
3GPP TSG_CN Tdoc NP-000519
Plenary Meeting #9, Oahu, Hawaii
20th – 22nd September 2000.

Source: TSG_N WG 5

Title: CRs to R99 Work Item OSA - corrections to 29.198

Agenda item: 8.23.5

Document for: APPROVAL

Introduction:

This document contains 12 CRs on R99 Work Item OSA that has been agreed by TSG_N WG5, and is
forwarded to TSG_N Plenary meeting #9 for approval.

Spec CR Rev Doc-2nd-Level Phase Subject Cat Ver_C Ver_N
29.198 001 1 N5-000118 R99 Improvement of User Interaction STDs F 3.0.0 3.1.0

29.198 003 2 N5-000120 R99 Renumbering of GCCS exceptions F 3.0.0 3.1.0

29.198 004 1 N5-000121 R99 Remove of E.164 Mobile and correction of
numbering in TpAddressPlan

F 3.0.0 3.1.0

29.198 005 N5-000132 R99 Common IDL interfaces for Generic Call
Control and Generic User Interaction
between 3GPP, ETSI SPAN3 and Parlay

F 3.0.0 3.1.0

29.198 006 N5-000133 R99 Correction to table with overview of IDL files F 3.0.0 3.1.0

29.198 007 N5-000134 R99 Reduction in name scoping in IDL for
createUICall operation on IpUICall interface

F 3.0.0 3.1.0

29.198 008 2 N5-000171 R99 Alignment of Framework with Parlay 2.1,
improvement on business entity
identification

F 3.0.0 3.1.0

29.198 009 2 N5-000172 R99 Alignment of Framework with Parlay 2.1,
correction of missing service token

F 3.0.0 3.1.0

29.198 010 2 N5-000173 R99 Alignment of Framework with Parlay 2.1,
parameter name and data-type alignments

F 3.0.0 3.1.0

29.198 011 1 N5-000138 R99 Alignment of Framework with Parlay 2.1,
one interface per application correction

F 3.0.0 3.1.0

29.198 012 1 N5-000139 R99 Alignment of Framework with Parlay 2.1,
only one error returned in load manager
query

F 3.0.0 3.1.0

29.198 013 1 N5-000140 R99 Alignment of Framework with Parlay 2.1,
missing operation fwUnavailableInd in
IpAppFaultManager.

F 3.0.0 3.1.0

N5-000118

1

3GPP Meeting CN5 #4 Document N5-000118
Retz, 10-11 July 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 001R1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 6 July 2000

Subject: Improvement of User Interaction STDs

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

Improvement of the state transition diagrams for the UI and UICall object.

Changes are:
- introduction of the “Finished” state
- transition from “Release Pending” to “Active” in case the final request was not successful.
- more clear separation between events that don’t cause a state transition from the application

side and events from the network side. The first are shown as a self-transition with a semi-
circle while the latter are shown as self-transitions on the bottom right of a state.

- addition of more descriptive text, explaining the transitions.

Clauses affected: 7.3.2, 7.3.3

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

N5-000118

2

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000118

3

7.3.2 UI

N5-000118

4

ActiveIpUIManager.c reateUI

IpAppUIManager.userInterac tionEventNotify

s endIn foR eq

s endIn foAndC ollectR eq

Release
Pending

Finished

In s ta te Fin is hed a t im er m ech an is m

s hou l d p reve nt th at the o b jec t keeps

o ccupying r es our ces . In cas e the ti mer

exp ires , the ob ject s hou ld b e de stroyed

a nd u s erIn te ractionFaul tD etected s hou ld

be reported to the app lica tion .

release

t imeout ^userInt erac tionFaultD et ec ted

"reques ted m es s age has been s en t"[no t fina l reques t] ^s endIn foR es

"us e r inpu t rec e ived" [not f in a l re quest] ^sendIn foAndC ol lec tR es

"r eques t to s end m ess age uns u cces s fu l "[n o t fina l requ es t] ̂ s endIn fo Err

"reques t to s end info and co llect a res pons e uns ucces s fu l"[no t fina l reques t]

^s endIn foAndC ollectErr

"fault detec ted in the user interac tion" /
report error on outs tanding user

interac tion ^userInterac tionFaultDetec ted

release

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollec tReq

"reques t to s end m es s age uns ucces s fu l"[fina l

reques t] ^s en dIn foErr

"reques t to s end info and co llect res pons e

uns ucces s fu l"[final reques t]

^s endIn foAndC ollectErr

" requ es te d m es sage has bee n s en t" ̂ s endIn foRe s

"us er inpu t rece ived" ^s endIn foAndC ollectR eq

" requ es t to s end m es s a ge u ns ucces s fu l" ̂ s endIn foErr

"reques t to s end info and co llect a res pons e uns ucces s fu l"

^s endIn foAndC ollectErr

sendInfoReq[final request]

send InfoAndCol lec tReq[fin al requ est]

"fault det ec te d in the user i nterac tion" /
report error on outs tanding user interac tion

^userInt erac tionFaultD et ec ted

release

N5-000118

5

Active

only send eve nt
wh en request ed
by ap pli cat ion

Release
Pending

A bor t all
ong oing U I

s endIn foR eq

s endIn foAndCollectR eq

IpUIManage r. Creat eU I

"reques t to s end in form ation uns ucces s fu l" ^s endIn foErr

"reques t to s end in form ation and co llect a res pons e uns ucces s fu l"
^s endIn foAndCollectErr

"r eques ted m es s age has been s end" ̂ s endIn foRes

"us er input rece ived" ^s endIn foAndC ollectR es

"fau lt de tected in the us er in te raction"
^us erInteraction FaultDetected

IpAppU IManager.us erin teractionEventNotify

rele ase

"reques ted m es s age has been s end"[no t fina l reques t] ^s endIn foR es

"us er input rece ived"[no t fina l reques t] ̂ s endIn foAndCollectRes

"reques t to s end in form ation and co llect a res pons e

uns ucces s fu l"[no t fina l reques t]
^s endIn foAndCollectErr

"r equest to s end in for m ati on uns ucc es s fu l" ^s endIn foErr

"fau lt de tected in the us er in te raction"[no t
fina l reques t] ^us erIn teractionFau ltDetected

"us er input rece ived"[final reques t] ^s endIn foAndCollectRes

"reque s ted m es s age has been s end" [fin a l req ues t] ̂ s endInfoRes

"reques t to s end in form ation and co llect
a r es pons e uns u ccess ful"[f ina l request]

^s endIn foAndCollectErr

"reques t to s end in form ation uns ucces s fu l"[fina l reques t] ^s endInfoErr

"fau lt de tected in the us er in te raction"[fina l reques t] ^us erIn teractionFau ltD etected

releas e

s endIn foR eq[fina l reques t]

s endIn foAndCol lec tR eq[fina l reques t]

Figure 7-14: State Transition Diagram for UI

7.3.2.1 Active state

In this state the UI object is available for requesting messages to be send to the network.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system),
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

7.3.2.2 Release Pending state

A transition to this state is made when the Application has indicated that after a certain message no further
messages need to be sentd to the end-user. There are, however, still a number of messages that are not yet
completed. When the last message is sent or when the last user interaction has been obtained, the UI object is
destroyed.
In case the final request failed or the application requested to abort the final request, a transition is made back to
the Active state.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system),
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

7.3.3.3 Finished

In this state the user interaction has ended. The application can only release the UI object. Note that the
application has to release the object itself as good OO practice requires that when an object is created on behalf
of a certain entity, this entity is also responsible for destroying it when the object is no longer needed

N5-000118

6

7.3.3 UI Call

N5-000118

7

Act ive

Release
Pending

Finished

IpUIManager.c reateUICall

relea se

abo rtActio nR eq / cance l the us er in te raction

abo rtActio nR eq[no t th e fina l reque s t] / ca nce l the

us e r in te raction

Al re ad y re ques ted ann o unce m ent s

w ill con tinue , e ven w h en

app li cat io n re lea s es th e ob j ect .

In s ta te Fin is hed a tim er m e chan is m

s ho u ld p revent tha t the ob ject keep s

occupying res ou rces . In cas e the tim er

exp ires , th e ob je ct s ho u ld be des troyed

and us er In te r act ion Fa ul tD et ected s hou l d

be rep orte d to th e a pp lica ti o n .

tim eout ^userInterac t ionFaultDetec ted

"req ues ted m es s age has be en s e nt"[no t fina l re ques t] ^s e ndIn fo R es

"us er inpu t rece ived"[n o t fina l requ es t] ^s endIn foAnd C ollec tR es

"req ues t to s end m es s age u ns ucces s fu l"[no t fina l re ques t] ^s en dIn foE rr

"req ues t to s end in fo a nd co llect a res po ns e un s ucce s s fu l"[no t fin a l req ues t]

^s e ndIn fo AndC o llectE rr

"fau lt de te cted in the u s er in te ractio n" / re port e rro r on ou ts ta nd ing reque s ts

^us e rInte racti on Fau ltD etecte d

release / abort all ongoing user interac tion

"requested mes sa ge ha s bee n s ent"[fi nal req uest] ^se ndInfoRes

"us er input received"[final reques t] ^s endInfoAndCollec tReq

"req ues t to s end m es s age u ns ucces s fu l"[

fina l requ es t] ^s endIn foErr

"req ues t to s end in fo a nd co llect re s pons e

uns ucces s fu l"[fina l re ques t] ^s en dIn foAndC ol lectErr

a bo rtAct io nR eq [fina l req ues t i s c a nce l le d]

/ ca nce l th e us e r in te ra ction

"ca ll te rm ina ted " / repo rt e rro r on a ll ou ts tand ing requ es ts ^u s erIn te ractio nFau ltD etected

IpCall.deass ignCall

"req ues te d m es s age has be en s e n t" ^s e ndIn fo R es

"us er inpu t rece ived" ^s endIn foAnd C ollec tR eq

sendInfoReq[final request]

sendInfoA ndCollec tReq[final request]

"fa ult de te cted in the u s er in te ra ctio n" / re port e rro r o n a ll ou ts tand ing req u es ts

^us erIn te raction Fau ltD etecte d

release / abort all ongoing user interac tion

"ca ll te rm ina ted " / repo rt e rro r on a ll ou ts tand ing requ es ts ^u s erIn te ractio nFau ltD etected

IpCall.deass ignCall

"req ues t to s end m es s age u ns ucces s fu l" ^s en dIn foE rr
"r eq ues t to s end in fo and co l lect r e s pons e uns uc ces s fu l" ŝ end In foAndC ol lec tErr

N5-000118

8

Active

only sen d event
when reques ted
by a pplicat io n

Release
Pending

A bort all
on goin g U I

s endIn foR e q

s endIn foAnd C olle ctR eq

IpUIManager.createUICall

"reques t to s end in fo rm at ion uns ucces s fu l" ^s en dIn fo Err

"reques t to s end in fo rm ation and co llect a res pons e uns u cces s fu l" ^s endIn foAndC o llectErr

"reques ted m e s s age has been s en d" ^s endIn foR es

"us er input rece ived" ^s endIn foAndC ollectR es

"fau lt de tected in th e u s er in te raction" ^u s erIn te raction Fau ltD etected

"reques ted m e s s age has been s en d"[no t fina l reques t] ^s endIn foR es

"us er input rece ived"[no t fina l reques t] ^s e ndIn foAndC ollectR e s

"reques t to s end in fo rm ation and co llect a res pons e uns u cces s fu l"[n o t fina l reques t]

^s endIn foAndC olle ctErr

"reques t to s end in fo rm ation uns ucces s fu l" ^s endIn fo Err

"fau lt de tected in th e u s er in te raction"[no t fina l reques t]

^us erIn te ractionFau ltD etected

Al ready reque sted
announce ment s
wi ll cont inu e

Report erro r on
all reques ted UI
for which resu lt
is expect ed.

"us er input rece ived"[fina l reques t] ^s endIn foAndC ollectR es

"reques ted m e s s age has been s en d"[fina l requ es t] ^s endIn foR es

"reques t to s end in fo rm ation and co llect a res pons e uns u cces s fu l"[fina l reque s t]

^s endIn foAndC olle ctErr

"reques t to s end in fo rm ation uns ucces s fu l"[fina l reques t] ^s endIn fo Err

"fau lt detected in th e u s er in te rac tion"[final requ es t] ^u s erIn te ractionF au ltD etected

re leas e

IpC all .re leas e ŝ e ndIn foAn dC oll e ctErr o r s en dIn foErr

IpC a ll.dea s s ig nC a ll

"ab norm al end o f us er in te raction" ^us erIn te ractionAbo rted

abortActionR eq[fin a l reques t is abo rted] / can ce l th e u s er in te raction

abortActionR eq / ca nce l the us er in te raction

Alternat ive to this
app roach is on e
use r int erac ti on
per o bjec t.

release

s endIn foR e q[fina l reques t]
s endIn foAnd C olle ctR eq[fin a l reques t]

IpCall .release ŝend InfoA ndCol le ctErr or sendInfoErr

IpCall.deass ignCall

"ab norm al end o f us er in te raction" ^us erIn te ractionAbo rted

Figure 7-15: State Transition Diagram for UICall

7.3.3.1 Active state

In this state a UICall object is available for announcements to be played to an end-user or obtaining information
from the end-user.

When the application de-assigns the related Call object, a transition is made to the Finished state. However, all
requested announcements will continue, even when the application releases the UICall object.
When the related call is due to some reason terminated, a transition is made to the Finished state, the operation
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system),
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

7.3.3.2 Release Pending state

A transition to this state is made when the Application has indicated that after a certain announcement no further
announcements need to be played to the end-user. There are, however, still a number of announcements that are
not yet completed. When the last announcement is played or when the last user interaction has been obtained, the
UICall object is destroyed.
In case the final request failed or the application requested to abort the final request, a transition is made back to
the Active state.

