVALI D AUTH TYPE

12.1.2 Interface Class IpFwAuthentication

Inherits from: | plnterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.

<<Interface>>

IpFwAuthentication

requestAccess (accessType : in TpAccessType, svcAccessinterface : in IpinterfaceRef) : IpIinterfaceRef

Method
request Access()

Once service entity and framework are authenticated, the service entity invokes the requestAccess operation on the

| pFwA uthentication or IpFwWAPIL evel Authentication interfaces. This allows the service entity to request the type of
access it requires. If it requests P OSA _ACCESS, then a reference to the | pFwA ccess interface is returned. (Operators
can define their own access interfaces to satisfy service requirements for different types of access.)

If this method is called before the service entity and framework have successfully completed the authentication process,
then the request fails, and the P ACCESS DENIED exception is thrown.

Returns <fwA ccessinterface> : This provides the reference for the service entity to call the access interface of the
framework.

3GPP

Parameters

accessType . in TpAccessType

This identifies the type of access interface requested by the service entity. If the framework does not provide the type of
access identified by accessType, thenthe P INVALID ACCESS TY PE exception is thrown.

svcAccesslinterface : in IplnterfaceRef

This provides the reference for the framework to call the access interface of the service entity. |If the interface reference
is not of the correct type, the framework throwsthe P INVALID INTERFACE TY PE exception.

Returns
| pl nterfaceRef

Raises
TpCommonExcepti ons, P ACCESS DEN ED, P | NVALI D ACCESS TYPE,
P | NVALI D | NTERFACE TYPE

12.1.3 Interface Class IpFwAPILevelAuthentication

Inherits from: | pFwAuthentication.

Once the service entity has made initial contact with the provider, authentication of the service entity and Framework
provider may be required. The APl supports multiple authentication techniques. The procedure used to select an
appropriate techniqgue for a given situation is described below. The authentication mechanisms may be supported by
cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of
cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication
technigue selected. In some cases strong authentication may need to be enforced by the framework provider to prevent
misuse of resources. |n addition it may be necessary to define the minimum encryption key length that can be used to
ensure a high degree of confidentiality. The service entity must authenticate with the framework before it will be able
to use any of the other interfaces supported by the framework. Invocations on other interfaces will fail until
authentication has been successfully completed

1. The service entity calls initiateAuthentication on the provider's |pFwlnitial interface. This allows the service entity
to specify the type of authentication process. This authentication process may be specific to the Framework
provider, or to the implementation technology used. The initiateAuthentication operation can be used to designate
the specific process, (e.g. CORBA security could be used in a CORBA -based i mplementation of OSA). OSA
defines a generic authentication interface (IpFwAPI Level A uthentication), which can be used to perform the
authentication process. The initiateA uthentication operation allows the service entity to pass areferenceto its
IpSvcAPIL evel Authentication interface to the Framework, and receive areference to the
|pFWAPI L evel Authentication interface supported by the framework, in return.

2. The service entity invokes the selectEncryptionM ethod on the framework's | pFwAPI L evel Authentication interface.
This includes the encryption capabilities of the service entity. The framework then chooses an encryption method
based on the encryption capabilities of the service entity and the framework. |f the service entity is capable of
handling more than one encryption method, then the framework chooses one option, the prescribedMethod. In
some instances, the encryption capability of the service entity may not fulfil the demands of the framework, in
which case, the authentication will fail.

3. The service entity and framework interact to authenticate each other. For an authentication type of
P OSA ACCESS, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This
authentication protocol is performed using the authenticate operation on the | pFwAPI Level Authentication
interface. P OSA ACCESS is based on CHAP, which is primarily a one-way protocol. Mutual authentication is
achieved by the framework invoking the authenticate method on the service entity’ s APl Level Authentication
interface.

NOTE: At any point during the access session, either side can request re-authentication. Re-authentication
does not have to be mutual.

3GPP

<<Interface>>

IpFWAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

authenticate (challenge : in TpOctetSet) : TpOctetSetRef

abortAuthentication () : void

authenticationSucceeded () : void

Method
sel ect Encrypti onMet hod()

The service entity uses this method to initiate the authentication process. The framework returns its preferred
mechanism. This should be within the capability of the service entity. If a mechanism that is both acceptable to the
framework and within the capability of the service entity cannot be found, then the throwsthe P NO ACCEPTABLE
ENCRYPTION CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a
predefined unit of time before invoking the service entity’ s authenticate() method (the wait is to ensure that the service
entity can initialise any resources necessary to use the prescribed encryption method)

Returns <prescribedmethod> : Thisis the mechanism preferred by the framework for the encryption process. If the
service entity does not understand the value of the prescribedM ethod returned by the framework, it is considered a
catastrophic error and the service entity must abort the authentication process.

Parameters
encryptionCaps : in TpEncrypti onCapabilitylLi st
This is the means by which the encryption mechanisms supported by the service entity are conveyed to the framework.

Returns
TpEncrypti onCapability

Raises
TpConmmonExcepti ons, P NO ACCEPTABLE ENCRYPTI ON CAPABI LI TY

Method
aut henti cat e()

The service entity uses this method to authenticate the framework. The challenge will be encrypted using the
mechanism prescribed by selectEncryptionM ethod. The framework must respond with the correct responses to the
challenges presented by the service entity. The servicel D received in the initiateAuthentication() can be used by the
framework to reference the correct public key for the service entity (the key management system is currently outside of
the scope of the OSA API specification). The number of exchanges is dependent on the policies of each side. The
whole authentication process is deemed successful when the authenticationSucceeded method isinvoked. The

3GPP

invocation of this method may be interleaved with authenticate() calls by the framework on the service entity’s
APIL evel Authentication interface.

Returns <response> : This is the response of the framework to the challenge of the service entity in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by the
selectEncryptionM ethod() method.

Parameters

chall enge : in TpCctet Set

The challenge presented by the service entity to be responded to by the framework. The challenge mechanism used will
be in accordance with the |ETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC
1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod().

Returns

TpString

Raises
TpComoDnExcept i ons

Method
abort Aut henti cati on()

The service entity uses this method to abort the authentication process. This method isinvoked if the service entity no
longer wishes to continue the authentication process, (unless the application responded incorrectly to achallengein
which case no further communication with the application should occur.) If this method has been invoked, callsto the
requestAccess operation on |pFwWAPILevel Authentication will result inthe P ACCESS DENIED exception will be
thrown, until the service entity has been properly authenticated.

Parameters
No Parameters were identified for this method

Raises
TpComonExcepti ons, P ACCESS DEN ED

Method
aut henti cati onSucceeded()

The service entity uses this method to inform the Framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

3GPP

12.1.4 Interface Class IpFwAccess

Inherits from: | plnterface.

Once the service entity has authenticated with the framework provider, the service entity can gain access to other
framework interfaces. After authentication, the service entity can gain access to the framework's functions, by invoking
the requestA ccess method on the |pFwAPI Level A uthentication or |pFwA uthentication interfaces. This allows the
service entity to request the type of accessthey require. If they request P OSA ACCESS, then areference to the
IpFwA ccess interface is returned. (Operators can define their own access interfaces to satisfy service entity
reguirements for different types of access.) The service entity must also provide the framework with areferenceto a
‘callback’ interface to allow the framework to initiate i nteractions during the access session. If the service entity has
requested P OSA _ACCESS, then they must provide areference to a |pSvcAccess interface to the framework. The
IpFwA ccess interface allows the service entity to gain references to other interfaces offered by the framework.
References to these framework interfaces are gained by invoking the obtainlnterface, or obtainlnterfaceWithCallback
operations. The latter is used when a callback interface is supplied to the framework. For example, a service registration
interface reference is returned when invoking obtainlnterface with "registration” as the interface name. The endAccess
operation is used to end the service entity's session with the framework. After it isinvoked, the service entity will no
longer be authenticated with the framework. The service entity will not be able to use the references to any of the
framework interfaces gained during the access session. Any calls to these interfaces will fail. The IpSvcAccess
interface is offered by the service entity to the framework to allow the framework to initiate i nteractions during the
access session. It can be used to terminate the access session and request that the service entity re-authenticate.

<<Interface>>

IpFwAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpIinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, svcinterface : in IplnterfaceRef) :
IpinterfaceRef
endAccess (endAccessProperties : in ToEndAccessProperties) : void

listinterfaces(frameworklinterfaces: out Tplnterfacelist) : void

releaselnterface(interfaceName : in TpinterfaceName) : void

Method
obt ai nl nterface()
This method is used to obtain other framework interfaces. The service entity uses this method to obtain interface

references to other framework interfaces. (The obtainl nterfacesWithCallback method should be used if the service
entity isrequired to supply a callback interface to the framework.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

Parameters

interfaceNane : in TplnterfaceNane

The name of the framework interface for which areferenceisreguested. If the interfaceName is invalid, the framework
throwsthe P INVALID INTERFACE NAME exception.