When the application de-assigns the related Call object, a transition is made to the Finished state. However, all
requested announcements will continue, even when the application releases the UICall object.
When the related call is due to some reason terminated, a transition is made to the Finished state, the operation
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

N5-000118

9

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system),
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

7.3.3.4 Finished

In this state the user interaction has ended. The application can only release the UICall object. Note that the
application has to release the object itself as good OO practice requires that when an object is created on behalf
of a certain entity, this entity is also responsible for destroying it when the object is no longer needed

N5-000120

1

3GPP Meeting CN5 #4 Document N5-000120
Retz, 10-11 July 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 003R2
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 6 July 2000

Subject: Correction of numbering in TpResultInfo

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

Correction of a few numbering errors in the TpResultInfo

Clauses affected: 8.1.4.8, 9

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000120

2

8.1.4.8 TpResultInfo

Defines further information relating to the result of the method, such as error codes.
Name Value Description

P_RESULT_INFO_UNDEFINED 0000h No further information present

P_INVALID_APPLICATION_ID 0001h Invalid application ID

P_INVALID_CLIENT_CAPABILITY 0002h Invalid client capability

P_INVALID_AGREEMENT_TEXT 0003h Invalid agreement text

P_INVALID_SIGNING_ALGORITHM 0004h Invalid signing algorithm

P_INVALID_INTERFACE_ID 0005h Invalid interface ID

P_INVALID_SERVICE_ID 0006h Invalid service capability feature ID

P_INVALID_EVENT_TYPE 0007h Invalid event type

P_SERVICE_NOT_ENABLED 0008h The service capability feature ID does not correspond to a SCF that
has been enabled

P_INVALID_ASSIGNMENT_ID 0009h The assignment ID does not correspond to one of the valid
assignment IDs

P_INVALID_PARAMETER 000Ah The method has been called with an invalid parameter

P_INVALID_PARAMETER_VALUE 000Bh A method parameter has an invalid value

P_PARAMETER_MISSING 000Ch A required parameter has not been specified in the method call

P_RESOURCES_UNAVAILABLE 000Dh The required resources in the network are not available

P_TASK_REFUSED 000Eh The requested method has been refused

P_TASK_CANCELLED 000Fh The requested method has been cancelled

P_INVALID_DATE_TIME_FORMAT 0010h Invalid date and time format provided

P_NO_CALLBACK_ADDRESS_SET 0011h The requested method has been refused because no callback
address is set

P_INVALID_TERMINATION_TEXT 0012h Invalid termination text

P_INVALID_SERVICE_TOKEN 0013h The service capability feature token does not correspond to a token
that had been issued, or the issued token has expired

P_INVALID_AUTHENTICATION 0014h The client has not been correctly authenticated

P_INVALID_SERVICE_PROPERTY 0015h Invalid service capability feature property

P_METHOD_NOT_SUPPORTED 001AB
h

The method is not allowed or supported within the context of the
current SCF agreement.

General security errors

P_USER_NOT_SUBSCRIBED 0030h A service (or application) is unauthorised to access information and
request SCFs with regards to users that are not subscribed to it.

P_APPLICATION_NOT_ACTIVATED 0031h A service (or application) is unauthorised to access information and
request SCFs with regards to its subscribed users that have

deactivated that particular service (or application).

P_USER_PRIVACY 0032h A service (or application) is unauthorised to access information and
request an SCF with regards to its subscribed users that have set

their privacy flag regarding that particular SCF.

P_GCCS_SERVICE_INFORMATION_MISSING 0100h Information relating to the Call Control SCF could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED 0101h Fault detected in the Call Control SCF

P_GCCS_UNEXPECTED_SEQUENCE 0102h Unexpected sequence of methods, i.e., the sequence does not match
the specified state diagrams for the call or the call leg.

P_GCCS_INVALID_ADDDRESS 0103h Invalid address specified

P_GCCS_INVALID_CRITERIA 01045h Invalid criteria specified

P_GCCS_INVALID_NETWORK_STATE 01056h Although the sequence of method calls is allowed by the OSA
gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the
protocol, when the call processing is suspended, e.g., after reporting

an event that was monitored in interrupt mode.

N5-000120

3

P_GUIS_INVALID_CRITERIA 0300h Invalid criteria specified

P_GUIS_ILLEGAL_ID 0301h Information id specified is invalid

P_GUIS_ID_NOT_FOUND 0302h A legal information id is not known to the User Interaction SCF

P_GUIS_ILLEGAL_RANGE 0303h The values for minimum and maximum collection length are out of
range.

P_GUIS_INVALID_COLLECTION_CRITERIA 0304h Invalid collection criteria specified

P_GUIS_INVALID_NETWORK_STATE 03056h Although the sequence of method calls is allowed by the OSA
gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the
protocol, when the call processing is suspended, e.g., after reporting

an event that was monitored in interrupt mode.

P_GUIS_UNEXPECTED_SEQUENCE 03067h Unexpected sequence of methods, i.e., the sequence does not match
the specified state diagrams.

P_DSCS_SERVICE_INFORMATION_MISSING 0400h Information relating to the Data Session Control SCF could not be
found

P_DSCS_SERVICE_FAULT_ENCOUNTERED 0401h Fault detected in the Data Session Control SCF

P_DSCS_UNEXPECTED_SEQUENCE 0402h Unexpected sequence of methods, i.e., the sequence does not match
the specified state diagrams for the data session.

P_DSCS_INVALID_ADDDRESS 0403h Invalid address specified

P_DSCS_INVALID_STATE 0404h Invalid state specified

P_DSCS_INVALID_CRITERIA 0405h Invalid criteria specified

P_DSCS_INVALID_NETWORK_STATE 0406h Although the sequence of method calls is allowed by the OSA
gateway, the underlying protocol can not support it.

This change should also be reflected in the IDL (chapter 9).

// Defines the general Parlay exception values
enum TpGeneralExceptionType
{

P_RESULT_INFO_UNDEFINED, // No further information present
P_INVALID_APPLICATION_ID, // Invalid application ID
P_INVALID_CLIENT_CAPABILITY,// Invalid client capability
P_INVALID_AGREEMENT_TEXT, // Invalid agreement text
P_INVALID_SIGNING_ALGORITHM,// Invalid signing algorithm
P_INVALID_INTERFACE_NAME, // Invalid interface name
P_INVALID_SERVICE_ID, // Invalid service capability

feature ID
P_INVALID_EVENT_TYPE, // Invalid event type
P_SERVICE_NOT_ENABLED, // The SCF ID does not correspond

// to a SCF
that has been enabled

P_INVALID_ASSIGNMENT_ID, // The assignment ID does not
// correspond

to one of the valid assignment IDs
P_INVALID_PARAMETER, // The method has been called with

an
// invalid

parameter
P_INVALID_PARAMETER_VALUE, // A method parameter has an invalid

value
P_PARAMETER_MISSING, // A required parameter has not been

// specified
in the method call

P_RESOURCES_UNAVAILABLE, // The required resources in the
// network

are not available
P_TASK_REFUSED, // The requested method has been

refused
P_TASK_CANCELLED, // The requested method has been

cancelled
P_INVALID_DATE_TIME_FORMAT, // Invalid date and time format

provided
P_NO_CALLBACK_ADDRESS_SET, // The requested method has been

refused
// because no

callback address is set
P_INVALID_TERMINATION_TEXT, // Invalid termination text
P_INVALID_SERVICE_TOKEN, // The SCF token does not correspond

to a

N5-000120

4

// token that
had been issued, or the issued token

// has
expired.

P_INVALID_AUTHENTICATION, // The client has not been correctly
authenticated

P_INVALID_SERVICE_PROPERTY, // Invalid service capability
feature property.

P_METHOD_NOT_SUPPORTED // The method is not allowed or
supported within

// the
context of the current SCF agreement.

};

exception TpGeneralException
{

TpGeneralExceptionType exceptionType;
};

// Defines the GCCS OSA exception values
enum TpGCCSExceptionType
{

P_GCCS_SERVICE_INFORMATION_MISSING,// Information relating to
the Call

 //
Control SCF could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED, // Fault detected in the Call
Control SCF

P_GCCS_UNEXPECTED_SEQUENCE, // Unexpected sequence of methods,
i.e.,

 // the
sequence does not match the specified

 // state
diagrams for the call or the call leg.

P_GCCS_INVALID_ADDDRESS, // Invalid address specified
 P_GCCS_INVALID_STATE, // Invalid state specified

P_GCCS_INVALID_CRITERIA, // Invalid criteria specified
P_GCCS_INVALID_NETWORK_STATE,// Although the sequence of method

calls is
 // allowed

by the OSA gateway, the underlying
 // protocol

can not support it. E.g., in some
 // protocols

some methods are only allowed by
 // the

protocol, when the call processing is
 //

suspended, e.g., after reporting an event
 // that was

monitored in interrupt mode.
 P_GCCS_NETWORK_DEASSIGN // The relation between the network and
the OSA
 // gateway is
terminated. Therefore, the gateway
 // can no longer
influence the call. This can happen
 // after the last
requested report is sent to the
 // application. To
prevent this error, the application
 // should ensure
that it has requested events which
 // are not yet
reported.

};

exception TpGCCSException
{

TpGCCSExceptionType exceptionType;
};

// Defined the GUIS OSA exception values
enum TpGUISExceptionType
{

P_GUIS_INVALID_CRITERIA, // Invalid criteria specified
P_GUIS_ILLEGAL_ID, // Information id specified is invalid
P_GUIS_ID_NOT_FOUND, // A legal information id is not known

to the User
 // Interaction SCF

P_GUIS_ILLEGAL_RANGE, // The values for minimum and maximum
collection

 // length are out
of range.

P_GUIS_INVALID_COLLECTION_CRITERIA, // Invalid collection
criteria specified
 P_GUIS_NETWORK_DEASSIGN, // The relation between the network and
the OSA

N5-000120

5

 // gateway is
terminated. Therefore, the gateway
 // can no longer
perform UI operations. This can
 // happen after the
last requested report is sent
 // to the
application. To prevent this error, the
 /// application
should ensure that it has requested
 // events which are
not yet reported.

P_GUIS_INVALID_NETWORK_STATE // Although the sequence of method
calls is

 // allowed
by the OSA gateway, the underlying

 // protocol
can not support it. E.g., in some

 // protocols
some methods are only allowed by

 // the
protocol, when the call processing is

 //
suspended, e.g., after reporting an event

 // that was
monitored in interrupt mode.

};

exception TpGUISException
{

TpGUISExceptionType exceptionType;
};

N5-000121

1

3GPP Meeting CN5 #4 Document N5-000121
Retz, 10-11 July 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 004R1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 6 July 2000

Subject: Removal of E.164 Mobile and correction of numbering in TpAddressPlan

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The TpAddressPlan data-type currently contains a type
P_ADDRESS_PLAN_E164_MOBILE. As there is no special E.164 numbering for the
mobile network this type should be removed.
Furthermore, the types in TpAddressPlan should be numbered in a sequential order.

Clauses affected: 8.1.4.14, 9

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

Note: In Parlay 2.1 the value 9 is reserved to P_ADDRESS_PLAN_MSMAIL. In the
Antwerpen meeting we came to the conclusion that MSMAIL should be the same as
SMTP and therefore the MSMAIL was removed. We also agreed to keep the same
numbering as Parlay, therefore the number 9 in 3GPP is not used.

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000121

2

8.1.4.14 TpAddressPlan

Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually
defined in a Address data element.

Name Value Description
P_ADDRESS_PLAN_NOT_PRESENT -1 No Address Present

P_ADDRESS_PLAN_UNDEFINED 0 Undefined

P_ADDRESS_PLAN_IP 1 IP

P_ADDRESS_PLAN_MULTICAST 2 Multicast

P_ADDRESS_PLAN_UNICAST 3 Unicast

P_ADDRESS_PLAN_E164 4 E.164

P_ADDRESS_PLAN_E164_MOBILE 5 E.164 Mobile

P_ADDRESS_PLAN_AESA 56 AESA

P_ADDRESS_PLAN_URL 67 URL

P_ADDRESS_PLAN_NSAP 78 NSAP

P_ADDRESS_PLAN_SMTP 89 SMTP

P_ADDRESS_PLAN_X400 101 X.400

The changes should also be reflected in the IDL (chapter 9):

// Defines the address plan (or numbering plan) used. It is also used to indicate
// whether an address is actually defined in a TAddress data element
enum TpAddressPlan
{

P_ADDRESS_PLAN_NOT_PRESENT, // No Address Present
P_ADDRESS_PLAN_UNDEFINED, // Undefined
P_ADDRESS_PLAN_IP, // IP
P_ADDRESS_PLAN_MULTICAST, // Multicast
P_ADDRESS_PLAN_UNICAST, // Unicast
P_ADDRESS_PLAN_E164, // E.164

 P_ADDRESS_PLAN_E164_MOBILE, // E.164 Mobile
P_ADDRESS_PLAN_AESA, // AESA
P_ADDRESS_PLAN_URL, // URL
P_ADDRESS_PLAN_NSAP, // NSAP
P_ADDRESS_PLAN_SMTP, // SMTP
P_ADDRESS_PLAN_NOT_USED,
P_ADDRESS_PLAN_X400 // X.400

};

N5-0001XX

1

3GPP Meeting CN5 #4 Document N5-000132
Retz, 10-11 July 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 005
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 July 2000

Subject: Common IDL interfaces for Generic Call Control and Generic User Interaction between
3GPP, ETSI SPAN3 and Parlay

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The Generic Call Control SCF is one of the capability features of 3GPP OSA R99.
Because of a great drive for harmonisation between 3GPP, SPAN3 and Parlay, the
Generic Call Control API is in principle common between the three. However, at this
moment the IDL for Generic Call Control in TS 29.198 is specific to 3GPP release 99,
because e.g. the operation for createCall() has been removed as there is no support
for service initiated calls in release 99.
When the IDL is different from IDL specified by Parlay or ETSI-SPAN3, this will lead in
fact to different APIs for the developer community.

In order to ensure common API’s for fixed and wireless access, the OSA API work is
done jointly between ETSI SPAN3 and 3GPP CN5. It has been agreed that the joint
N5/SPAN3 specification should contain one common IDL. Since the Generic Call
Control of R99 is also applicable for fixed access, the common IDL for Generic Call
Control and User Interaction should be the complete IDL, including the operations:
- createCall() and setCallLoadControl() on the IpCallControlManager
- callOverloadEncountered() and callOverloadCeased() on the

IpAppCallControlManager,
- getMoreDialledDigitsReq() on the IpCall,
- getMoreDialledDigitsRes() and getMoreDialledDigitsErr() on the IpAppCall,
- recordMessageReq() on the IpUICall,
- recordMessageRes() and recordMessageErr() on the IpAppUICall.

This CR proposes that in the TS 29.198 the complete Generic Call Control IDL is
included as well with the addition of a remark that operations that are not supported will
throw the exception for method not supported (P_METHOD_NOT_SUPPORTED in
TpResultInfo).

Clauses affected: 9

N5-0001XX

2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-0001XX

3

9. IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are
placed in the root module while each of the specific service capability feature API definitions are being assigned
their own module directly under that root. Each specific SCF functions, like User Status, have their data and
interface definitions collocated. This structure has the advantage that explicit scoping is kept to a minimum.
The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are
provided in the org.threegpp.osa module within a file name called OSA.idl
Module Name Description IDL file name
org.threegpp.osa Common data/interface definitions OSA.idl
org.threegpp.osa.mm Common mobility data definitions (root) MM.idl
org.threegpp.osa.mm.ul Network User Location (UL) MMul.idl
org.threegpp.osa.mm.us User Status (US) MMus.idl
org.threegpp.osa.cc Call Control CC.idl
org.threegpp.osa.ui User Interaction UI.idl
org.threegpp.osa.termcap Terminal Capabilities TERMCAP.idl

Some of the interfaces contain more operations than defined in the interface classes of Chapter 6. These
operations must return a “Method not supported” exception in case the interface is implemented on a SCS based
on this specification.

N5-0001XX

4

Below impact on the Call Control and User interaction is shown:

9.3 Call Control

9.3.1 Common Data Types for Call Control
// source file: CC.idl
// Generic Call Data description

#ifndef __OSA_CC_DEFINED
#define __OSA_CC_DEFINED

#include <OSA.idl>
#include <UI.idl>

module org
{
module threegpp
{

module osa
{
module cc
{
/* Defines the mechanism that will be used to alert a called party. */
typedef TpInt32 TpCallAlertingMechanism;

/* Defines the bearer service associated with the call. */
enum TpCallBearerService
{

P_CALL_BEARER_SERVICE_UNKNOWN, /* Bearer
capability information

 unknown at this time*/
P_CALL_BEARER_SERVICE_SPEECH, /* Speech*/
P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED, /* Unrestricted digital

information*/
P_CALL_BEARER_SERVICE_DIGITALRESTRICTED, /* Restricted digital

information*/
P_CALL_BEARER_SERVICE_AUDIO, /* 3.1 kHz audio*/
P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES, /* Unrestricted digital

information
 with tones/announcements*/

P_CALL_BEARER_SERVICE_VIDEO /*Video*/
};

/*This data defines the bearer capabilities associated with the call. (3G TS 24.002)
This

 information is network operator specific and may not always be available because
there

 is no standard protocol to retrieve the information */
enum TpCallNetworkAccessType
{

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN, /* Network type information unknown
at this time */

P_CALL_NETWORK_ACCESS_TYPE_POT, /* POTS */
P_CALL_NETWORK_ACCESS_TYPE_ISDN, /* ISDN */
P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET, /* Dial-up Internet */
P_CALL_NETWORK_ACCESS_TYPE_XDSL, /* xDSL */
P_CALL_NETWORK_ACCESS_TYPE_WIRELESS /* Wireless */

};

/* Defines the category of a calling or called party (e.g. call priority, payphone,
 prepaid).*/

enum TpCallPartyCategory
{

P_CALL_PARTY_CATEGORY_UNKNOWN, /*calling party's category unknown
at this time*/

P_CALL_PARTY_CATEGORY_OPERATOR_F, /* operator, language French*/
P_CALL_PARTY_CATEGORY_OPERATOR_E, /* operator, language English*/
P_CALL_PARTY_CATEGORY_OPERATOR_G, /* operator, language German*/
P_CALL_PARTY_CATEGORY_OPERATOR_R, /* operator, language Russian*/
P_CALL_PARTY_CATEGORY_OPERATOR_S, /* operator, language Spanish*/
P_CALL_PARTY_CATEGORY_ORDINARY_SUB, /* ordinary calling subscriber*/
P_CALL_PARTY_CATEGORY_PRIORITY_SUB, /* calling subscriber with priority*/
P_CALL_PARTY_CATEGORY_DATA_CALL, /* data call (voice band data) */

N5-0001XX

5

P_CALL_PARTY_CATEGORY_TEST_CALL, /* test call*/
P_CALL_PARTY_CATEGORY_PAYPHONE /* payphone*/

};

/* This data type defines the tele-service associated with the call. (Q.763: User
Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS
22.003)Defines the tele-service associated with the call (e.g. speech, video, fax, file
transfer, browsing). */
enum TpCallTeleService
{

P_CALL_TELE_SERVICE_UNKNOWN, /* Teleservice information unknown at this
time*/

P_CALL_TELE_SERVICE_TELEPHONY, /* Telephony */
P_CALL_TELE_SERVICE_FAX_2_3, /* Facsimile Group 2/3 */
P_CALL_TELE_SERVICE_FAX_4_I, /* Facsimile Group 4, Class I */
P_CALL_TELE_SERVICE_FAX_4_II_III, /* Facsimile Group 4, Classes II and III

*/
P_CALL_TELE_SERVICE_VIDEOTEX_SYN, /* Syntax based Videotex */
P_CALL_TELE_SERVICE_VIDEOTEX_INT, /* International Videotex interworking via

gateways or interworking units */
P_CALL_TELE_SERVICE_TELEX, /* Telex service*/
P_CALL_TELE_SERVICE_MHS, /* Message Handling Systems */
P_CALL_TELE_SERVICE_OSI, /* OSI application*/
P_CALL_TELE_SERVICE_FTAM, /* FTAM application*/
P_CALL_TELE_SERVICE_VIDEO, /* Videotelephony*/
P_CALL_TELE_SERVICE_VIDEO_CONF, /* Videoconferencing*/
P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF, /* Audiographic conferencing*/
P_CALL_TELE_SERVICE_MULTIMEDIA, /* Multimedia services*/
P_CALL_TELE_SERVICE_CS_INI_H221, /* Capability set of initial channel of

H.221*/
P_CALL_TELE_SERVICE_CS_SUB_H221, /* Capability set of subsequent channel of

H.221*/
P_CALL_TELE_SERVICE_CS_INI_CALL, /* Capability set of initial channel

associated with an active 3.1 kHz audio or speech call.*/
P_CALL_TELE_SERVICE_DATATRAFFIC, /* Data traffic.*/
P_CALL_TELE_SERVICE_EMERGENCY_CALLS, /* Emergency Calls*/
P_CALL_TELE_SERVICE_SMS_MT_PP, /* Short message MT/PP*/
P_CALL_TELE_SERVICE_SMS_MO_PP, /* Short message MO/PP*/
P_CALL_TELE_SERVICE_CELL_BROADCAST, /* Cell Broadcast Service*/
P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3, /* Alternate speech and facsimile

group 3*/
P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3, /* Automatic Facsimile group 3*/
P_CALL_TELE_SERVICE_VOICE_GROUP_CALL, /* Voice Group Call Service*/
P_CALL_TELE_SERVICE_VOICE_BROADCAST /* Voice Broadcast Service*/

};

/* Defines a specific call event report type. */
enum TpCallAppInfoType
{

P_CALL_APP_UNDEFINED, /* Undefined */
P_CALL_APP_ALERTING_MECHANISM, /* The alerting mechanism or pattern to use

*/
P_CALL_APP_NETWORK_ACCESS_TYPE, /* The network access type (e.g. ISDN) */
P_CALL_APP_TELE_SERVICE, /* Indicates the tele-service (e.g. speech)

and related info such as clearing programme */
P_CALL_APP_BEARER_SERVICE, /* Indicates the bearer service (e.g.

64kb/s unrestricted data). */
P_CALL_APP_PARTY_CATEGORY, /* The category of the calling or called

party */
P_CALL_APP_PRESENTATION_ADDRESS, /* The address to be presented to other

call parties */
P_CALL_APP_GENERIC_INFO, /* Carries unspecified application-SCF

information */
P_CALL_APP_ADDITIONAL_ADDRESS /* Indicates an additional address */

};

/* Defines the Tagged Choice of Data Elements that specify call application-related
specific information. */
union TpCallAppInfo switch(TpCallAppInfoType)
{

case P_CALL_APP_TELE_SERVICE:
TpCallTeleService CallAppTeleService;
case P_CALL_APP_BEARER_SERVICE:
TpCallBearerService CallAppBearerService;
case P_CALL_APP_PARTY_CATEGORY:
TpCallPartyCategory CallAppPartyCategory;
case P_CALL_APP_PRESENTATION_ADDRESS:

N5-0001XX

6

TpAddress CallAppPresentationAddress;
case P_CALL_APP_GENERIC_INFO:
TpString CallAppGenericInfo;
case P_CALL_APP_ADDITIONAL_ADDRESS:
TpAddress CallAppAdditionalAddress;
case P_CALL_APP_ALERTING_MECHANISM:
TpCallAlertingMechanism CallAppAlertingMechanism;
case P_CALL_APP_NETWORK_ACCESS_TYPE:
TpCallNetworkAccessType CallAppNetworkAccessType;

};

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

enum TpCallChargeOrderCategory
{

P_CALL_CHARGE_PER_TIME, /* Charge per time*/
P_CALL_CHARGE_NETWORK /* Operator specific charge plan specification, e.g.

charging table name / charging table entry*/
};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the
call. */

union TpCallChargeOrder switch(TpCallChargeOrderCategory)
{

case P_CALL_CHARGE_PER_TIME: TpChargePerTime ChargePerTime;
case P_CALL_CHARGE_NETWORK: TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the charge plan for the call This
data type is identical to a TpString, and defines the call charge plan to be used for
the call. The values of this data type are operator specific. */
struct TpCallChargePlan
{

TpCallChargeOrder ChargeOrderType;
TpString Currency;
TpString AdditionalInfo;

};

const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined
const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1; // Offhook event
const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2; // Address information
collected
const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4; // Address information is
analysed
const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8; // Called party is busy
const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16; // Called party is
unreachable
const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32; // No answer from called
party
const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64; // Failure in routing the
call
const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128; // Party answered call

typedef TpInt32 TpCallEventName; /*Defines the names of event being notified. */

enum TpCallNotificationType
{

P_ORIGINATING, // The notification is related to the originating user in the
call.

P_TERMINATING // The notification is related to the terminating user in the
call.
};

struct TpCallEventCriteria
{

TpAddressRange DestinationAddress; /*Destination address or address
range*/

TpAddressRange OriginationAddress; /*Origination address or address
range */

TpCallEventName CallEventName; /*Name of the event(s) */
TpCallNotificationType CallNotificationType; /*Indicates whether the criteria

are related to the originating or terminating user in the call */
};

N5-0001XX

7

/* Defines a sequence of data elements that specify a requested call event notification
criteria with the associated assignmentID */
struct TpCallEventCriteriaResult
{

TpCallEventCriteria EventCriteria;
TpInt32 AssignmentID;

};

/* Defines a set of TpCallEventCriteriaResult */
typedef sequence <TpCallEventCriteriaResult> TpCallEventCriteriaResultSet;

//Defines the type of notification.
//Indicates whether it is related to the originating of the terminating user in the
call.
struct TpCallEventInfo
{

TpAddress DestinationAddress;
TpAddress OriginatingAddress;
TpAddress OriginalDestinationAddress;
TpAddress RedirectingAddress;
TpCallAppInfoSet CallAppInfo;
TpCallEventName CallEventName;
TpCallNotificationType CallNotificationType;

};

/* Defines the Sequence of Data Elements that specify the cause of the release of a
call.*/
struct TpCallReleaseCause {
TpInt32 Value;
TpInt32 Location;
};

/* Defines the Sequence of Data Elements that specify the reason for the call ending.*/
struct TpCallEndedReport
{

TpSessionID CallLegSessionID;
TpCallReleaseCause Cause;

};

/* Defines a specific call error. */
enum TpCallErrorType
{

P_CALL_ERROR_UNDEFINED, /* Undefined */
P_CALL_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid

address was given */
P_CALL_ERROR_INVALID_STATE /* The call was not in a valid state for the

requested operation */
};

/* Defines the Tagged Choice of Data Elements that specify additional call error and
call error specific information. This is also used to specify call leg errors and call
information errors. */
union TpCallAdditionalErrorInfo switch(TpCallErrorType)
{

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;
default: short Dummy; // allows initialisation of the union in the default

case
};

/* Defines the Sequence of Data Elements that specify the additional information
relating to an undefined call error. */
struct TpCallError
{