3GPP

Returns
| pl nterfaceRef

Raises
TpCommonExcepti ons, P ACCESS DEN ED, P | NVALI D | NTERFACE NAME

Method
obt ai nl nterfaceWthCal | back()

This method is used to obtain other framework interfaces. The service entity uses this method to obtain interface
references to other framework interfaces, when it is required to supply a callback interface to the framework. (The
obtainl nterface method should be used when no callback interface needs to be supplied.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

Parameters

interfaceNane : in TplnterfaceNane

The name of the framework interface for which areference isrequested. If the interfaceName isinvalid, the framework
throwsthe P INVALID INTERFACE NAME exception.

svcinterface : in |plnterfaceRef

Thisisthe reference to the service entity interface, which is used for calbacks. |If the interface reference is not of the
correct type, the framework throwsthe P INVALID INTERFACE TY PE exception.

Returns
| pl nterfaceRef

Raises
TpCommonExcepti ons, P ACCESS DEN ED, P | NVALI D | NTERFACE NAME,
P | NVALI D | NTERFACE TYPE

Method
endAccess()
The service entity uses this method to end its access session with the framework. After it isinvoked, the service entity

will no longer be authenticated with the framework. The service entity will not be able to use the references to any of
the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

Thisisalist of propertiesthat can be used to tell the framework the actions to perform when ending the access session
(e.q. existing application sessions may be stopped, or |eft running). |f aproperty is not recognised by the framework,
the P INVALID PROPERTY exception isthrown.

3GPP

Raises
TpCommonExcepti ons, P ACCESS DEN ED, P | NVALI D PROPERTY

Method
listlnterfaces()

The service entity uses this method to obtain the names of all interfaces supported by the framework. It can then
obtain the interfaces it wants to use using either obtainl nterface() or obtainlnterfaceWithCallback().

Parameters

frameworkl nterfaces : out TplnterfaceNanelLi st
The frameworklnterfaces parameter contains alist of interfaces that the framework makes available.

Raises
TpCommonExcepti ons, P ACCESS DEN ED

Method
rel easel nterface()

The service entity uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceNane : in TplnterfaceNane

Thisis the name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P INVALID INTERFACE NAME exception. If the interface has not been given to the service entity
during this access session, then the P TASK REFUSED exception will be thrown.

Raises
TpCommonExcepti ons, P ACCESS DEN ED, P | NVALI D | NTERFACE NAME

12.1.5 Interface Class IpSvcAPILevelAuthentication

Inherits from: | plnterface.

<<Interface>>

IpSvcAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet

3GPP

abortAuthentication () : void

authenticationSucceeded () : void

Method
aut henti cat e()

The framework uses this method to authenticate the service entity. The challenge will be encrypted using the
mechanism prescribed in selectEncryptionM ethod. The service entity must respond with the correct responses to the
challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The whole
authentication process is deemed successful when the authenti cationSucceeded method isinvoked. The invocation of
this method may be interleaved with authenticate() calls by the service entity on the | pFWAPI L evel Authentication
interface.

Returns <response> : This is the response of the service entity to the challenge of the framework in the current
seguence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

challenge : in TpString

The challenge presented by the framework to be responded to by the service entity. The challenge mechanism used will
be in accordance with the |ETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC
1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod().

Returns

TpString

Raises
TpConmbnExcepti ons

Method
abort Aut henti cati on()

The framework uses this method to abort the authentication process. This method isinvoked if the framework wishes to
abort the authentication process, (unless the service entity responded incorrectly to a challenge in which case no further
communication with the service entity should occur.) If this method has been invoked, calls to the requestAccess
operation on | pFwWAPI L evel Authentication will result inthe P ACCESS DENIED exception being thrown until the
service entity has been properly authenticated.

Parameters
No Parameters were identified for this method

Raises
TpConmbnExcepti ons

3GPP

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the service entity of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

Raises
TpConmbnExcepti ons

12.1.6 Interface Class IpSvcAccess

Inherits from: | plnterface.

<<Interface>>

IpSvcAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :

in TpString) : void

Method
t erm nat eAccess()

This method is used to end the service entity's access session with the framework. The service entity must re-
authenticate if it wishes to continue its association with the framework. The service entity will not be able to use the
references to any of the framework interfaces gained during the access session. Any method invocations associated
with these interfaces will fail. If at any point the framework's level of confidence in the identity of the service entity
becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service
agreements for that entity and should take steps to terminate the entity's access sesssion WITHOUT invoking
terminateAccess() on the service entity. This follows a generally accepted security model where the framework has
decided that it can no longer trust the service entity and will therefore sever ALL contact with it.

Parameters

term nationText : in TpString
Thisisthe termination text that describes the reason for the termination of the access session.

signingAlgorithm: in TpSi gni ngAl gorithm
Thisis the agorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the
service entity, the P INVALID _SIGNING ALGORITHM exception is thrown.

3GPP

digital Signature : in TpString

Thisis asigned version of a hash of the termination text. The framework uses this to confirm its identity to the service
entity. The service entity can check that the framework has signed the terminationText. |f amatch is made, the access
session is terminated, otherwisethe P INVALID _SIGNATURE exception is thrown.

Raises
TpCommonExcepti ons, P I NVALI D SI GNI NG ALGORI THM P | NVALI D SI GNATURE

12.112.2 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register anew service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous section enables the service
supplier to obtain alist of al the service types supported by the framework and their associated sets of service property
values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

121.112.2.1 Interface Class IpFwServiceRegistration
Inherits from: Iplnterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList,
servicelD : out TpServicelDRef) : TpResult

announceServiceAvailability (servicelD : in TpServicelD, serviceFactoryRef : in IpSvcFactoryRef) : TpResult
unregisterService (servicelD : in TpServicelD) : TpResult
describeService (servicelD : in TpServicelD, serviceDescription : out TpServiceDescriptionRef) : TpResult

unannounceService (servicelD : in TpServicelD) : TpResult

Method
regi sterService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications . A service-1D isreturned to the service supplier when a service isregistered in

3GPP

the Framework. The service-ID isthe handle with which the service supplier can identify the registered service when
needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Parameters

servi ceTypeNane : in TpServiceTypeNane

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in
further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string
representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TY PE exception is
raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it isnot a
recognised service type, thenaP_UNKNOWN_SERVICE_TY PE exception is raised.

servi cePropertyList : in TpServicePropertyli st

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioral, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An
example of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type of any of the property valuesis not the same as the declared type (declared in the service type), then a
P_PROPERTY_TYPE_MISMATCH exceptionisraised. If an attempt is made to assign a dynamic property value to a
readonly property, then the P READONLY_DYNAMIC_PROPERTY exceptionisraised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exceptionisraised. If two or more properties with the same property name
areincluded in this parameter, the P_ DUPLICATE_PROPERTY _NAME exception israised.

servicel D : out TpServicel DRef

Thisisthe unique handle that is returned as a result of the successful completion of this operation. The Service Supplier
can identify the registered service when attempting to access it via other operations such as unregisterService(), etc.
Enterprise client applications are a so returned this service-1D when attempting to discover a service of thistype.

Raises
TpConmmonExcept i ons, P_| LLEGAL_SERVI CE_| D, P_UNKNOWN_SERVI CE_| D, P_PROPERTY T
YPE_M SMATCH, P_DUPLI CATE_PROPERTY_NAME,

P | LLEGAL_SERVI CE_TYPE, P_UNKNOWN_SERVI CE_TYPE, P_M SSI NG_MANDATORY_PROP
ERTY

Method
announceServi ceAvai l abi lity()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service factory isinstantiated
at aparticular interface. This method informs the framework of the availability of "service factory" of the previously
registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework
makes the corresponding service discoverable.

There exists a " service manager"instance per service instance. Each service implements the |pSvcFactory interface. The
I pSvcFactory interface supports a method called the createServiceM anager(application: in TpClientAppl D,
serviceManager: out IpServiceRefRef). When the service agreement is signed for some servicel D (using
signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and
returns this to the client application.

3GPP

Parameters

servicelD : in TpServicel D

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenan P_ILLEGAL_SERVICE_ID exceptionisraised. If the"servicelD" islegal but
there is no service offer within the Framework with that 1D, then an P_UNKNOWN_SERVICE_ID exception is raised.

servi ceFactoryRef : in |IpSvcFact oryRef
The interface reference at which the service factory of the previously registered service is available.

Raises
TpConmonExcept i ons, P_| LLEGAL_SERVI CE_| D, P_UNKNOAN_SERVI CE_I D, P_I NVALID I N
TERFACE _TYPE

Method

unr egi st er Servi ce()

The unregisterService() operation is used by the service suppliersto remove a registered service from the Framework.
The serviceisidentified by the "service-ID" which was originally returned by the Framework in response to the

registerService() operation. The service must be in the SCF Registered state. All instances of the service will be
deleted.