TpCallAdditionalErrorInfo AdditionalErrorInfo;
TpCallErrorType ErrorType;
TpDateAndTime ErrorTime;

};

/* Defines the cause of the call fault detected. */
enum TpCallFault
{

P_CALL_FAULT_UNDEFINED, /* Undefined */

P_CALL_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application,
but the application did not explicitly release or deassign the call object, within a
specified time. */

N5-0001XX

8

P_CALL_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to
handle the call within a specified time, after the gateway reported an event that was
requested by the application in interrupt mode.*/
};

/* Defines the type of call information requested and reported */
const TpInt32 P_CALL_INFO_UNDEFINED = 0; /* Undefined */
const TpInt32 P_CALL_INFO_TIMES = 1; /* Relevant call times */
const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2; /* Call release cause. */
const TpInt32 P_CALL_INFO_INTERMEDIATE = 4; /* Send only intermediate reports
(i.e., when a party leaves the call). */

typedef TpInt32 TpCallInfoType;

/* Defines the Sequence of Data Elements that specify the call information requested.
Information that was not requested may be undefined or not present. */
struct TpCallInfoReport
{

TpCallInfoType CallInfoType;
TpDateAndTime CallInitiationStartTime;
TpDateAndTime CallConnectedToResourceTime;
TpDateAndTime CallConnectedToDestinationTime;
TpDateAndTime CallEndTime;
TpCallReleaseCause Cause;

};

/* Defines the mode that the call will monitor for events, or the mode that the call is
in following a detected event. */
enum TpCallMonitorMode
{

P_CALL_MONITOR_MODE_INTERRUPT, /* The call event is intercepted by the call
control SCF and call processing is interrupted. The application is notified of the
event and call processing resumes following an appropriate API call or network event
(such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY, /* The call event is detected by the call
control SCF but not intercepted. The application is notified of the event and call
processing continues */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */
};

/* Defines the type of call overload that has been detected (and possibly acted upon)
by the network. */
enum TpCallOverloadType
{

P_CALL_OVERLOAD_TYPE_UNDEFINED, /* Infinite interval (do not admit any calls)
*/

P_CALL_OVERLOAD_TYPE_NEW_CALLS, /* New calls to the application are causing
overload (i.e. inbound overload) */

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS /* Calls being routed to destination or
origination addresses by the application are causing overload (i.e. outbound overload)
*/
};

/* Defines a specific call event report type. */
enum TpCallReportType
{

P_CALL_REPORT_UNDEFINED, /* Undefined */
P_CALL_REPORT_PROGRESS, /* Call routing progress event */
P_CALL_REPORT_ALERTING, /* Call alerting at address */
P_CALL_REPORT_ANSWER, /* Call answered at address */
P_CALL_REPORT_BUSY, /* Called address refused call due to busy */
P_CALL_REPORT_NO_ANSWER, /* No answer at called address */
P_CALL_REPORT_DISCONNECT, /* Call disconnect requested by address */
P_CALL_REPORT_REDIRECTED,
P_CALL_REPORT_SERVICE_CODE,
P_CALL_REPORT_ROUTING_FAILURE

};

/* Defines the Tagged Choice of Data Elements that specify additional call report
information. */
union TpCallAdditionalReportInfo switch(TpCallReportType)
{

case P_CALL_REPORT_BUSY: TpCallReleaseCause RefuseBusy;
case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;
case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;
case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;
case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

N5-0001XX

9

default: short Dummy; // allows initialisation of the union in the default
case
};

struct TpCallReport
{

TpCallMonitorMode MonitorMode;
TpDateAndTime CallEventTime;
TpCallReportType CallReportType;
TpCallAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the different types of service codes that can be received during the call.*/
enum TpCallServiceCodeType
{

P_CALL_SERVICE_CODE_UNDEFINED, /* The type of service code is unknown.
The corresponding string is operator specific.*/

P_CALL_SERVICE_CODE_DIGITS, /* The user entered a digit sequence during the
call. The corresponding string is an ascii representation of the received digits. */

P_CALL_SERVICE_CODE_FACILITY, /* A facility information element is received.
The corresponding string contains the facility information element as defined in ITU
Q.932*/

P_CALL_SERVICE_CODE_U2U, /* A user-to-user message was received. The associated
string contains the content of the user-to-user information element. */

P_CALL_SERVICE_CODE_HOOKFLASH, /* The user performed a hookflash,
optionally followed by some digits. The corresponding string is an ascii representation
of the entered digits. */

P_CALL_SERVICE_CODE_RECALL /* The user pressed the register recall button,
optionally followed by some digits. The corresponding string is an ascii representation
of the entered digits. */

};

/* Defines the Sequence of Data Elements that specify the service code and type of
service code received during a call. The service code type defines how the value string
should be interpreted. Defines the service code received during a call. For example,
this may be a digit sequence, user-user information, recall, flash-hook or ISDN
Facility Information Element. This data type is identical to a TpString. The coding of
this data type is operator specific. */
struct TpCallServiceCode
{

TpCallServiceCodeType CallServiceCodeType;
TpString ServiceCodeValue;

};

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */
union TpCallAdditionalReportCriteria switch(TpCallReportType)
{

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;
case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;
default: short Dummy; // allows initialisation of the union in the default

case
};

/* Defines the Sequence of Data Elements that specify the criteria relating to call
report requests. */
struct TpCallReportRequest
{

TpCallMonitorMode MonitorMode;
TpCallReportType CallReportType;
TpCallAdditionalReportCriteria AdditionalReportCriteria;

};

/* Defines a Numbered Set of Data Elements of TpCallReportRequest. */
typedef sequence <TpCallReportRequest> TpCallReportRequestSet;

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; /* The call supervision timer has
expired. */
const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; /* The call has ended, either due to
timer expiry or calling or called party release. In case the called party disconnects
but a follow-on call can still be made also this indication is used.*/
const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; /* A warning tone has been applied.
*/
const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8; /* The user interaction has finished
*/

/* Defines the responses from the call control SCF for calls that are supervised:*/

N5-0001XX

10

typedef TpInt32 TpCallSuperviseReport;

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1; /* Release the call when the call
supervision timer expires. */
const TpInt32 P_CALL_SUPERVISE_RESPOND = 2; /* Notify the application when the
call supervision timer expires. */
const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4; /* Send a warning tone to the
controlling party when the call supervision timer expires. If call release is
requested, then the call will be released following the tone after an administered time
period */

/* Defines the following treatment of the call by the call control SCF when the call
supervision timer expires.*/
typedef TpInt32 TpCallSuperviseTreatment;

/* Define the possible Exceptions. */
const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;
const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;
const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;
const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;
const TpInt32 P_GCCS_INVALID_CRITERIA = 261;
const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 262;

exception TpGCCSException
{

TpInt32 exceptionType;
};

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 typedef TpInt32 TpCallLoadControlIntervalRate;

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0;

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 enum TpCallLoadControlMechanismType {
 P_CALL_LOAD_CONTROL_PER_INTERVAL
 };

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 union TpCallLoadControlMechanism switch(TpCallLoadControlMechanismType) {
 case P_CALL_LOAD_CONTROL_PER_INTERVAL:
 TpCallLoadControlIntervalRate CallLoadControlPerInterval;
 };

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 enum TpCallTreatmentType {
 P_CALL_TREATMENT_DEFAULT,
 P_CALL_TREATMENT_RELEASE,
 P_CALL_TREATMENT_SIAR
 };

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 union TpCallAdditionalTreatmentInfo switch(TpCallTreatmentType) {
 case P_CALL_TREATMENT_SIAR: ui::TpUIInfo InformationToSend;
 default: short Dummy;
 };

 /* The next data type is not used for an SCF implementation based
 on this specification: */
 struct TpCallTreatment {
 TpCallTreatmentType CallTreatmentType;
 TpCallReleaseCause ReleaseCause;
 TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo;

N5-0001XX

11

 };

}; // end module cc
}; // end module osa

}; // end module threegpp
}; // end module org

#endif

// END file CC.idl

9.3.2 Generic Call Control IDL
// source file: GCC.idl
// GenericCall Interface description

#ifndef __OSA_CC_GCC_DEFINED
#define __OSA_CC_GCC_DEFINED

#include <CC.idl>

module org {
 module threegpp {
 module osa {
 module cc {
 module gcc {

 interface IpAppCallControlManager; // forward definition
 interface IpAppCall; // forward definition
 interface IpCall; // forward definition

/* Sequence of Data Elements that unambiguously specify the Generic Call object */
 struct TpCallIdentifier {
 IpCall CallReference;
 TpSessionID CallSessionID;
 };

 /* This interface is the SCF manager' interface for Generic Call Control. */
 interface IpCallControlManager : IpService {
 /* This method is used to enable call notifications. */
 void enableCallNotification (
 in IpAppCallControlManager appInterface,
 in TpCallEventCriteria eventCriteria,
 out TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method is used by the application to disable call notifications.*/
 void disableCallNotification (
 in TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 void changeCallNotification (
 in TpAssignmentID assignmentID,
 in TpCallEventCriteria eventCriteria
)
 raises (TpGCCSException, TpGeneralException);

 void getCriteria (
 out TpCallEventCriteriaResultSet eventCriteria
)
 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void createCall (
 in IpAppCall appCall,
 out TpCallIdentifier callReference
)
 raises (TpGCCSException,TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void setCallLoadControl (

N5-0001XX

12

 in TpDuration duration,
 in TpCallLoadControlMechanism mechanism,
 in TpCallTreatment treatment,
 in TpAddressRange addressRange,
 out TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 };

 /* This interface provides the means to control a simple call. */
 interface IpCall : IpService {
 /* This method requests routing of the call to the destination party.*/
 void routeReq (
 in TpSessionID callSessionID,
 in TpCallReportRequestSet responseRequested,
 in TpAddress targetAddress,
 in TpAddress originatingAddress,
 in TpAddress originalDestinationAddress,
 in TpAddress redirectingAddress,
 in TpCallAppInfoSet appInfo,
 out TpSessionID callLegSessionID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method requests the release of the call and associated objects.*/
 void release (
 in TpSessionID callSessionID,
 in TpCallReleaseCause cause
)
 raises (TpGCCSException, TpGeneralException);

 /* This method requests that the relationship between the application and
 the call and associated objects be de-assigned. */
 void deassignCall (
 in TpSessionID callSessionID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method requests information associated with the call.*/
 void getCallInfoReq (
 in TpSessionID callSessionID,
 in TpCallInfoType callInfoRequested
)
 raises (TpGCCSException, TpGeneralException);

 /* Set an operator specific charge plan for the call. */
 void setCallChargePlan (
 in TpSessionID callSessionID,
 in TpCallChargePlan callChargePlan
)
 raises (TpGCCSException, TpGeneralException);

 /* The application calls this method to supervise a call. */
 void superviseCallReq (
 in TpSessionID callSessionID,
 in TpDuration time,
 in TpCallSuperviseTreatment treatment

)
 raises (TpGCCSException, TpGeneralException);

 void setAdviceOfCharge(
 in TpSessionID callSessionID,
 in TpAoCInfo aOCInfo,
 in TpDuration tariffSwitch
)
 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void getMoreDialledDigitsReq (
 in TpSessionID callSessionID,
 in TpInt32 length
)
 raises (TpGeneralException, TpGCCSException);

N5-0001XX

13

 };

 /* Sequence of Data Elements that unambiguously specify the Generic Call object */
 struct TpCallIdentifier {
 IpCall CallReference;
 TpSessionID CallSessionID;
 };

 /* The generic call control manager application interface provides the
 application call control management functions to the generic call control
 SCF. */
 interface IpAppCallControlManager : IpOsa {
 void callAborted (
 in TpSessionID callReference
)
 raises (TpGCCSException, TpGeneralException);

 /* This method notifies the application of the arrival of a call-related event. */
 void callEventNotify (
 in TpCallIdentifier callReference,
 in TpCallEventInfo eventInfo,
 in TpAssignmentID assignmentID,
 out IpAppCall appInterface
)
 raises (TpGCCSException, TpGeneralException);

/* This method indicates to the application that all event notifications
 have been terminated .*/
 void callNotificationInterrupted ()
 raises (TpGCCSException, TpGeneralException);

 void callNotificationContinued ()
 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void callOverloadEncountered (
 in TpAssignmentID assignmentID
)
 raises (TpGeneralException,TpGCCSException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void callOverloadCeased (
 in TpAssignmentID assignmentID
)
 raises (TpGeneralException,TpGCCSException);
 };

 /* The application side of the simple call interface is used to handle call
 request responses and state reports. */
 interface IpAppCall : IpOsa {
 /* This method indicates that the request to route the call to the
 destination was successful.*/
 void routeRes (
 in TpSessionID callSessionID,
 in TpCallReport eventReport,
 in TpSessionID callLegSessionID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method indicates that the request to route the call to the
 destination party was unsuccessful. */
 void routeErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication,
 in TpSessionID callLegSessionID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method reports all necessary information requested by the
 application, for example to calculate charging.*/
 void getCallInfoRes (

N5-0001XX

14

 in TpSessionID callSessionID,
 in TpCallInfoReport callInfoReport
)
 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports that the original request was erroneous,
 or resulted in an error condition.*/
 void getCallInfoErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication
)
 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision event to the application.*/
 void superviseCallRes (
 in TpSessionID callSessionID,
 in TpCallSuperviseReport report,
 in TpDuration usedTime
)
 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision error to the application.*/
 void superviseCallErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication
)
 raises (TpGCCSException, TpGeneralException);

 /* This method indicates to the application that a fault in the network has
 been detected.*/
 void callFaultDetected (
 in TpSessionID callSessionID,
 in TpCallFault fault
)
 raises (TpGCCSException, TpGeneralException);

void callEnded (
 in TpSessionID callSessionID,
 in TpCallEndedReport report
)
 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void getMoreDialledDigitsRes (
 in TpSessionID callSessionID,
 in TpString digits
)
 raises (TpGeneralException,TpGCCSException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void getMoreDialledDigitsErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication
)
 raises (TpGeneralException,TpGCCSException);
 };

 }; // end module gcc
 }; // end module cc
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file GCC.idl

9.3.3 Enhanced Call Control IDL
The IDL in this section is only supplied in order to make the User Interaction IDL compile.