Parameters

servicelD : in TpServicelD

The service to be withdrawn is identified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service
identifiers, thenan P_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicelD" islegal but thereis no service
offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception israised.

Raises
TpConmmonExcept i ons, P_| LLEGAL_SERVI CE_| D, P_UNKNOWN_SERVI CE_| D

Method
descri beService()
The describeService() operation returns the information about a service that is registered in the framework. It comprises,

the "type" of the service, and the "properties’ that describe this service. The service isidentified by the "service-1D"
parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicel D assigned.

Parameters

servicelD : in TpServicelD

The service to be described is identified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
thenan P_ILLEGAL_SERVICE_ID exceptionisraised. If the"servicelD" islega but there is no service offer within
the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

3GPP

servi ceDescription : out TpServiceDescripti onRef

This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the
service, and the properties that describe this service.

Raises
TpComonExcepti ons, P_| LLEGAL_SERVI CE | D, P_UNKNOM SERVI CE I D

Method
unannounceSer vi ce()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has aready performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

servicelD : in TpServicel D

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey
the rules for service identifiers, thenan P_ILLEGAL_SERVICE_ID exceptionisraised. If the"servicelD" is legal but
there is no service offer within the Framework with that 1D, then an P_UNKNOWN_SERVICE_ID exception israised.

Raises
TpComonExcept i ons, P_| LLEGAL_SERVI CE_| D, P_UNKNOWN_SERVI CE_| D

‘ 12212.3 Service Factory Interface Classes

The IpSvcFactory interface allows the framework to get access to a service manager interface of aservice. It isused
during the signServiceAgreement, in order to return a service manager interface reference to the application. Each
service has a service manager interface that isthe initial point of contact for the service. E.g., the generic call control
service uses the IpCallControl M anager interface.

‘ 12.2112.3.1 Interface Class IpSvcFactory

Inherits from: Iplnterface.

3GPP

Method
cr eat eSer vi ceManager ()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Parameters
application : in TpdientApplD
Specifies the application for which the service manager interface is requested.

servi ceProperties : in TpServicePropertyli st

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these propertiesisalist of methods that the client application
is alowed to invoke on the service interfaces.

servi ceManager : out | pServi ceRef Ref
Specifies the service manager interface reference for the specified application ID.

Raises
TpComonExcepti ons, P_I NVALI D_PROPERTY

12.4 Service Discovery Interface Classes

This APl complements the Service Registration functionality described in another section.

Before a service can be registered in the framework, the service supplier must know what "types' of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returns alist of all "service types' that are currently supported by the framework and the "describeServiceTypeg()"
method returns a description of each service type. The description of service type includes the "service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of thelist will depend upon the framework
implementation; e.q. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously reqgistered.

12.4.1 Interface Class IpFwServiceDiscovery

Inherits from: | plnterface.

<<lInterface>>

IpFwServiceDiscovery

3GPP

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

Method
| i st ServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

Returns
TpServi ceTypeNanelLi st

Raises
TpConmbnExcepti ons

Method
descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service type is currently enabled or disabled.

Parameters

name . in TpServiceTypeNane

The name of the service type to be described. If the "name" is maformed, thenthe P ILLEGAL SERVICE TYPE
exception israised. If the "name" does not exist in the repository, then the P UNKNOWN SERVICE TY PE exception
israised.

3GPP

Returns
TpServi ceTypeDescri pti on

Raises
TpCommonExceptions, P | LLEGAL SERVI CE TYPE, P UNKNOWN SERVI CE TYPE

Method
di scover Servi ce()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin
alist of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesiit is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return |ess than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <servicelList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service property { name, mode and value list} tuples associated with the service.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P ILLEGAL SERVICE TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P UNKNOWN_SERVICE TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertyli st

The "desiredPropertyList" parameter is alist of service property { name, mode and value list} tuples that the required
services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired
service. The property valuesin the desired property list must be logically interpreted as " minimum”, "maximum", €etc.
by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It
is suggested that, at the time of service registration, each property value be specified as an appropriate range of values,

so that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max : in Tplnt32
The "max" parameter states the maximum number of servicesthat are to be returned in the "servicel ist" result.

Returns
TpServi celi st

Raises
TpCommonExceptions, P | LLEGAL SERVI CE TYPE, P UNKNOMWN SERVI CE TYPE,
P | NVALI D PROPERTY

3GPP

Method
| i st Regi st eredServi ces()

Returns alist of services so far registered in the framework.

Returns <servicelist> : The "serviceList" parameter returns alist of registered services. Each service is characterised
by its service ID and alist of service property { name, mode and value list} tuples associated with the service.

Parameters
No Parameters were identified for this method

Returns
TpServi celi st

Raises
TpConmbnExcepti ons

12.5 Integrity Management Interface Classes

12.5.1 |Interface Class IpFwFaultManager

Inherits from: | plnterface.

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the API,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the | pFwA ccess interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailablelnd () : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubiject : in TpSubjectType) : void

svcUnavailablelnd (reason : in TpSvcUnavailReason) : void

3GPP

Method
activityTest Req()
The service instance invokes this method to test that the framework or the client application is operational. On receipt of

this reqguest, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activityTestRes method on the |pSvcFaultM anager interface.

Parameters

activityTestID : in TpActivityTestlD
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubject Type
Identifies the subject for testing. (framework or client application).

Raises
TpConmbnExcepti ons

Method
svcActivityTest Res()

The service instance uses this method to return the result of aframework-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpConmmonExceptions, P INVALID ACTIVITY TEST |ID

Method
svcActivityTestErr ()

The service instance uses this method to indicate that an error occurred during a framework-reguested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P I NVALID ACTIVITY TEST |ID

3GPP

Method
appUnavai | abl el nd()
This method is used by the service instance to inform the framework that the client application is not responding. On

receipt of thisindication, the framework must act to inform the client application that it should cease use of this service
instance.

Parameters
No parameters were identified for this method.

Raises
TpConmbnExcepti ons

Method
genFaul t St at sRecor dReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the

IpSvcFaultM anager interface.

Parameters

tinePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

testSubject : in TpSubject Type
Specifies the subject to be included in the general fault statistics record. (framework or application).

Raises
TpConmbnExcepti ons

Method
svcUnavai | abl el nd()
This method is used by the service instance to inform the framework that it is about to become unavailable for use. The

framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablel nd method on the | pAppFaultM anager interface).

Parameters

reason : in TpSvcUnavail Reason
Identifies the reason for the service instance's unavailability.

Raises
TpConmbnExcepti ons

3GPP

12.5.2 Interface Class IpSvcFaultManager

Inherits from: | plnterface.

Thisinterface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the |pFwA ccess interface

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestlD, activityTestResult : in TpActivityTestRes) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpinterfaceFault) : void

fwFaultRecoveryind (fault : in TpinterfaceFaultRef) : void

fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

appUnavailablelnd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) :

void

Method
activityTest Res()

The framework uses this method to return the result of a service-reguested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpConmmonExceptions, P INVALID ACTIVITY TEST |ID

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

3GPP

Parameters

activityTestID : in TpActivityTestlD
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpCommonExcepti ons, P INVALI D ACTIVITY TEST |ID

Method
svcActivityTest Req()
The framework invokes this method to test that the service instance is operational. On receipt of this request, the service

instance must carry out atest on itself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the | pFwFaultM anager interface.

Parameters

activityTestID : in TpActivityTestlD
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

Raises
TpComoDnExcept i ons

Method
f wFaul t Report | nd()

The framework invokes this method to notify the service instance of a failure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault . in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Raises
TpConmmbnExcepti ons

Method
f wFaul t Recoveryl nd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.
The service instance may then resume using the framework.

3GPP

Parameters

fault : in TplnterfaceFaul t Ref
Specifies the fault from which the framework has recovered.

Raises
TpConmmbnExcepti ons

Method
f wWnavai | abl el nd()

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavail Reason
I dentifies the reason why the framework is no longer available

Raises
TpComoDnExcept i ons

Method
svcUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance (either due to afailure in the client application or in the service instance itself). The
service instance should assume that the client application is leaving the service session and should act accordingly to
terminate the session from its own end too.

Parameters
No parameters were identified for this method.

Raises
TpComoDnExcept i ons

Method
appUnavai | abl el nd()
The framework invokes this method to inform the service instance that the client application is ceasing its current use of

the service. This may be aresult of the application reporting afailure. Alternatively, the framework may have detected
that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

3GPP

Parameters
None identified for this method.

Raises
TpComopnExcept i ons

Method
genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a service in response to a genFaultStatsRecordReq
method invocation on the | pFwFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

recordSubject : in TpSubjectType
Specifies the entity (framework or applications) whose fault statistics record has been provided.

Raises
TpComoDnExcepti ons

Method
genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
agenFaultStatsRecordReq method invocation on the | pFwFaultM anager interface.

Parameters

faul tStatisticsError : in TpFaultStatsError
The fault statistics error.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises
TpConmonExcepti ons

12.5.3 Interface Class IpFwHeartBeatMgmt

Inherits from: | plnterface.

This interface allows the initialisation of a heartbeat supervision of the framework by a service instance.

3GPP

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changelnterval (interval : in TpInt32, session : in TpSessionID) : void

Method
enabl eHear t Beat ()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in Tplnt32
The duration in milliseconds between the heartbeats.

svclnterface : in | pSvcHeart Beat Ref
This parameter refers to the callback interface the heartbeat is calling.

Raises
TpCommonExcepti ons, P I NVALI D | NTERFACE TYPE

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters
None identified.

Raises
TpConmbnExcepti ons

Method
changel nt erval ()

Allows the administrative change of the heartbeat interval.

3GPP

Parameters

interval : in Tplnt32
Thetimeinterva in milliseconds between the heartbeats.

Raises
TpConmmbnExcepti ons

12.5.4 Interface Class IpFwHeartBeat

Inherits from: | plnterface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.

<<Interface>>

IpFwHeartBeat

ulse () : void

Method

pul se()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. [If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
None.

Raises
TpComobnExcept i ons

12.5.5 |Interface Class IpSvcHeartBeatMgmt

Inherits from: | plnterface.

This interface allows the initialisation of a heartbeat supervision of the service instance by the framework.

<<lInterface>>

IpSvcHeartBeatMgmt

3GPP

enableSvcHeartBeat (interval : in TpInt32, fwinterface : in [pFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32, session : in TpSessionID) : void

Method
enabl eSvcHear t Beat ()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval..

Parameters

interval : in Tplnt32
Thetimeinterva in milliseconds between the heartbeats.

fwnterface : in | pFwHeart Beat Ref
This parameter refers to the callback interface the heartbeat is calling.

Raises
TpCommonExcepti ons, P I NVALI D | NTERFACE TYPE

Method
di sabl eSvcHeart Beat ()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
None identified.

Raises
TpConmmbnExcepti ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

Raises
TpConmbnExcepti ons

3GPP

12.5.6 Interface Class IpSvcHeartBeat

Inherits from: | plnterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat.

<<lInterface>>

IpSvcHeartBeat

ulse () : void

Method

pul se()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pul se at
the end of every interval specified in the parameter to the | pFwHeartBeatM gmt.enableHeartbeat() method. |f the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
None identified.

Raises
TpConmbnExcepti ons

12.5.7 Interface Class IpFwLoadManager

Inherits from: | plnterface.

The framework APl should allow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the |load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what |oad management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework |oad management function is represented
by the IpFwL oadManager interface. To handle responses and reports, the service developer must implement the

IpSvclL oadM anager interface to provide the callback mechanism.

<<Interface>>

IpFwLoadManager

3GPP

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubiject : in TpSubjectType, timelnterval : in TpTimelnterval) : void

querySvclLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notifSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notifSubject : in TpSubjectType: void

suspendNotification (notifSubject : in TpSubjectType) : void

resumeNotification (notifSubject : in TpSubjectType) : void

Method
report Load()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.q. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

| oadLevel : in TpLoadLeve
Specifies the service instance 's load level.

Raises
TpConmbnExcepti ons

Method
quer yLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType
Specifies the entity (framework or applications) for which load statistics records should be reported

tinelnterval : in TpTinelnterva
Specifies the timeinterval for which load statistics records should be reported.

3GPP

Raises
TpConmbnExcepti ons

Method
guerySvclLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadReq method on the |pSvcl oadM anager interface.

Parameters

| oadStatistics : in TpLoadStati sticLi st
Specifies the service-supplied load statistics.

Raises
TpComoDnExcept i ons

Method
guerySvcLoadErr ()
The service instance uses this method to return an error response to the framework that requested the service instance 's

load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.€. in
response to an invocation of the querySvcl oadReg method on the IpSvcl oadM anager interface.

Parameters

| oadStatisticError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance 's load statistics.

Raises
TpComobnExcept i ons

Method
creat eLoadLevel Notification()

The service uses this method to register to receive notifications of load level changes associated with the framework or
with the application that uses the service instance.

Parameters

notif Subject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

3GPP

Raises
TpConmbnExcepti ons

Method
destroylLoadlLevel Notification()

The service uses this method to unregister for notifications of load level changes associated with the framework or with
the application that uses the service instance.

Parameters

notif Subject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises
TpComoDnExcept i ons

Method
suspendNotification()
The service instance uses this method to request the framework to suspend sending it notifications associated with the

framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notif Subject : in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises
TpComopnExcepti ons

Method
resuneNotification()
The service instance uses this method to request the framework to resume sending it notifications associated with the

framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled atemporary overload condition.

3GPP

Parameters

notif Subject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises
TpConmonExcepti ons

12.5.8 Interface Class IpSvcLoadManager

Inherits from: | plnterface.

The service devel oper supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the

IpFwA ccess interface.

<<Interface>>

IpSvclLoadManager

querySvcLoadReq (timelnterval : in TpTimelnterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNoatification () : void

Method
quer ySvcLoadReq()

The framework uses this method to request the service instance to provide its |oad statistic records.

Parameters

tinmelnterval : in TpTinelnterval
Specifies the time interval for which load statistic records should be reported.

3GPP

Raises
TpConmbnExcepti ons

Method
guer yLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the gueryL oadReq method on the |pFwL oadM anager interface.

Parameters

| oadStatistics : in TpLoadStati sticLi st
Specifies the framework-supplied load statistics

Raises
TpComoDnExcept i ons

Method
guer yLoadErr ()
The framework uses this method to return an error response to the service-instance that requested the framework's load

statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pFwL oadM anager interface.

Parameters

| oadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's |oad statistics.

Raises
TpComobnExcept i ons

Method
| oadLevel Noti fication()

Upon detecting |oad condition change, (e.g. load level changing fromOto 1, 0to 2, 1 to O, for the applications or
framework which have been registered for load level notifications) this method isinvoked on the SCF.

Parameters

| oadStatistics : in TpLoadStatisticlList
Specifies the framework-supplied load statistics, which include the |oad level change(s).

3GPP

Raises
TpConmbnExcepti ons

Method
suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method

Raises
TpConmmbnExcepti ons

Method
resuneNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition.

Parameters
No Parameters were identified for this method

Raises
TpConmmonExcepti ons

12.5.9 Interface Class IpFwOAM

Inherits from: | plnterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API.

<<Interface>>

IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

3GPP

Method
syst enDat eTi neQuer y()

This method is used to guery the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisisthe system date and time of the framework.

Parameters

clientDateAndTinme . in TpDat eAndTi ne

Thisisthe date and time of the client (service). The P INVALID DATE TIME FORMAT exception isthrown if the
format of the parameter isinvalid.

Returns
TpDat eAndTi e

Raises
TpComonExceptions, P INVALI D TI ME AND DATE FORVAT

12.5.10 Interface Class IpSvcOAM

Inherits from: | plnterface.

<<lInterface>>

IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi neQuer y()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (service).

3GPP

Parameters

systenDat eAndTine : in TpDat eAndTi ne

Thisisthe system date and time of the framework. The P INVALID DATE _TIME FORMAT exception isthrown if
the format of the parameter isinvalid.

Returns
TpDat eAndTi e

Raises
TpCommonExcepti ons, P I NVALID Tl ME AND DATE FORVAT

12.6 Event Notification Interface Classes

12.6.1 Interface Class IpFwEventNotification

Inherits from: | plnterface.

The event notification mechanism is used to notify the service of generic events that have occurred.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentlD

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifies the |D assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

3GPP

Returns
TpAssi gnnent | D

Raises
TpCommonExcepti ons, P I NVALID EVENT TYPE, P INVALID CRI TERI A

Method
destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignnentI D : in TpAssignnmentl D

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment | D does not correspond to one of the valid assignment 1Ds, the framework will throw the
P INVALID ASSIGNMENT ID exception.

Raises
TpCommonExcepti ons, P | NVALI D ASSI GNMENT | D

12.6.2 Interface Class IpSvcEventNotification

Inherits from: | plnterface.

Thisinterface is used by the framework to inform the service of ageneric event. The Event Notification Framework
will invoke methods on the Event Notification Service |nterface that is specified when the Event Notification interface
is obtained.

<<lInterface>>

IpSvcEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the service of the arrival of ageneric event.

3GPP

Parameters

eventInfo : in TpFwEventInfo
Specifies specific data associated with this event.

assignnent! D : in TpAssignnmentl D

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises
TpCommonExcepti ons, P | NVALI D ASSI GNMVENT | D

Method
noti ficationTer m nat ed()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults

detected).