N5-0001XX

15

With the createUICall() method on the UIManager object it is possible to associate the UICall object to a Call
object as well as a CallLeg object. The CallLeg object is not used in this specification. However the IDL for this
interface has to be supplied otherwise the User Interaction IDL will not compile.

// source file: ECC.idl

#ifndef __OSA_CC_ECC_DEFINED
#define __OSA_CC_ECC_DEFINED

#include <GCC.idl>

module org {
 module threegpp {
 module osa {
 module cc {
 module ecc {

typedef TpInt32 TpMediaType;

const TpInt32 P_AUDIO = 1;
const TpInt32 P_VIDEO = 2;
const TpInt32 P_DATA = 4;

typedef TpInt32 TpAudioCapabilitiesType;

typedef TpInt32 TpVideoCapabilitiesType;

typedef TpInt32 TpDataCapabilities;

union TpChannelDataTypeRequest switch(TpMediaType) {
case P_DATA: TpDataCapabilities Data;
case P_VIDEO: TpVideoCapabilitiesType Video;
case P_AUDIO: TpAudioCapabilitiesType Audio;

};

typedef TpChannelDataTypeRequest TpChannelDataType;

enum TpChannelDirection {
P_INCOMING,
P_OUTGOING

};

struct TpChannelRequest {
TpChannelDataTypeRequest DataTypeRequest;
TpChannelDirection Direction;

};

typedef sequence <TpChannelRequest> TpChannelRequestSet;

enum TpCallLegType {
P_CALL_LEG_TYPE_UNDEFINED,
P_CALL_LEG_TYPE_CONTROLLING,
P_CALL_LEG_TYPE_PASSIVE

 };

enum TpCallLegInfoType {
P_CALL_LEG_INFO_UNDEFINED,
P_CALL_LEG_INFO_ADDRESS,
P_CALL_LEG_INFO_RELEASE_CAUSE,
P_CALL_LEG_INFO_APPINFO,
P_CALL_LEG_INFO_TIMES

 };

interface IpMMChannel : IpService {
void close (

 in TpSessionID channelSessionID
)

raises (TpGeneralException,TpGCCSException);

};

struct TpChannel {
TpChannelDirection Direction;

N5-0001XX

16

IpMMChannel Channel;
TpChannelDataType DataType;
TpInt32 ChannelNumber;

};

typedef sequence <TpChannel> TpChannelSet;

interface IpCallLeg : IpService {
void routeCallLegToOrigination (

in TpSessionID callLegSessionID,
in TpAddress targetAddress,
in TpAddress originatingAddress,
in TpAddress originalCalledAddress,
in TpAddress redirectingAddress,
in TpCallAppInfoSet appInfo
)

raises (TpGeneralException,TpGCCSException);

void routeCallLegToDestination (
in TpSessionID callLegSessionID,
in TpAddress targetAddress,
in TpAddress originatingAddress,
in TpAddress originalCalledAddress,
in TpAddress redirectingAddress,
in TpCallAppInfoSet appInfo
)

raises (TpGeneralException,TpGCCSException);

void eventReportReq (
in TpSessionID callLegSessionID,
in TpCallReportRequestSet eventReportsRequested
)

raises (TpGeneralException,TpGCCSException);

void release (
in TpSessionID callLegSessionID,
in TpCallReleaseCause cause
)

raises (TpGeneralException,TpGCCSException);

void getInfoReq (
in TpSessionID callLegSessionID,
in TpCallLegInfoType callLegInfoRequested
)

raises (TpGeneralException,TpGCCSException);

void getType (
in TpSessionID callLegSessionID,
out TpCallLegType callLegType
)

raises (TpGeneralException,TpGCCSException);

void getCall (
in TpSessionID callLegSessionID,
out org::threegpp::osa::cc::gcc::TpCallIdentifier callReference
)

raises (TpGeneralException,TpGCCSException);

void mediaChannelAllow (
in TpSessionID callLegSessionID,
in TpSessionIDSet channelList
)

raises (TpGeneralException,TpGCCSException);

void getMediaChannels (
in TpSessionID callLegSessionID,
out TpChannelSet channels
)

raises (TpGeneralException,TpGCCSException);

void mediaChannelMonitorReq (
in TpSessionID callLegSessionID,
in TpChannelRequestSet channelEventCriteria,
in TpCallMonitorMode monitorMode
)

raises (TpGeneralException,TpGCCSException);
};

N5-0001XX

17

struct TpCallLegIdentifier {
 TpSessionID CallLegSessionID;

 IpCallLeg CallLegReference;
};

 }; // end module ecc
 }; // end module cc
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file ECC.idl

9.4 User Interaction IDL

9.4.1 Common data types for User Interaction
// source file: UI.idl
// User Interaction data description

#ifndef __OSA_UI_DEFINED
#define __OSA_UI_DEFINED

#include <OSA.idl>

module org {
 module threegpp {
 module osa {
 module ui {

/* Defines the additional properties for the collection of information */
struct TpUICollectCriteria {
TpInt32 MinLength; /* minimum number of characters to collect */
TpInt32 MaxLength; /* maxmum number of characters to collect */
TpString EndSequence; /* character(s) which terminate an input of variable length.
*/
TpDuration StartTimeout; /* defines a duration (in seconds) */
TpDuration InterCharTimeout; /* value for the inter-character time-out timer. */
};

/* Defines the UI call error codes. */
enum TpUIError {
P_UI_ERROR_UNDEFINED, /* Undefined error */
P_UI_ERROR_ILLEGAL_ID, /* The information id specified is invalid */
P_UI_ERROR_ID_NOT_FOUND, /* Information id is not known to the the User
Interaction SCFs */
P_UI_ERROR_RESOURCE_UNAVAILABLE, /* Resources used by the User Interaction SCFs are
unavailable. */
P_UI_ERROR_ILLEGAL_RANGE, /* The values for manimum and maximum collection length
are out of range */
P_UI_ERROR_IMPROPER_CALLER_RESPONSE, /* Improper user response */
P_UI_ERROR_ABANDON, /* Specified leg is disconnected before the send
information completed */
P_UI_ERROR_NO_OPERATION_ACTIVE, /* No active user interaction for the specified leg. */
P_UI_ERROR_NO_SPACE_AVAILABLE /* There is no more storage capacity to record the
message.*/
};

/* Defines the type of the dataString parameter in the method userInteractionEventNotify */
 enum TpUIEventInfoDataType {
P_UI_EVENT_DATA_TYPE_UNDEFINED, /* Undefined */
P_UI_EVENT_DATA_TYPE_UNSPECIFIED, /* Unspecified data */
P_UI_EVENT_DATA_TYPE_TEXT, /* Text */
P_UI_EVENT_DATA_TYPE_USSD_DATA /* USSD data starting with coding scheme */
};

/* Defines the Sequence of Data Elements that specify the additional criteria for receiving a
UI notification */

N5-0001XX

18

struct TpUIEventCriteria {
TpAddressRange OriginatingAddress; /* Address of the end-user for which notification shall
be handled */

 TpAddressRange DestinationAddress;
TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */
};

/* Defines the Sequence of Data Elements that specify a UI notification */
struct TpUIEventInfo {
TpAddress OriginatingAddress; /* Address of the end-user for which notification shall be
handled */
 TpAddress DestinationAddress;
TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */
 TpUIEventInfoDataType DataTypeIndication;
 TpString DataString;
};

/* Defines the cause of the UI fault detected. */
enum TpUIFault {
P_UI_FAULT_UNDEFINED, /* Undefined */
P_UI_CALL_DEASSIGNED /* The related Call object has been deassigned. */
};

/* Defines the type of information send to the end-user */
enum TpUIInfoType {
P_UI_INFO_ID, /* The information consists of an ID */
P_UI_INFO_DATA, /* The information consists of a data string */
P_UI_INFO_ADDRESS /* The information consists of a URL. */
};

/* Defines the Tagged Choice of Data Elements that specifies the information to be send to a
end-user. */
union TpUIInfo switch(TpUIInfoType) {
case P_UI_INFO_ID: TpInt32 InfoID; /*Defines the ID of the user information script
or stream to send to an end-user.*/
case P_UI_INFO_DATA: TpString InfoData; /*Defines the data to be sent to an end-user’s
terminal.*/
case P_UI_INFO_ADDRESS: TpURL InfoAddress; /*Defines the URL of the text or stream to be
sent to an end-user’s terminal*/
};

/* Defines the criteria for recording of messages */
struct TpUIMessageCriteria {
TpString EndSequence; /* Defines the character(s) which terminate an input of variable
length. */
TpDuration MaxMessageTime; /* Specifies the maximum allowed duration in seconds. */
TpInt32 MaxMessageSize; /* Specifies the maximum allowed size in bytes of the message. */
};

/* Defines the UI call reports if a response was requested. */
enum TpUIReport {
P_UI_REPORT_UNDEFINED, /* Undefined report */
P_UI_REPORT_ANNOUNCEMENT_ENDED, /* Confirmation that the announcement has ended */
P_UI_REPORT_LEGAL_INPUT, /* Information collected., meeting the specified
criteria. */
P_UI_REPORT_NO_INPUT, /* User immediately entered the delimiter character. No
valid information has been returned */
P_UI_REPORT_TIMEOUT, /* User did not input any response before the input
timeout expired */
P_UI_REPORT_MESSAGE_STORED, /* A message has been stored successfully */
P_UI_REPORT_MESSAGE_NOT_STORED /* The message has not been stored successfully */
};

/* Defines the situations for which a response is expected following the user interaction. */
 const TpInt32 P_UI_RESPONSE_REQUIRED = 1; /* A response must be sent when the request has
completed. */
const TpInt32 P_UI_LAST_ANNOUNCEMENT_IN_A_ROW = 2; /* This is the final announcement within a
sequence. */
const TpInt32 P_UI_FINAL_REQUEST = 4; /* This is the final request. */

typedef TpInt32 TpUIResponseRequest; /* Defines the situations for which a response is
expected following the user interaction. */

/* Defines the type of the variable parts in the information to send to the user. */
enum TpUIVariablePartType {
P_UI_VARIABLE_PART_INT, /* Variable part is of type integer */
P_UI_VARIABLE_PART_ADDRESS, /* Variable part is of type address */

N5-0001XX

19

P_UI_VARIABLE_PART_TIME, /* Variable part is of type time */
P_UI_VARIABLE_PART_DATE, /* Variable part is of type date */
P_UI_VARIABLE_PART_PRICE /* Variable part is of type price */
};

/* Defines the Tagged Choice of Data Elements that specify the variable parts in the
information to send to the user. */
union TpUIVariableInfo switch(TpUIVariablePartType) {
case P_UI_VARIABLE_PART_INT: TpInt32 VariablePartInteger;
case P_UI_VARIABLE_PART_ADDRESS: TpString VariablePartAddress;
case P_UI_VARIABLE_PART_TIME: TpTime VariablePartTime;
case P_UI_VARIABLE_PART_DATE: TpDate VariablePartDate;
case P_UI_VARIABLE_PART_PRICE: TpPrice VariablePartPrice;
};

/* Defines a Numbered Set of Data Elements of TpUIVariableInfo. */
 typedef sequence <TpUIVariableInfo> TpUIVariableInfoSet;

/* Define the possible Exceptions. */
exception TpGUISException {
TpInt32 exceptionType;
};

const TpInt32 P_GUIS_INVALID_CRITERIA = 768; /* Invalid criteria specified */
const TpInt32 P_GUIS_ILLEGAL_ID = 769; /* Information id specified is invalid
*/
const TpInt32 P_GUIS_ID_NOT_FOUND = 770; /* Information id is not known to the
User Interaction Service */
const TpInt32 P_GUIS_ILLEGAL_RANGE = 771; /* The values for minimum and maximum
collection length are out of range */
const TpInt32 P_GUIS_INVALID_COLLECTION_CRITERIA = 772; /* Invalid collection criteria
specified */
const TpInt32 P_GUIS_INVALID_NETWORK_STATE = 774; /* Although the sequence of method
calls is allowed by the gateway, the underlying protocol can not support it. */

 const TpInt32 P_GUIS_UNEXPECTED_SEQUENCE = 775; /* Although the sequence of method
calls is allowed by the gateway, the underlying protocol can not support it. */

 }; // end module ui
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file UI.idl

9.4.2 Generic User Interaction IDL
// source file: GUI.idl
// GUIS Interface description

#ifndef __OSA_UI_GUI_DEFINED
#define __OSA_UI_GUI_DEFINED

#include <UI.idl>
#include <ECC.idl>

module org {
 module threegpp {
 module osa {
 module ui {
 module gui {

 interface IpAppUIManager; // forward definition;
 interface IpAppUI; // forward definition;
 interface IpAppUICall; // forward definition;

 /* The Generic User Interaction SCF Interface provides functions to send
 information to, or gather information from the user. */
 interface IpUI : IpService {
 /* This method plays an announcement or sends other information to the user.*/
 void sendInfoReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIVariableInfoSet variableInfo,
 in TpInt32 repeatIndicator,