Parameters
No Parameters were identified for this method

Raises
TpConmmbnExcepti ons

3GPP

13 Framework-to-Service State Transition Diagrams

13.1 Trust and Security Management State Transition Diagrams

There are no State Transition Diagrams defined for Trust and Security Management

13-113.2 Service Registration State Transition Diagrams

13-31313.2.1 State Transition Diagrams for IpFwServiceRegistration

egisterSenice

" scF |
Registered

A /

_ e I
unannounceSenice announceServiceAvailability

/N

| describeService

\ \/
\}/

4 N

‘ SCF
‘ Announced

L J

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

3GPP

‘ 13-1313113.2.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

‘ 13414.213.2.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer availablefor discovery.

13:213.3 _ Service Factory State Transition Diagrams

There are no State Transition Diagrams defined for Service Factory

13.4 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

3GPP

Integrity Management State Transition Diagrams

13.5
13.5.1 State Transition Diagram for IpFwLoadManager

reportLoad
\querySvcLoadRes[load statistics requested by LoadManager]

\\‘ | querySvcLoadEn] load statistics requested by LoadManager]
\'s
} queryLoadReq

“load change™loadLevelNotification

createLoadLevelNotification
ACTIVE

destroyLoadLevelNotification

IpFwAccess.obtaininterface
IpFwAccass.obtdininterfaceWithCallba

/

/

\
\ susandNotification[all notifications suspended]

resu meNotifica\ution /
\

‘ \

\

\ |
) reportLoad
/\/\ Fﬁ uerySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

NOTIFICATION

queryLoadReq

SUSPENDED

destroyLoadLevelNotification

All States

IpFwAcFess.endAccess
\L/

@

/4

IDLE

In this state the service has obtained an interface reference to the | pFwL oadM anager from the | pFwA ccess interface.

ACTIVE

In this state the service has indicated its interest in notifications by performing a createl oadlL evel Notification()
invocation on the |pFwL oadManager. The load manager can now reguest the service to supply load statistics
information (by invoking querySvclL oadReq()). Furthermore the LoadM anager can request the service to control its
load (by invoking loadL evel Notification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects achange in load level, it reports this to the LoadManager by calling the method

reportlLoad().

NOTIFICATION SUSPENDED
Dueto, e.q. atemporary load condition, the service has requested the |oad manager to suspend sending the load level

notification information.

3GPP

13.6 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

14

3GPP

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010712
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 017 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: ¥ Removal of P_SERVICE_ACCESS TYPE
Source: # CN5
Work item code: 8 OSA1l Date: & 30/08/2001
Category: ¥ F Release: ¢ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 8 29.198-3 contains a P SERVICE ACCESS TYPE exception that has an
identical description to that of P INVALID ACCESS TYPE. No method in the
framework is capable of throwing this exception, and the exception wasn't in
Parlay 2.1.

Summary of change: 8 To remove the P_SERVICE_ACCESS_TYPE exception from 29.198-3.

Consequences if # P_SERVICE_ACCESS_TYPE exception is left redundant.

not approved: Failure to adopt this CR would result in divergence between the 3GPP R4

specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 16

Other specs #* Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

Resulting changes

16 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name

Description

P_ACCESS_DEN ED

The client is not currently authenticated with the framework

P_APPLI CATI ON_NOT_ACTI VATED

An application is unauthorised to access information and request
services with regards to users that have deactivated that particular
application.

P_DUPLI CATE_PROPERTY_NAME

A dupilcate property name has been received

P_I LLEGAL_SERVI CE_I D

Illegal Service ID

P_| LLEGAL_SERVI CE_TYPE

Illegal Service Type

P_I NVALI D_ACCESS_TYPE

The framework does not support the type of access interface requested
by the client.

P_I NVALI D_ACTI VI TY_TEST_I D

ID does not correspond to a valid activity test request

P_I NVALI D_AGREEMENT_TEXT

Invalid agreement text

P_I NVALI D_AUTH_CAPABI LI TY

Invalid authentication capability

P_I NVALI D_AUTH_TYPE

Invalid type of authentication mechanism

P_I NVALI D_CLI ENT_APP_| D

Invalid Client Application ID

P_I NVALI D_DOMAI N_I D

Invalid client ID

P_I NVALI D_ENT_OP_I D

Invalid Enterprise Operator ID

P_I NVALI D_PROPERTY

The framework does not recognise the property supplied by the client

P_I NVALI D_SAG | D

Invalid Subscription Assignment Group 1D

P_I NVALI D_SERVI CE_CONTRACT | D

Invalid Service Contract ID

P_I NVALI D_SERVI CE_I D

Invalid service ID

P_I NVALI D_SERVI CE_PROFI LE_| D

Invalid service profile ID

P_I NVALI D_SERVI CE_TOKEN

The service token has not been issued, or it has expired.

P_I NVALI D_SERVI CE_TYPE

Invalid Service Type

P_I NVALI D_SI GNATURE

Invalid digital signature

P_I NVALI D_SI GNI NG_ALGORI THM

Invalid signing algorithm

P_M SSI NG_MANDATORY_PROPERTY

Mandatory Property Missing

P_NO_ACCEPTABLE_AUTH_CAPABI LI TY

An authenti cation mechanism, which is acceptable to the framework,
is not supported by the client

P_PROPERTY_TYPE_M SMATCH

Property Type Mismatch

P_SERVI CE_ACCESS_DENI ED

The client application is not allowed to access this service.

P—SERVI-CE-ACCESS—TYPE

P_SERVI CE_NOT_ENABLED

The service ID does not correspond to a service that has been enabled

P_UNKNOWN_SERVI CE_| D

Unknown Sevice ID

P_UNKNOWN_SERVI CE_TYPE

Unknown Service Type

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010713
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 018 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Confusing meaning of prescribedMethod
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: ¢ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 3 Various sections of the specification convey confusion over the role of
authentication methods and authentication capabilities (encryption method)

Summary of change: # It is proposed to remove references to the authentication capabilities and replace
them with references to encryption methods to clarify the roles. The STD for
InAPILevelAuthentication has been reworked.

It is also proposed to remove the prescribedMethod parameter from the
authenticate() methods.

Consequences if 3 Confusion over the role and types of authentication capabilities will remain in the
not approved: specification.

The TS will be ambiguous and difficult to implement correctly — interworking will be
jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: # 4,64.2,6.4.4,8.1.5,9.1.2,15.3.3,15.3.4, and 16
Other specs #* Other core specifications S
affected: Test specifications

O&M Specifications

Other comments: 3

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:

http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked & contain pop-up help information about the field that they are
closest to.

2)

3)

Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to

the change request.

Problem

The concept of authentication capabilities seems to be muddled within the specification. The method which
is used to select these capabilities has already been renamed to selectEncryptionMethod(), because that is
what the method is actually used for. None, RSA512, RSA1024, DES56 and DES128 are the values for
TpAuthCapability. These are methods used for encrypting the challenge and are therefore encryption
capabilities, not authentication capabilities. Although RSA can be used as an authentication capability (due to
its support for digital signatures) it is not used as such within the framework.

However, there are many places in the specification which state that the prescribedMethod (returned from
selectEncryptionMethod) is used to determine how many challenge/response exchanges have to occur. The
values for the authentication capabilities do not specify the number of challenge/response exchanges that
need to be executed, only the method of encryption for the challenge.

Whether challenge/response exchanges are used for authentication or not is dependent on the method of
authentication decided at initiateAuthentication time. The authentication method of
P_OSA_AUTHENTICATION is based on CHAP, and can therefore utilise several challenge/response
exchanges (until the side initiating the challenge is satisfied that the far side has authenticated correctly).

CHAP authentication is one-way, but mutual authentication (two-way) can be used if the party being
authenticated decides to authenticate the other. There is no requirement within CHAP, and therefore should
be no requirement within the P_OSA_ AUTHENTICATION authentication type, that mutual authentication
must be performed.

Proposal

Lucent believes that various sections of the specification need to be updated to remove any confusion over
the role of authentication types and authentication capabilities (encryption method). We would also like to
remove references to the authentication capabilities and replace them with references to encryption methods
to clarify the roles.

The STD for IpAPILevelAuthentication will need to be reworked as it currently shows a failed
selectEncryptionMethod resulting in the object moving to the sink state. We don't feel that the object should
automatically move to the sink state just because no matching encryption method could be found in the first
invocation of selectEncryptionMethod. There is no reference to this in the text for selectEncryptionMethod.
Moving back to the IDLE state would allow the application to re-evaluate its encryption capabilities before
either trying again or invoking abortAuthentication (it is assumed that there is a guard timer to hold against
the application holding the object indefinitely). Besides which, the exception shown for this case is incorrect
in the STD.

Any text referencing one-way or two-way authentication will need to be modified as CHAP (which the
authentication method used within IpAPILevelAuthentication is based on) is primarily a one-way protocol
which allows for mutual authentication.

Text should be added that states that re-authentication can be requested at any time, by either party, and
does not have to be mutual authentication.

Lucent would also like to propose the removal of the prescribedMethod parameter from the authenticate()
methods. We feel that this parameter is redundant, as each side is already aware of the prescribedMethod.
In fact, the presence of this parameter can interfere with the authentication process, as the entity receiving
the authenticate() request needs to check that the prescribedMethod passed as a parameter matches the
method returned in the selectEncryptionMethod. If it does not match, then an exception has to be thrown.

Note: In removing this parameter, it was found that there is no use of P_INVALID_AUTH_CAPABILITY.
Should this be removed?

The framework overview section at the start of section 4 mentions that the application MUST authenticate the
framework. Lucent feels that mutual authentication should not be enforced by the API, and that it should be
the client application’s responsibility to decide if it needs to authenticate the framework. As long as the
framework has authenticated the application, and therefore trusts it, there seems to be no reason why the

framework should deny an application’s requests just because it hasn't yet tried to authenticate the
framework.

Resulting changes

4. Overview of the Framework

This subclause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circlesin the
diagram below). The description of the Framework in this document separates the interfaces into these two distinct sets:
Framework to Application interfaces and Framework to Service interfaces.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for anew user).
Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
mterface The authentlcatlon model of OSA is apeer- to-peer model, but authentication does not have to be mutual. Fhe
an versa-T he application must be authenticated before it is allowed
to use any other OSA mterface Itisa pollcv deC|S|0n for the application whether it must authenticate the framework or
not. It isa policy decision for the framework whether it allows an application to authenticate it before it has completed
its authentication of the application.

6.4.2 Initial Access

2: Select Encryption Method

The Application invokes selectEncryptionMethod on the Framework's APl Level Authentication interface, identifying
the agthentieation-encryption methods it supports. The Framework prescribes the method to be used.

3 Authenticate

4: The application provides an indication if authentication succeeded.

5: The Application and Framework authenticate each other-using-the-preseribecHmethed. The sequence diagram
illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level
Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the
correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using
the authenticate method on the Application's API Level Authentication interface.

6.4.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client application and the framework mutually

authenticate one another.
The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.
The application must authenticate with the Framework before it is able to use any of the other interfaces supported by
the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.
1) The application calls initiateAuthentication on the OSA Framework Initia interface. This alowsthe
application to specify the type of authentication process. This authentication process may be specific to the provider, or
the implementation technology used. The initiateA uthentication method can be used to specify the specific process,
(e.g. CORBA security). OSA defines generic a authentication interface (APl Level Authentication), which can be used
to perform the authentication process. The initiateAuthentication method allows the application to pass areference to its
own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the
client, in return. In this case the APl Level Authentication interface.
2) The application invokes the selectEncryptionMethod on the Framework's APl Level Authentication interface.
This includes the adthentieation-encryption capabilities of the application. The framework then chooses an
encryptionadthentication method based on the encryption authentieation-capabilities of the application and the
Framework. If the application is capable of handling more than one encrypti onadthentieation method, then the
Framework chooses one option, defined in the prescribedM ethod parameter. In some instances, the
| encryptionadthentication capability of the application may not fulfil the demands of the Framework, in which case, the
authentication will fail.
3) The application and Framework interact to authenticate each other. For an authentication method of
P_OSA_ACCESS, Pepending-onthemethedpreseribed;-this procedure may-consists of a number of messagese-g-—a
challenge/ response pretecetexchanges ThIS authentication protocol is performed using the authenucate method on the
API Level Authent|cat|on interface. Yy

er—en—beﬂorP OSA ACCESS is based on CHAP WhICh ispri marllv aone-way protocol M utual authentlcatlon is

achieved by the framework invoking the authenticate method on the application’ s APIL evel Authentication interface.

NOTE: At any point during the access session, either side can request re-authentication. Re-authentication
does not have to be mutual.

|
8.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: Iplnterface.

<<Interface>>

IpAppAPILevelAuthentication

authenticate (preseribedMethod——inTpAuthCapability;challenge : in TpString, response : out TpStringRef) :
TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method
aut henticate()

This method is used by the framework to authenticate the client application. The challenge will be encrypted using the
mechani sm indicated-in-prescribedMethodprescribed by selectEncryptionMethod. The client application must respond
with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the

policies of each side. The whole authenti cat| on process is deemed successful when the authenti cationSucceeded method
is mvoked a —{ These The mvocatlon of this method

challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
[RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod.

response : out TpStringRef

Thisisthe response of the client application to the challenge of the framework in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

8.1.5 Interface Class IpAPILevelAuthentication

Inherits from: |pAuthentication.

The API Level Authentication Framework interface is used by client application to perform its part of the mutual
authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the
Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (authCaps-encryptionCaps : in FpAuthGCapabilitybistT pEncryptionCapabilityList,
prescribedMethod : out FpAuthCapabilityRefTpEncryptionCapabilityRef) : TpResult

authenticate (preseribedMethod—in-TFpAuthCapability-challenge : in TpString, response : out TpStringRef) :
TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method
sel ect Encrypti onMet hod()

The client application uses this method to initiate the authentication process. The framework returnsiits preferred
mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the
framework within the capability of the client application cannot be found, the framework returas-an-error-code{ throws
the P NO_ACCEPTABLE AUTHENCRYPTION CAPABILITY)- exception. Once the framework has returned its
preferred mechanism, it will wait for a predefined unit of time before invoking the client’ s authenticate() method (the
wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method)

Parameters

encrypti onaut-hCaps : in FpAut-hGapabi-Htykist-TpEncrypti onCapabilityLi st

Thisis the means by which the adthentieation-encryption mechanisms supported by the client application are conveyed
to the framework.

prescri bedMethod : out TpEncrypti onAut-hCapabilityRef

Thisisreturned by the framework to indicate the mechanism preferred by the framework for the apthentication
encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the client
application, it is considered a catastrophic error and the client application must abort.

Raises

TpComonExcepti ons, P_ACCESS DEN ED,
P_NO_ACCEPTABLE_ENCRYPTI ONAUTH CAPABI LI TY

Method

aut henti cat e()

This method is used by the client application to authenticate the framework. The challenge will be encrypted using the
mechani sm Hadicated-inprescribedMethodprescribed by selectEncryptionMethod. The framework must respond with the
correct responses to the challenges presented by the client application. The clientApplD received in the
initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the
key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on
the policies of each side. The whole authentication process is deemed successful when the authenti cationSucceeded
method isinvoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the

client’s API Level Authentication interface.

challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
[RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStringRef

Thisisthe response of the framework to the challenge of the client application in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Raises

TpCommonExcept i ons, _P_ACCESS_DENI ED—P—NVALHD-AUTH-CAPABHLHTY

9.1.2 State Transition Diagrams for IpAPILevelAuthentication

Iplnitial.initiateAuthentication

requestAccess/ return
P_ACCESS_DENIED

Id ALL
STATES
selectEncryptionMethod abortAuthenti cation

requestAccess/ return IpAccess.endAccess
P_ACCESS_DENIED

"no mechanism found" ~result

InitAuthentication .
selectEncryptionMethod(P_INVALID_AUTH_CAPABILITY) ’

entry/ find auth. mechanism

mechanism found"[[two way authentication] “result
selectEncgryptianMethad(prescrihedMethad)

"mechanism found'}-6ne way authentication]

requestAccess/ return authenticate “result
P_ACCESS_DENIED Authenticate(response)

WaitForApplicationResult \1

entry/ "IpAppAPILevelAuthentication.Authenticate J result Authenticate[response invalid]

result Authenticate[response valid]

authenticate ~result Authenticate(response)
requestAccess/ return new IpAccess

Application Authenticated

IJ nitial.initiateAuthentication

request Access "P_ACCESS_DENI ED

-l

sel ect Encrypti onMet hod

Al l
"no method found"” ~P_NO_ACCEPTABLE_AUTH_CAPABIL|TY St at es

request Access ~P_ACCESS_DENI ED

<:::ji[Sel ectingMet hod
\

"found met hod" retur prescri bedMet hod “client.authenticate /.\

authenticate / "Buffer regq st"
request Access ~P_ACCESS_DENI|E

aut henticate result(VALID)[Authlpcomplete] ~client.authenticate

result(| NVALID)

Aut henticatingClient

authenticate result(VALID)[AuthComplete] / "Process authenticate
requests”
Aclient.authenticationSucceeded

request Access / new | pAccess

ClientAut henticated

"re-authenticate" “client.authenticate

Figure : State Transition Diagram for IpAPILevelAuthentication

9.1.2.1 Idle Sate

When the application-client has requested-invoked the I plnitial-Haterfacefor initiateAuthentication method, an object
implementing the IpAPILevel Authentication interface is created. The apphication-client now hasto provide its
adthentication-encryption capabilities by invoking the-SelectEncryptionM ethod-method.