N5-0001XX

20

 in TpUIResponseRequest responseRequested,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method plays an announcement or sends other information to the user
 and collects some information from the user. */
 void sendInfoAndCollectReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIVariableInfoSet variableInfo,
 in TpUICollectCriteria criteria,
 in TpUIResponseRequest responseRequested,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method requests that the relationship between the application and
 the user interaction object be released. */
 void release (
 in TpSessionID userInteractionSessionID
)
 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UI object */
 struct TpUIIdentifier {
 TpSessionID UserInteractionSessionID;
 IpUI UIRef;
 };

 /* The Call User Interaction Service Interface provides functions to send
 information to, or gather information from, the user. */
 interface IpUICall : IpUI {
 /* This asynchronous method aborts the specified user interaction operation. */
 void abortActionReq (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void recordMessageReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIMessageCriteria criteria,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UICall object. */
 struct TpUICallIdentifier {
 IpUICall UICallRef;
 TpSessionID UserInteractionSessionID;
 };

 /* This interface is the 'SCF manager' interface for the Generic User Interaction SCF. */
 interface IpUIManager : IpService {
 /* This method is used to create a new user interaction object for non-call related

purposes */
 void createUI (
 in IpAppUI appUI,
 in TpAddress userAddress,
 out TpUIIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used to create a new user interaction object for call related purposes.
*/

 void createUICall (
 in IpAppUICall appUI,

N5-0001XX

21

 in org::threegpp::osa::cc::gcc::TpCallIdentifier callIdentifier,
 in org::threegpp::osa::cc::ecc::TpCallLegIdentifier callLegIdentifier,
 out TpUICallIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used to enable the reception of user initiated user interaction. */
 void enableUINotification (
 in IpAppUIManager appInterface,
 in TpUIEventCriteria eventCriteria,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used by the application to disable UI notifications. */
 void disableUINotification (
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The Generic User Interaction SCF manager application interface provides
 the application call management functions to the Generic User Interaction SCF. */
 interface IpAppUIManager : IpOsa {
 /* This method indicates to the application that the User Interaction SCF
 instance has terminated or closed abnormally. */
 void userInteractionAborted (
 in TpUIIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method notifies the application of an user initiated request for user interaction.
*/

 void userInteractionEventNotify (
 in TpUIIdentifier ui,
 in TpUIEventInfo eventInfo,
 in TpAssignmentID assignmentID,
 out IpAppUI appInterface
)
 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationInterrupted ()
 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationContinued ()
 raises (TpGUISException, TpGeneralException);

 };

 /* The User Interaction Application Interface is used to handle generic user
 interaction request responses and reports. */
 interface IpAppUI : IpOsa {
 /* This method informs the application about the start or the completion of a

sendInfoCallReq(). */
 void sendInfoRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information was
unsuccessful. */

 void sendInfoErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method returns the information collected to the application. */
 void sendInfoAndCollectRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response,
 in TpString info
)

N5-0001XX

22

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information
 and collect a response was unsuccessful. */
 void sendInfoAndCollectErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* This method indicates to the application that a fault has been detected in the user
interaction. */

 void userInteractionFaultDetected (
 in TpSessionID userInteractionSessionID,
 in TpUIFault fault
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The Call User Interaction Application Interface is used to handle call user
 interaction request responses and reports. */
 interface IpAppUICall : IpAppUI {
 /* This method confirms that the request to abort a user interaction operation on a call

was successful. */
 void abortActionRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to abort a user interaction
 operation on a call resulted in an error.*/
 void abortActionErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void recordMessageRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response,
 in TpInt32 messageID
)
 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must
 return the exception “Method not supported” when invoked on a SCF
 implementation based on this specification: */
 void recordMessageErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);
 };

 }; // end module gui
 }; // end module ui
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file GUI.idl

N5-0001XX

23

N5-0001XY

1

3GPP Meeting CN5 #4 Document N5-000133
Retz, 10-11 July 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 006
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 July 2000

Subject: Correction to table with overview of IDL files

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The table in chapter 9 showing the different name spaces and IDL files is not in line
with the real IDL.

Clauses affected: 9

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-0001XY

2

9. IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are
placed in the root module while each of the specific service capability feature API definitions are being assigned
their own module directly under that root. Each specific SCF functions, like User Status, have their data and
interface definitions collocated. This structure has the advantage that explicit scoping is kept to a minimum.
The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are
provided in the org.threegpp.osa module within a file name called OSA.idl
Module Name Description IDL file name
org.threegpp.osa Common data/interface definitions OSA.idl
org.threegpp.osa.fw common Framework data-types FW.idl
org.threegpp.osa.fw.discovery Discovery data-types and interfaces DISC.idl
org.threegpp.osa.fw.trust_and_security Trust and Security date-types and interfaces TandS.idl
org.threegpp.osa.fw.integrity Integrity management data-types and interfaces IM.idl
org.threegpp.osa.fw.registration Registration data-types and interfaces REG.idl
org.threegpp.osa.mm Common mobility data definitions (root) MM.idl
org.threegpp.osa.mm.ul Network User Location (UL) MMul.idl
org.threegpp.osa.mm.us User Status (US) MMus.idl
org.threegpp.osa.cc Call Control data-types CC.idl
org.threegpp.osa.cc.gcc Generic Call Control interfaces GCC.idl
org.threegpp.osa.cc.ecc data-types and interfaces specific for Enhanced Call

Control. This is only needed to compile the User
Interaction IDL

ECC.idl

org.threegpp.osa.ui User Interaction data-types UI.idl
org.threegpp.osa.ui.gui User Interaction interfaces GUI.idl
org.threegpp.osa.dsc Data Session data-types and interfaces DSC.idl
org.threegpp.osa.mm Common mobility data definitions (root) MM.idl
org.threegpp.osa.mm.ul Network User Location (UL) MMul.idl
org.threegpp.osa.mm.us User Status (US) MMus.idl
org.threegpp.osa.termcap Terminal Capabilities TERMCAP.idl

N5-0001XZ

1

3GPP Meeting CN5 #4 Document N5-000134
Retz, 10-11 July 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 007
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 July 2000

Subject: Reduction in name scoping in IDL for createUICall operation on IpUICall interface

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The createUICall operation on the IpUICall interface has parameters of data-types that
are defined in other places of the naming tree.
However, the explicit name scoping up to the root of the namespace
(org.3gpp.osa.xx.yy) that is currently in the IDL is not necessary, it is sufficient to limit
the scoping to xx.yy

Clauses affected: 9.4.2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-0001XZ

2

9.4.2 Generic User Interaction IDL
// source file: GUI.idl
// GUIS Interface description

#ifndef __OSA_UI_GUI_DEFINED
#define __OSA_UI_GUI_DEFINED

#include <UI.idl>
#include <ECC.idl>

module org {
 module threegpp {
 module osa {
 module ui {
 module gui {

 interface IpAppUIManager; // forward definition;
 interface IpAppUI; // forward definition;
 interface IpAppUICall; // forward definition;

 /* The Generic User Interaction SCF Interface provides functions to send
 information to, or gather information from the user. */
 interface IpUI : IpService {
 /* This method plays an announcement or sends other information to the user.*/
 void sendInfoReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIVariableInfoSet variableInfo,
 in TpInt32 repeatIndicator,
 in TpUIResponseRequest responseRequested,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method plays an announcement or sends other information to the user
 and collects some information from the user. */
 void sendInfoAndCollectReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIVariableInfoSet variableInfo,
 in TpUICollectCriteria criteria,
 in TpUIResponseRequest responseRequested,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method requests that the relationship between the application and
 the user interaction object be released. */
 void release (
 in TpSessionID userInteractionSessionID
)
 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UI object */
 struct TpUIIdentifier {
 TpSessionID UserInteractionSessionID;
 IpUI UIRef;
 };

 /* The Call User Interaction Service Interface provides functions to send
 information to, or gather information from, the user. */
 interface IpUICall : IpUI {
 /* This asynchronous method aborts the specified user interaction operation. */
 void abortActionReq (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);
 };

N5-0001XZ

3

 /* Defines the Sequence of Data Elements that unambiguously specify the UICall object. */
 struct TpUICallIdentifier {
 IpUICall UICallRef;
 TpSessionID UserInteractionSessionID;
 };

 /* This interface is the 'SCF manager' interface for the Generic User Interaction SCF. */
 interface IpUIManager : IpService {
 /* This method is used to create a new user interaction object for non-call related

purposes */
 void createUI (
 in IpAppUI appUI,
 in TpAddress userAddress,
 out TpUIIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used to create a new user interaction object for call related purposes.
*/

 void createUICall (
 in IpAppUICall appUI,
 in org::threegpp::osa::cc::gcc::TpCallIdentifier callIdentifier,
 in org::threegpp::osa::cc::ecc::TpCallLegIdentifier callLegIdentifier,
 out TpUICallIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used to enable the reception of user initiated user interaction. */
 void enableUINotification (
 in IpAppUIManager appInterface,
 in TpUIEventCriteria eventCriteria,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used by the application to disable UI notifications. */
 void disableUINotification (
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The Generic User Interaction SCF manager application interface provides
 the application call management functions to the Generic User Interaction SCF. */
 interface IpAppUIManager : IpOsa {
 /* This method indicates to the application that the User Interaction SCF
 instance has terminated or closed abnormally. */
 void userInteractionAborted (
 in TpUIIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method notifies the application of an user initiated request for user interaction.
*/

 void userInteractionEventNotify (
 in TpUIIdentifier ui,
 in TpUIEventInfo eventInfo,
 in TpAssignmentID assignmentID,
 out IpAppUI appInterface
)
 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationInterrupted ()
 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationContinued ()
 raises (TpGUISException, TpGeneralException);

 };

 /* The User Interaction Application Interface is used to handle generic user
 interaction request responses and reports. */
 interface IpAppUI : IpOsa {
 /* This method informs the application about the start or the completion of a

sendInfoCallReq(). */
 void sendInfoRes (

N5-0001XZ

4

 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information was
unsuccessful. */

 void sendInfoErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method returns the information collected to the application. */
 void sendInfoAndCollectRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response,
 in TpString info
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information
 and collect a response was unsuccessful. */
 void sendInfoAndCollectErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* This method indicates to the application that a fault has been detected in the user
interaction. */

 void userInteractionFaultDetected (
 in TpSessionID userInteractionSessionID,
 in TpUIFault fault
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The Call User Interaction Application Interface is used to handle call user
 interaction request responses and reports. */
 interface IpAppUICall : IpAppUI {
 /* This method confirms that the request to abort a user interaction operation on a call

was successful. */
 void abortActionRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to abort a user interaction
 operation on a call resulted in an error.*/
 void abortActionErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);
 };

 }; // end module gui
 }; // end module ui
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file GUI.idl

N5-000171

1

3GPP Meeting CN5 #5 Document N5-000171
Bristol, 5-7 Sept 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 008R2
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 August 2000

Subject: Alignment of Framework with Parlay 2.1, improvement on business entity identification

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The FW of TS 29.198 contains a few differences compared to Parlay 2.1, mainly in the
area of different parameter names and data-types.
This CR relates to the introduction of a data-type for indicating the business entity for
the purpose of specifying the framework or the type of entity attempting to access the
framework.

Clauses affected: 6.2, 8.2, 9.2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000171

2

6.2.3.1 IpInitial

<<Interface>>

IpInitial

initiateAuthentication(appDomain: in TpAuthDomain clientAppID: in TpClientAppID, authType : in
TpAuthType, appAuthInterface: in IpOsaRef, fwAuthInterface :out TpFwAuthRef fwDomain: out
TpAuthDomainRef) : TpResult

requestAccess(accessType: in TpAccessType, appAccessInterface; in IpOsaRef,
fwAccessInterface: out IpOsaRefRef): TpResult

6.2.5 Service Factory

getServiceManager()

IpSvcFactory
<<Interface>>

Figure 6-8: Service Factory Class Diagram

<<Interface>>

IpSvcFactory

getServiceManager(application : in TpDomainClientAppID, serviceManager : out IpOSA) : TpResult

N5-000171

3

8.2 Framework Data Definitions

8.2.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

TpDomainID

Defines the Tagged Choice of Data Elements that specify either the framework or the type of entity
attempting to access the framework.

Tag Element Type
TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID

P_CLIENT_APPLICATION TpClientAppID ClientAppID

P_ENT_OP TpEntOpID EntOpID

P_REGISTERED_SERVICE TpServiceID ServiceID

P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

TpDomainIDType

Defines either the framework or the type of entity attempting to access the framework
Name Value Description

P_FW 0 The framework

P_CLIENT_APPLICATION 1 A client application

P_ENT_OP 2 An enterprise operator

P_REGISTERED_SERVICE 3 A registered service

P_SERVICE_SUPPLIER 4 A service supplier

8.2.1.3 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise
operator. In conjunction with the application it uniquely identifies the enterprise operator which uses a particular
OSA Service Capability Feature.

8.2.1.4 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

TpFwID

This data type is identical to TpString and identifies the Framework to a client application (or Service
Capability Feature)

8.2.1.23 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the framework. This data type is
identical to TpString.