9.1.2.2 nitAuthentication-SelectingMethod State

In this state the Framework selects the preferred adthentication-encryption mechanism within the capability of the
appheationclient. It isapolicy of the framework (perhaps agreed off- I|ne with the enterprrse operator) whether the client
hasto be When . 3l

ed-{one adithentication)-orthat-the-appH ,...__ e-be-authenti authentrcatedornot Incaseno
mechamsm can befound theerrepeedeP—LN#AHB—AUlHP NO ACCEPTABLE ENCRYPTION CAPABILITY
excgtron |sreturnedrthrown and the Authentrcatron obj ect rsdestreyedmoves back to the IDLE state—'Fh&mpHesthat

l—ptnrtral—mtertaee The cI|ent can now revrst |ts I|st of supported capab|l|t|esto |dent|fv whether it |scomplete If it has
no more encryption capabilities to use, then it must invoke abortAuthentication.-

9.1.2.3 WaitFerApphcationResult-AuthenticatingClient State

When entering this state, the Framework requests the application-client to authenticate itself by invoking the
Authenticate method on the apphicationclient. In case the apphieation-client requests the Framework to authenticate itself
by invoking Authenticate on the IpAPILevel Authentication interface, the Framework previdesthe-correctresponseto
thechallenge-of-the-applicationwill either buffer the requests and respond when the client has been authenticated, or
respond immediately, depending on policy. When the Framework has processed the resperdsresponse te-from the
Authenticate request_on the client, the response is analysed. If -and-r-case-the response is valid but the authentication
process is not yet complete, then another Authenticate request is sent to the client. If the responseisvalid and the

authentication process has been completed, then a transition to the state Appheation-ClientAuthenticated is made, the
client isinformed of its success by invoking authenticationSucceeded, then the framework begins to process any
buffered authenticate requests. In case the response is not valid, the Authentication object is destroyed. Thisimplicates
that the application-client has to re-initiate the authentication by calling once more the initiateAuthentication method on
the Iplnitia interface.

9.1.2.4 Apphication-ClientAuthenticated Sate

In this state the apphication-client is considered authenticated and is now allowed to request access to the IpAccess
interface. In case the apphication-client requests the Framework to authenticate itself by invoking Authenticate on the

I pAPILevel Authentication interface, the Framework provides the correct response to the challenge-ef-the-apptication._|f
the framework decides to re-authenticate the client, then the authenticate request is sent to the client and atransition
back to the AuthenticatingClient state occurs.

19.3.3 TpAuthCapabilityl5.3.3 TpEncryptionCapability

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the adthentication
encryption capabilities that could be supported by the ©SAframework. Other Network operator specific capabilities may
also be used, but should be preceded by the string “ SP_". Capabilities may be concatenated, using commas (,) as the
separation character. The following values are defined .

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES 56 A simpletransfer of secret information that is shared

between the client application and the framework with
protection against interception on the link provided by the
DES algorithm with a 56bit shared secret key

P_DES_128 A simple transfer of secret information that is shared
between the client entity and the framework with protection
against interception on the link provided by the DES
agorithm with a 128bit shared secret key

P_RSA_512 A public-key cryptography system providing authentication
without prior exchange of secrets using 512 bit keys
P_RSA_1024 A public-key cryptography system providing authentication

without prior exchange of secrets using 1024bit keys

1934 TpAuthCapabilitylist 15.3.4 TpEncryptionCapabilitylList

This datatypeisidentical to a TpString. It isastring of multiple FpAuthCapabitity-TpEncryptionCapability
concatenated using a comma (,)as the separation character.

16 Exception Classes

The following are the list of exception classes which are used in thisinterface of the API.

Name Description
P_ACCESS_DEN ED Theclient is not currently authenticated with the framework
P_APPLI CATI ON_NOT_ACTI VATED An application is unauthorised to access information and request
services with regards to users that have deactivated that particular
application.
P_DUPLI CATE_PROPERTY_NAVE A dupilcate property name has been received
P_I LLEGAL_SERVI CE_I D Illegal Service ID
P_I LLEGAL_SERVI CE_TYPE Illegal Service Type
P_I NVALI D_ACCESS_TYPE The framework does not support the type of access interface requested
by the client.
P_INVALI D ACTIVITY_TEST_ID ID does not correspond to avalid activity test request
P_I NVALI D_AGREEMENT_TEXT Invalid agreement text
P_I NVALI D_AJFHENCRYPTI ON CAPABI LI TY Invalid authentication-encryption capability
P_I NVALI D_AUTH_TYPE Invalid type of authentication mechanism
P_INVALI D CLIENT_APP_ID Invalid Client Application ID
P_I NVALI D_DOVAI N_I D Invalid client ID
P_INVALI D ENT_OP_I D Invalid Enterprise Operator ID

Name

Description

P_I N\VALI D_PROPERTY

The framework does not recogni se the property supplied by the client

P_I NVALI D_SAG | D

Invalid Subscription Assignment Group 1D

P_I NVALI D_SERVI CE_CONTRACT_| D

Invalid Service Contract ID

P_I NVALI D_SERVI CE_I D

Invalid service ID

P_I N\VALI D_SERVI CE_PROFI LE_I D

Invalid service profile ID

P_I NVALI D_SERVI CE_TOKEN

The service token has not been issued, or it has expired.

P_I NVALI D_SERVI CE_TYPE

Invalid Service Type

P_I NVALI D_SI GNATURE

Invalid digital signature

P_I NVALI D_SI GNI NG_ALGORI THM

Invalid signing algorithm

P_M SSI NG MANDATORY PROPERTY

Mandatory Property Missing

P_NO_ACCEPTABLE_AUJTHENCRYPT| ON CAPAB
ITITY

An adthentication-encryption mechanism, which is acceptable to the
framework, is not supported by the client

P_PROPERTY_TYPE_M SMATCH

Property Type Mismatch

P_SERVI CE_ACCESS_DEN ED

The client application is not allowed to access this service.

P_SERVI CE_ACCESS_TYPE

The framework does not support the type of access interface requested
by the client.

P_SERVI CE_NOT_ENABLED

The service ID does not correspond to a service that has been enabled

P_UNKNOWN_SERVI CE_| D

Unknown Sevice ID

P_UNKNOWN_SERVI CE_TYPE

Unknown Service Type

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010714
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 019 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 8 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # A client should only have one instance of a given service
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: ¢ REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: # The specification currently does not state that an application can not have more
than one instance of the same service running at the same time. This can bring
about a problem when the framework attempts to communicate with the
application. For example, method IpAppFaultManager.svcUnavailablelnd() takes
as its argument a servicelD. When the Framework invokes this method, there is
no way to determine which instance of that ID the invocation is meant to deal with.

Summary of change: 8 Some text should be placed in the description of selectService, which states that
an exception will be thrown if the client application attempts to select a service
when it already has a live instance of that service.

Consequences if # The specification will be ambiguous and incorrect with regards to the existence of
not approved: a 1-2-1 relationship between an application and a service instance.

The TS will be ambiguous and difficult to implement correctly — interworking will be
jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 8.16

Other specs 3 Other core specifications *
affected: Test specifications
O&M Specifications

Other comments: 3

Problem

In the IpAppFaultManager interface, there is a svcUnavailableind() method. This method is invoked when the
framework needs to inform the client that it can no longer use a service (perhaps due to a heartbeat failure).
The parameter to this method is a single servicelD.

However, there is currently nothing in the specification that states that an application cannot have more than
one instance of the same service. If the application has two instances of call control, and it receives this
svcUnavailablelnd telling it that its call control is going down, how does it know which instance is no longer
available?

Its perfectly conceivable that the other call control instance is still running perfectly, so Lucent doesn't believe
that this method can be said to apply to ALL instances of the service that were allocated to this application.
To do so would be dictating the implementation style of the service and its factory, which is not within the
remit of the framework.

As a more general note, Lucent cannot see the value for an application to obtain two identical instances of
the same service. One argument is that the application might wish to have two instances of the same service
so that it can perform load balancing between them. However, load balancing, in this case, should be
performed by the service instance transparently to the application.

Proposal

Lucent believes that some text should be placed in the description of selectService which states that an
exception will be thrown if the client application attempts to select a service when it already has a live
instance of that service. This would prevent the application from having two instances of the same service
and would address the problem above.

Resulting changes

8.1.6 Interface Class IpAccess

Method
sel ect Ser vi ce()

This method is used by the client application to identify the service that the client application wishesto use. If the client
application is not allowed to access the service, then an-errercode{ the P SERVICE_ACCESS DENIED)-s+etdrned
exception isthrown. The P SERVICE _ACCESS DENIED exception is also thrown if the client attemptsto select a
service for which it has already signed a service agreement for, and therefore obtained an instance of.