N5-000171

4

8.2.2.4 TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma
(,)as the separation character.

TpAuthDomain

This is Sequence of Data Elements containing the domain identifier, and a reference to the
authentication interface of the domain

Sequence Element Name Sequence Element Type
DomainID TpDomainID

AuthInterface IpOSARef

N5-000171

5

9.2.1 Common Data Types for the Framework
#include <OSA.idl>

module org{

module threegpp{

module osa{

module fw{

typedef TpString TpClientAppID; // Identifies the client appl to the
framework.

typedef sequence <TpClientAppID> TpClientAppIDList;

 /* Defines either the framework or the type of entity attempting to access the
framework

 The framework
 A client application
 An enterprise operator
 A registered service
 A service supplier */
 enum TpDomainIDType
 {
 P_FW,
 P_CLIENT_APPLICATION,
 P_ENT_OP,
 P_REGISTERED_SERVICE,
 P_SERVICE_SUPPLIER
 };

typedef TpString TpEntOpID;

typedef sequence < TpEntOpID > TpEntOpIDList;

 typedef TpString TpFwID;

 typedef TpString TpServiceSupplierID;

 /* Defines the Tagged Choice of Data Elements that specify either the framework or the
type of entity

 attempting to access the framework.
 Tag Element Type
 TpDomainIDType */

 struct TpDomainID
 {
 TpFwID FwID;
 TpClientAppID ClientAppID;
 TpEntOpID EntOpID;
 TpServiceID ServiceID;
 TpServiceSupplierID ServiceSupplierID;
 };

typedef TpString TpServiceID; // A string of characters, generated automatically
by the

// Framework and comprising a TpUniqueServiceNumber,
// TpServiceNameString, and a number of relevant
// TpServiceSpecString, concatenated using a forward
// separator (/), that uniquely identifies an

instance of a
// SCF interface.

typedef sequence <TpServiceID> TpServiceIDList;

 typedef TpString TpServiceNameString; // Uniquely identifies the
name of an SCF

// interface. For OSA release 99 the
following

// values have been defined: NULL (no SCF
name),

N5-000171

6

// P_CALL_CONTROL, P_USER_INTERACTION,
// P_USER_LOCATION, P_TERMINAL_CAPABILITIES

and
// P_USER_STATUS.

typedef TpString TpServiceSpecString; // Uniquely identifies the
name of a SCF

// specialisation interface. For OSA release
99

// the following values have been defined:
NULL

// no SCF specialisation) and P_CALL.

typedef TpString TpUniqueServiceNumber; // A string of characters
that represents a

// unique number.
enum TpServicePropertyMode {

NORMAL, // The value of the corresponding
SCF property type may optionally be

// provided.
MANDATORY, // The value of the corresponding SCF property

type must be provided
// at SCF registration.

READONLY, // The value of the corresponding
SCF property is optional, nut once

// given a value it may not be modified.
MANDATORY_READONLY // The value of the corresponding SCF property

type must be provided
// and may not be modified subsequently.

};

typedef TpString TpServicePropertyTypeName;

typedef TpString TpServicePropertyName;

typedef sequence <TpServicePropertyName> TpServicePropertyNameList;

typedef TpString TpServicePropertyValue;

typedef sequence <TpServicePropertyValue> TpServicePropertyValueList;

struct TpServiceProperty { // Describes a SCF property
TpServicePropertyName ServicePropertyName;
TpServicePropertyValueList ServicePropertyValueList;
TpServicePropertyMode ServicePropertyMode;

};

typedef sequence <TpServiceProperty> TpServicePropertyList;

typedef TpString TpServiceTypeName;

typedef sequence <TpServiceTypeName> TpServiceTypeNameList;

struct TpService { // Describes a registered SCF.
TpServiceID ServiceID;
TpServicePropertyList ServicePropertyList;
};

typedef sequence <TpService> TpServiceList;

struct TpServiceDescription { // Describes the properties of a
registered SCF.

TpServiceTypeName ServiceTypeName;
TpServicePropertyList ServicePropertyList;

};

struct TpPropertyStruct { // Describes a SCF property.
TpServiceTypeName ServicePropertyName;
TpServicePropertyMode ServicePropertyMode;
TpServicePropertyTypeName ServicePropertyTypeName;

};

typedef sequence <TpPropertyStruct> TpPropertyStructList;

struct TpServiceTypeDescription { // Describes a SCF type.
TpPropertyStructList PropertyStructList;
TpServiceTypeNameList ServiceTypeNameList;

N5-000171

7

TpBoolean EnabledOrDisabled;
};

};};};};

9.2.3 Trust and Security Management IDL
#include <fw.idl>

module org{
module threegpp{
module osa{
module fw{
module trust_and_security{

/***
/

// Data definitions
//

/***
/

typedef TpString TpAccessType; // The type of access interface
requested by the client

// application. For OSA release 99 the following
values

// have been defined: NULL (indicates the default
access

// type) and P_ACCESS.

typedef TpString TpAuthType; // The type of
authentication mechanism requested by the

// client. For OSA release 99 the following values
have

// been defined: NULL (indicates OSA authentication),
// P_AUTHENTICATION (indicates use of the OSA
// authentication interfaces.

typedef TpString TpAuthCapability; // The authentication capabilities
that could be supported

// by the OSA. For OSA release 99 the following
values

// have been defined: NULL (indicates no client
// capabilities, P_DES_56, P_RSA_512 and P_RSA_1024).

typedef TpString TpAuthCapabilityList; // A string of multiple
TpAuthCapability

// concatenated using a commas.

struct TpAuthDomain
 {
 TpDomainID DomainID;
 IpOSA AuthInterface;
 };

typedef TpString TpInterfaceName; // Identifies the names of the framework
SCFs that are be

// supported by the OSA API. For release 99 these are
NULL,

// P_DISCOVERY, P_OAM,
P_TRUST_AND_SECURITY_MANAGEMENT

// P_INTEGRITY_MANAGEMENT.

struct TpServiceAccessControl {
TpString Policy; // Access control policy

information controlling access to the
// service feature.

TpString TrustLevel; // The level of trust that the
network operator has assigned to the

// client application.
};

typedef TpString TpServiceToken; // Uniquely identifies a SCF.

struct TpSignatureAndServiceMgrRef {

N5-000171

8

TpString DigitalSignature; // The digital signature of
the Framework for the service

// agreement.
IpOsa ServiceMgrInterface;

};

typedef TpString TpSigningAlgorithm; // Identifies the signing
algorithm that must be

// used. For OSA release 99 the follwing values
have

// been defined: NULL (indicates no signing
algorithm

// is required), P_MD5_RSA_512 and
P_MD5_RSA_1024.

typedef TpString TpFwID;

struct TpFwAuth {

TpFwID FwID;

IpOsa FwAuthInterface;

};

/***
/

// Interface definitions
//

/***
/

/* The Initial Framework interface is used by the client application to initiate the
mutual

authentication with the Framework and, when this is finished successfully, to request
access

to it. */
interface IpInitial : IpOsa {

/* This method is invoked by the client application to start the process of mutual
authentication with the framework, and request the use of a specific authentication

method.
*/
void initiateAuthentication (
in TpAuthDomain appDomainTpClientAppID clientAppID, // Identifies the

client to the framework.
in TpAuthType authType, // Allows the client application to

request a
// specific type of authentication mechanism.

in IpOsa appAuthInterface, // Provides a reference to the
client application

// authentication interface.
out TpAuthDomain fwDomainFwAuth fwAuthInterface // Provides a framework

identifier, and a reference
// to framework authentication interface.

) raises (TpGeneralException);

/* This method is invoked by the client application, once mutual authentication is
achieved, to request access to the framework and specify the type of access desired.

*/
void requestAccess (
in TpAccessType accessType, // Identifies the type of access interface

requested by
// the client application.

in IpOsa appAccessInterface, // Provides a reference to the access interface
of the
// client application.

out IpOsa fwAccessInterface // Provides a reference to call the
access interface of

 // the framework.

N5-000171

9

) raises (TpGeneralException);

};

/* The Access Framework interface is used by the client application to perform the
mechanisms
necessary for it to obtain access to SCFs. */
interface IpAccess : IpOsa {

/* This method is invoked by the client application to obtain interface references to
other
framework interfaces. */
void obtainInterface (
in TpInterfaceName interfaceName, // The name of the framework interface to which a

// reference to the interface is requested.
out IpOsa fwInterface // The requested interface

reference.
) raises (TpGeneralException);

/* This method is invoked by the client application to obtain interface references to
other
framework interfaces, when it is required to supply a callback interface to the
framework. */
void obtainInterfaceWithCallback (
in TpInterfaceName interfaceName, // The name of the framework interface to

which
// a reference to the interface is

requested.
in IpOsa appInterface, // This is the reference to

the client application
// interface which is used for callbacks.

out IpOsa fwInterface // The requested
interface reference.

) raises (TpGeneralException);

/* This method may be invoked by the client application to check whether it has been
granted permission to access the specified SCF and, if granted, the level of trust

that
will be applied. */
void accessCheck (
in TpString securityContext, // A group of security

relevant
// attributes.

in TpString securityDomain, // The security domain in
which

// the client application is
// operating.

in TpString group, // Used to define the access
// rights associated with all
// clients that belong to that
// group.

in TpString serviceAccessTypes, // Defined by the specific
// security model in use.

out TpServiceAccessControl serviceAccessControl // The access control policy
// information controlling
// access to the service
// capability feature, and the
// trustLevel that the network
// operator has assigned to the
client
// application.

) raises (TpGeneralException);

/* This method is invoked by the client application to identify the SCF that it
wishes

to use. */
void selectService (
in TpServiceID serviceID, // Identifies the SCF.
in TpServicePropertyList serviceProperties, // List the properties that the SCF

// should support.
out TpServiceToken serviceToken // A free format text token

returned by
// the framework, which can be signed

as
// part of a service agreement.

) raises (TpGeneralException);

N5-000171

10

/* This method is invoked by the client application to request that the framework
sign an
agreement on the SCF, which allows the client application to use the SCF. */
void signServiceAgreement (
in TpServiceToken serviceToken, // Used to identify the SCF

// instance requested by
the
// client application.

in TpString agreementText, // The agreement text to be
// signed by the

framework.
in TpSigningAlgorithm signingAlgorithm, // The algorithm used to

compute
// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr // A reference to a
structure

// that contains the
digital

// signature of the
framework

// for the service
agreement,

// and a reference to the
// SCF manager interface

of
// the SCF.

) raises (TpGeneralException);

/* This method is invoked by the client application to terminate an agreement for the
specified SCF. */
void terminateServiceAgreement (
in TpServiceToken serviceToken, // Identifies the service agreement to be

terminated.
in TpString terminationText, // Describes the reason for the termination of the

// service agreement.
in TpString digitalSignature // Used by the framework to check that the

// terminationText has been signed by the client.
) raises (TpGeneralException);

/* This method is invoked by the client application to end the access session
with the Framework. */
void endAccess () raises (TpGeneralException);

};

/* The Access client application interface is used by the Framework to perform the steps
that
are necessary in order to allow it to SCF access. */
interface IpAppAccess : IpOsa {

/* This method is invoked by the Framework to request that client application sign an
agreement on a specified SCF. */
void signServiceAgreement (
in TpServiceToken serviceToken, // Identifies the SCF instance to which

 // this service agreement corresponds.
in TpString agreementText, // Agreement text that has to be signed by

the
 // client application.

in TpSigningAlgorithm signingAlgorithm, // Algorithm used to compute the
digital

 // signature.
out TpString digitalSignature // Signed version of a hash of the

service
// token and agreement text given by the
// framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to terminate an agreement for a specified
SCF. */
void terminateServiceAgreement (
in TpServiceToken serviceToken, // Identifies the SCF agreement to be

terminated.
in TpString terminationText, // Describes the reason for the termination.
in TpString digitalSignature // Used by the Framework to confirm its identity

to the
// client.

N5-000171

11

) raises (TpGeneralException);

/* This method is invoked by the Framework to end the client application's access
session

with the framework. */
void terminateAccess (
in TpString terminationText, // Describes the reason for the

termination of
 // the access session.

in TpSigningAlgorithm signingAlgorithm, // The algorithm used to compute
the digital

// signature.
in TpString digitalSignature // Used by the Framework to confirm

its
// identity to the client.

) raises (TpGeneralException);

};

/* The Authentication Framework interface is used by client application to perform its
part of

the mutual authentication process with the Framework necessary to be allowed to use any
of the

other interfaces supported by the Framework. */
interface IpAuthentication : IpOsa {

/* This method is invoked by the client application to start the authentication
process,

informed the Framework of the authentication mechanisms it supports, and be informed
by its

of its preferred choice. */
void selectAuthMethod (
in TpAuthCapabilityList authCapability, // Informs the Framework of the

authentication
// mechanisms supported by the client
// application.

out TpAuthCapability prescribedMethod // Indicates the mechanism
preferred by the

// framework.
) raises (TpGeneralException);

/* This method is invoked by the client application to authenticate the framework
using the

mechanism indicated in the parameter prescribedMethod. */
void authenticate (
in TpAuthCapability prescribedMethod, // Specifies the method accepted by

that the
// framework for authentication.

in TpString challenge, // The challenge presented by the client
// application to be responded to by the
// framework.

out TpString response // The response of the framework to the
// challenge of the client application.

) raises (TpGeneralException);

/* This method is invoked by the client application to to abort the authentication
process.*/
void abortAuthentication() raises (TpGeneralException);

};

/* The Authentication client application interface is used by the Framework to
authenticate

the client application. */

interface IpAppAuthentication : IpOsa {

/* This method is invoked by the Framework to authenticate the client application
using the

mechanism indicated in prescribedMethod. */
void authenticate (
in TpAuthCapability prescribedMethod, // The agreed authentication

method.