Parameters

servicelD : in TpServicelD

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

servi ceToken : out TpServi ceTokenRef

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. Thiswill
contain operator specific information relating to the service level agreement. The serviceToken has alimited lifetime. If
the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code
(P_INVALID_SERVICE_TOKEN). Service Tokenswill automatically expireif the client application or framework
invokes the endAccess method on the other's corresponding access interface.

Raises
TpComonExcept i ons, P_ACCESS _DEN ED, P_|I NVALI D_SERVI CE I D,
P SERVI CE ACCESS DEN ED

3GPP TSG_CNS5 (Open Service Access — OSA) N5-010715
Meeting #12, Sophia Antipolis, FRANCE, 16 — 19 July 2001

CR-Form-v4

CHANGE REQUEST
® 20.198-03 CR 020 ¥ ev _ X Currentversion: 4 1.0 £

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: & (U)SIMD ME/UED Radio Access NetworkD Core Network

Title: # Some methods on the IpApp interfaces should throw exceptions
Source: # CN5
Work item code: 8 OSA1l Date: ¥ 30/08/2001
Category: ¥ F Release: 8 REL-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: & A decision was taken by CN5 that the methods on IpApp* interfaces should not be
able to throw exceptions. For the framework, the situation is different from most
as there is a dialogue that occurs between the framework and its user. This
dialogue can include mutual authentication and the signing of an agreement to use
a service.

Client applications are not able to throw exceptions in response to errors occurring
during a dialogue between themselves and the Framework.

Summary of change: #& CN5 proposes that methods that form a part of the dialogue referenced above,
methods that are not called in direct response to a method invocation on the
framework, form a separate group of methods that should be allowed to throw
exceptions.

Consequences if 3 Client applications are not able to throw exceptions in response to errors occurring
not approved: during a dialogue between themselves and the Framework.

Failure to adopt this CR would result in divergence between the 3GPP R4
specification and the ETSI/Parlay specifications.

Clauses affected: ¥ 8.1.2

Other specs #* Other core specifications S
affected: Test specifications
O&M Specifications

Other comments: 3

CR page 1

Problem

A decision was taken during the recent restructuring of the exception handling in 29.198 that the methods on
the IpApp* interfaces should not be capable of throwing exceptions. However, for the framework, the
situation is different from most. For the framework, there is a dialogue that occurs between the framework
and its user. This dialogue can include mutual authentication and the signing of an agreement to use a
service.

Proposal

Lucent feels that methods that form a part of the dialogue referenced above, methods that are not called in
direct response to a method invocation on the framework, form a separate group of methods that should be
allowed to throw exceptions.

Lucent proposes that this group of methods consists of:
IpAppAccess.signServiceAgreement;
IpAppAccess.terminateServiceAgreement;
IpAppAccess.terminateAccess.

For example, if the FW passes in invalid information (signing algorithm, service token or agreement text) to
the IpAppAccess.signServiceAgreement() method, then the method should be able to indicate to the server
side that it cannot do anything. We feel that simply returning a null digital signature is not really an
acceptable mode of indicating the failure.

Note: If the IpApp and IpSvc interfaces are aligned as per contribution N5-010445, then some of
this work might already be done as methods on the IpSvc interfaces are allowed to throw
exceptions.

Resulting changes

Note: The method description for | pAppOAM .systemDataAndTimeQuery still states that the method can throw a
P_INVALID_DATE_TIME_FORMAT exception. It should be considered by the editor of 29.198-3 whether this
method isACTUALLY capable of throwing this exception

The following method descriptions should be updated to specify the exceptions that may be thrown. These exceptions
are the same as those for the corresponding methods on the framework interfaces with the sole difference being that no
ACCESS _DENIED exceptions may be thrown by the IpApp* interfaces.

The description of the IpAppAccess interface has been updated as the previous description did not appear to be
complete.

CR page 2

8.1.2 Interface Class IpAppAccess

Inherits from: Iplnterface.
IpAppAccessinterfaceis offered by the cI |ent appllcanon to the framework to allow it to initiate interactions during the
access session. A Sa

<<Interface>>

IpAppAccess

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpString) : TpResult

Method
si gnServi ceAgreenent ()

This method is used by the framework to request that the client application sign an agreement on the service. It is called
in response to the client application calling the selectService() method on the IpAccess interface of the framework. The
framework provides the service agreement text for the client application to sign. The service manager returned will be
configured as per the service level agreement. If the framework uses service subscription, the service level agreement
will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will
be arestriction of the registered properties. If the client application agrees, it signs the service agreement, returning its
digital signature to the framework.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the

‘ serviceToken isinvalid, or not known by the client application, then an-error-code{the
P_INVALID_SERVICE_TOKEN_ exception is thrown)}-s+eturned.

agreenent Text : in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
‘ the agreementText isinvalid, then an-errercode{the P INVALID_AGREEMENT_TEXT exception is thrown}+s

returned.
signingAlgorithm: in TpSigningAl gorithm

Thisisthe agorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client
| application, an-error-code{the P INVALID_SIGNING_ALGORITHM }s+eturned exception is thrown.

digital Signature : out TpStringRef
The digital Signature is the signed version of a hash of the service token and agreement text given by the framework.

Raises

TpCommonExceptions, P I NVALI D AGREEMENT _TEXT, P_I NVALI D_SERVI CE_TOKEN,
P_1 NVALI D_SI GNI NG_ALGORI THM

Method

t er m nat eSer vi ceAgr eenent ()

This method is used by the framework to terminate an agreement for the service.

Parameters

Ral

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, an
errorcode{the P_ INVALID_SERVICE_TOKEN)s+eturned exception will be thrown.

termnationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digital Signature : in TpString

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same as
the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses
thisto confirm its identity to the client application. The client application can check that the terminationText has been
signed by the framework. If amatch is made, the service agreement is terminated, otherwise an-error-codethe
{P_INVALID_SIGNATURE)s+eturned exception is thrown.

SEs

TpCommonExceptions, P I NVALI D SERVI CE TOKEN, P_I NVALI D_SI GNATURE

Method

t er m nat eAccess()

The terminateAccess operation is used by the framework to end the client application's access session.

After terminateAccess() isinvoked, the client application will no longer be authenticated with the framework. The client
application will not be able to use the references to any of the framework interfaces gained during the access session.
Any callsto these interfaces will fail. If at any point the framework's level of confidence in the identity of the client
becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service
agreements for that client application, and should take steps to terminate the client application's access session
WITHOUT invoking terminateAccess() on the client application. This follows a generally accepted security model
where the framework has decided that it can no longer trust the application and will therefore sever ALL contact with it.

Parameters

termnationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.
signingAl gorithm: in TpSigningAl gorithm

Thisisthe agorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client
application, an-errer-code{the P INVALID_SIGNING_ALGORITHM}sreturned exception will be thrown.

digital Signature : in TpString

Thisisasigned version of a hash of the termination text. The framework uses this to confirm its identity to the client
application. The client application can check that the terminationText has been signed by the framework. If amatchis
made, the access session is terminated, otherwise an-error-code{the P_INVALID_SIGNATURE)}s+eturned exception
is thrown.

Ralses
TpConmonExceptions, P INVALID SI GNI NG ALGORI THM P | NVALI D SI GNATURE

	NP-010466_CRs 29.198-03.doc
	/CR29.198-03-002_N5-010676_JAIN references.doc
	/CR29.198-03-003_N5-010534_svcUnavailableInd_description.doc
	/CR29.198-03-004_N5-010537_loadAndFaultSubject.doc
	/CR29.198-03-005_N5-010538_missing_fault_methods.doc
	/CR29.198-03-006_N5-010539_faultManager_consistency.doc
	/CR29.198-03-007_N5-010673_authentication and TpOctetSet.doc
	/CR29.198-03-008_N5-010686_loadMgmtChanges.doc
	/CR29.198-03-009_N5-010688_Heartbeat.doc
	/CR29.198-03-010_N5-010689_releaseInterface.doc
	/CR29.198-03-011_N5-010691_remove_serviceID.doc
	/CR29.198-03-012_N5-010695_add_listInterfaces.doc
	/CR29.198-03-013_N5-010697_ServiceInstanceID.doc
	/CR29.198-03-014_N5-010699_SERVICE_ACCESS_DENIED.doc
	/CR29.198-03-015_N5-010703_LifecycleManagement.doc
	/CR29.198-03-016_N5-010708_multi-vendorship.doc
	/CR29.198-03-017_N5-010712_remove_SERVICE_ACCESS_TYPE.doc
	/CR29.198-03-018_N5-010713_prescribedMethodClarification.doc
	/CR29.198-03-019_N5-010714_selectService.doc
	/CR29.198-03-020_N5-010715_IpApp_Exceptions.doc