N5-000171

12

in TpString challenge, // The
challenge presented by the Framework.

out TpString response
) raises (TpGeneralException);

/* This method is invoked by the Framework to abort the authentication process. */
void abortAuthentication() raises (TpGeneralException);

};

};};};};};

9.2.4 Registration IDL
#include <fw.idl>

module org{
module threegpp{
module osa{
module fw{
module registration{

/***
/

// Interface definitions
//

/***
/

/* The Service Registration Framework interface provides the methods used for the
registration
of network SCFs at the Framework. */
interface IpServiceRegistration : IpOsa {

/* This method is used to register a SCF in the Framework, for subsequent
discovery by
the applications. */
void registerService (
in TpServiceTypeName serviceTypeName,

in TpServicePropertyList servicePropertyList,
out TpServiceID serviceID
) raises (TpGeneralException);

/* This method informs the Framework of the availability of a service factory for
a
previously registered SCF. */
void announceServiceAvailability (
in TpServiceID serviceID,
in IpOsa serviceFactory
) raises (TpGeneralException);

/* This method is used to remove a registered SCF from the Framework. */
void unregisterService (
in TpServiceID serviceID
) raises (TpGeneralException);

/* This method is used to ebtain the decription of a certain SCF as it was
registered in
the Framework. */
void describeService (
in TpServiceID serviceID,
out TpServiceDescription serviceDescription
) raises (TpGeneralException);

};

/* The Service Factory Framework interface provides the Framework with access to a
manager
interface of a network SCF to be given to an application. */
interface IpSvcFactory : IpOsa {

/* This method returns an SCF manager interface reference for a specified
application. */
void getServiceManager (
in TpDomainIDClientAppID application,
out IpOsa serviceManager

N5-000171

13

) raises (TpGeneralException);
};

};};};};};

N5-000172

1

3GPP Meeting CN5 #5 Document N5-000172
Bristol, 5-7 Sept 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 009R2
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 August 2000

Subject: Alignment of Framework with Parlay 2.1, correction of missing service token

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The FW of TS 29.198 contains a few differences compared to Parlay 2.1, mainly in the
area of different parameter names and data-types.
Currently in TS 29.198 the service token parameter is missing for the operation
accessCheck on the IpAccess interface. (A service token is created by the framework
when an application selects a service capability feature to be used)

Clauses affected: 6.2, 9.2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000172

2

6.2.3.4 IpAccess

<<Interface>>

IpAccess

obtainInterface(interfaceName: in TpInterfaceName, fwInterface: out IpOsaRefRef): TpResult

obtainInterfaceWithCallback(interfaceName: in TpInterfaceName, appInterface: in IpOsaRef,
fwInterface: out IpOsaRefRef): TpResult

accessCheck(serviceToken: in TpServiceToken, securityContext:: in TpString, securityDomain: in
TpString, group : in TpString, serviceAccessTypes: in TpString, serviceAccessControl: out
TpServiceAccessControlRef): TpResult

selectService(serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList,
serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString,
signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out
TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpPropertyList) : TpResult

N5-000172

3

9.2.3 Trust and Security Management IDL
#include <fw.idl>

..

/* The Access Framework interface is used by the client application to perform the
mechanisms
necessary for it to obtain access to SCFs. */
interface IpAccess : IpOsa {

/* This method is invoked by the client application to obtain interface references to
other
framework interfaces. */
void obtainInterface (
in TpInterfaceName interfaceName, // The name of the framework interface to which a

// reference to the interface is requested.
out IpOsa fwInterface // The requested interface

reference.
) raises (TpGeneralException);

/* This method is invoked by the client application to obtain interface references to
other
framework interfaces, when it is required to supply a callback interface to the
framework. */
void obtainInterfaceWithCallback (
in TpInterfaceName interfaceName, // The name of the framework interface to

which
// a reference to the interface is

requested.
in IpOsa appInterface, // This is the reference to

the client application
// interface which is used for callbacks.

out IpOsa fwInterface // The requested
interface reference.

) raises (TpGeneralException);

/* This method may be invoked by the client application to check whether it has been
granted permission to access the specified SCF and, if granted, the level of trust

that
will be applied. */
void accessCheck (
in TpServiceToken serviceToken,
in TpString securityContext, // A group of security

relevant
// attributes.

in TpString securityDomain, // The security domain in
which

// the client application is
// operating.

in TpString group, // Used to define the access
// rights associated with all
// clients that belong to that
// group.

in TpString serviceAccessTypes, // Defined by the specific
// security model in use.

out TpServiceAccessControl serviceAccessControl // The access control policy
// information controlling
// access to the service
// capability feature, and the
// trustLevel that the network
// operator has assigned to the
client
// application.

) raises (TpGeneralException);

/* This method is invoked by the client application to identify the SCF that it
wishes

to use. */
void selectService (
in TpServiceID serviceID, // Identifies the SCF.
in TpServicePropertyList serviceProperties, // List the properties that the SCF

// should support.
out TpServiceToken serviceToken // A free format text token

returned by

N5-000172

4

// the framework, which can be signed
as

// part of a service agreement.
) raises (TpGeneralException);

/* This method is invoked by the client application to request that the framework
sign an
agreement on the SCF, which allows the client application to use the SCF. */
void signServiceAgreement (
in TpServiceToken serviceToken, // Used to identify the SCF

// instance requested by
the
// client application.

in TpString agreementText, // The agreement text to be
// signed by the

framework.
in TpSigningAlgorithm signingAlgorithm, // The algorithm used to

compute
// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr // A reference to a
structure

// that contains the
digital

// signature of the
framework

// for the service
agreement,

// and a reference to the
// SCF manager interface

of
// the SCF.

) raises (TpGeneralException);

/* This method is invoked by the client application to terminate an agreement for the
specified SCF. */
void terminateServiceAgreement (
in TpServiceToken serviceToken, // Identifies the service agreement to be

terminated.
in TpString terminationText, // Describes the reason for the termination of the

// service agreement.
in TpString digitalSignature // Used by the framework to check that the

// terminationText has been signed by the client.
) raises (TpGeneralException);

/* This method is invoked by the client application to end the access session
with the Framework. */
void endAccess () raises (TpGeneralException);

};

..

N5-000173

1

3GPP Meeting CN5 #5 Document N5-000173
Bristol, 5-7 Sept 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 010R2
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 August 2000

Subject: Alignment of Framework with Parlay 2.1, parameter name and data-type alignments

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The FW of TS 29.198 contains a few differences compared to Parlay 2.1, mainly in the
area of different parameter names and data-types.
This CR corrects differences in parameter names and data-types.

Clauses affected: 6.2, 8.2, 9.2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000173

2

6.2.3.3 IpAuthentication

<<Interface>>

IpAuthentication

selectAuthMethod (authCapsability: in TpAuthCapabiltyList, prescribedMethod: out
TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out
TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.5 IpAppAccess

<<Interface>>

IpAppAccess

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString,
signingAlgorithm: in TpSigningAlgorithm, digitalSignature: out TpStringRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpString): TpResult

terminateAccess(terminationText: in TpString, signingAlgorithm: in TpSigningAlgorithm,
digitalSignature: in TpStringRef) : TpResult

6.2.4.6 IpAppLoadManager

<<Interface>>

IpAppLoadManager

queryAppLoadReq(serviceIDs: in TpServiceIdList, timeInterval : TpTimeInterval) : TpResult

queryLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

disableLoadControl(serviceIDs: in TpServiceIdList) : TpResult

enableLoadControl(loadStatistics : in TpLoadStatisticList) : TpResult

resumeNotification() : TpResult

suspendNotification() : TpResult

N5-000173

3

6.2.4.7 IpFaultManager

<<Interface>>

IpFaultManager

activityTestReq(activityTestID: in TpActivityTestID, svcID: in TpServiceID): TpResult

appActivityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes):
TpResult

svcUnavailableInd(serviceID: in TpServiceID): TpResult

genFaultStatsRecordReq(timePeriod: in TpTimeInterval, serviceIDsList: in TpServiceIDList):
TpResult

N5-000173

4

6.2.4.10 IpAppOAM

<<Interface>>

IpAppOAM

systemDateTimeQuery(clientDateAndTime systemDateAndTime: in TpDateAndTime,
clientDateAndTimesystemDateAndTime: out TpDateAndTimeRef) : TpResult

6.2.5 Service Factory

getServiceManager()

IpSvcFactory
<<Interface>>

Figure 6-8: Service Factory Class Diagram

<<Interface>>

IpSvcFactory

getServiceManager(application : in TpClientAppID, serviceManager : out IpServiceRefRefOSA) : TpResult

6.2.6 Service Registration

registerService()
announceServiceAvailability()
unregisterService()
describeService()

IpServiceRegistration
<<Interface>>

Figure 6-7: Service Registration Class Diagram

<<Interface>>

IpServiceRegistration

registerService(serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList,
serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability(serviceID : in TpServiceID, serviceFactoryRef : in IpOSARef) : TpResult
unregisterService(serviceID : in TpServiceID) : TpResult
describeService(serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

N5-000173

5

8.2.2.8 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the framework for the service agreement,
and a reference to the SCF manager interface of the SCF.

Sequence Element Name Sequence Element Type
DigitalSignature TpStringRef

ServiceMgrInterface IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.
The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

8.2.3 Integrity Management Data Definitions

8.2.3.3 TpFaultStatsSet

This defines the sequence of data elements which provide the statistics on a per fault type basis.
Sequence Element Name Sequence Element Type Description

Fault TpInterfaceFault

Occurrences TpInt32 The number of separate instances of
this fault

MaxDuration TpInt32 The number of seconds duration of the
longest fault

TotalDuration TpInt32 The cumulative duration (all
occurrences)

NumberOfClientsAffected TpInt32 The number of clients informed of the
fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number
of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of
clients informed of the fault by the framework.

TpFaultStatsSet
This data type defines a Numbered Set of Data Elements of type TpFaultStats

N5-000173

6

9.2 Framework IDL

9.2.3 Trust and Security Management IDL

..

/* The Authentication Framework interface is used by client application to perform its
part of

the mutual authentication process with the Framework necessary to be allowed to use any
of the

other interfaces supported by the Framework. */
interface IpAuthentication : IpOsa {

/* This method is invoked by the client application to start the authentication
process,

informed the Framework of the authentication mechanisms it supports, and be informed
by its

of its preferred choice. */
void selectAuthMethod (
in TpAuthCapabilityList authsCapability, // Informs the Framework of the

authentication
// mechanisms supported by the client
// application.

out TpAuthCapability prescribedMethod // Indicates the mechanism
preferred by the

// framework.
) raises (TpGeneralException);

/* This method is invoked by the client application to authenticate the framework
using the

mechanism indicated in the parameter prescribedMethod. */
void authenticate (
in TpAuthCapability prescribedMethod, // Specifies the method accepted by

that the
// framework for authentication.

in TpString challenge, // The challenge presented by the client
// application to be responded to by the
// framework.

out TpString response // The response of the framework to the
// challenge of the client application.

) raises (TpGeneralException);

/* This method is invoked by the client application to to abort the authentication
process.*/
void abortAuthentication() raises (TpGeneralException);

};

9.2.4 Integrity Management IDL

..
/* The Fault Manager Framework interface is used by the client application to inform the
Framework of events that affect the integrity of the Framework and SCFs, and to request
information about the integrity of the system. */
interface IpFaultManager : IpOsa {

/* This method may be invoked by the client application to test that the Framework or
a

SCF is operational. */
void activityTestReq (
in TpActivityTestID activityTestID, // Identifier provided by the client

// application to correlate the
// response with this request.

in TpServiceID svcID, // Identifies for which SCF the
client

 // application is requesting the
activity test

// be done.
in TpClientAppID appID // Identifies which client

application is
// requesting the activity test (and

therefore

N5-000173

7

// which application receives the
results).

) raises (TpGeneralException);

/* This method is invoked by the client application to return the result of a
previously

requested activity test. */
void appActivityTestRes (
in TpActivityTestID activityTestID, // Used by the Framework to correlate

this
// response with the original request.

in TpActivityTestRes activityTestResult // Result of the activity test.
) raises (TpGeneralException);

/* This method is invoked by the client application to inform the Framework that it
can no

longer use the indicated SCF. */
void svcUnavailableInd (
in TpServiceID serviceID, // Identity of the SCF which can no longer be

used.
in TpClientAppID appID // Identity of the application sending the

indication.
) raises (TpGeneralException);

/* This method is invoked by the client application to request fault statistics from
the

Framework. */
void genFaultStatsRecordReq (
in TpTimeInterval timePeriod, // The period over which the fault

statistics
// are to be generated.

in TpServiceIDsList serviceIDList, // The SCFs that the application would
like

// to have included in the general fault
// statistics record.

in TpClientAppID appID // Identifies which client application is
// requesting the statistics record (and
// therefore should receive it).

) raises (TpGeneralException);

};

9.2.4 Registration IDL

/* The Service Factory Framework interface provides the Framework with access to a
manager
interface of a network SCF to be given to an application. */
interface IpSvcFactory : IpOsa {

/* This method returns an SCF manager interface reference for a specified
application. */
void getServiceManager (
in TpClientAppID application,
out IpServiceOsa serviceManager
) raises (TpGeneralException);

};
}

9.2.4 Integrity Management IDL
#include <fw.idl>

module org{
module threegpp{
module osa{
module fw{
module integrity{

/***
/

N5-000173

8

// Data definitions
//

/***
/

typedef TpString TpActivityTestRes; // An implementation
specific result, whose values

// are Framework provider specific.

struct TpTimeInterval { // A time interval.
TpDateAndTime StartTime;
TpDateAndTime StopTime;

};

enum TpInterfaceFault { // The cause of the interface fault
detected.

INTERFACE_FAULT_UNDEFINED, // Undefined.
INTERFACE_FAULT_LOCAL_FAILURE, // A fault in the local API

software or hardware has been
// detected.

INTERFACE_FAULT_GATEWAY_FAILURE, // A fault in the gateway API
software or hardware has been

// detected.
INTERFACE_FAULT_PROTOCOL_ERROR // An error in the protocol used on

the client-gateway link
// has been detected.

};

struct TpFaultStatsSet { // Statistics on a per fault type basis.
TpInterfaceFault Fault;
TpInt32 Occurrences; //

The number of separate instances of this fault
// during the period.

TpInt32 MaxDuration; //
The duration in seconds of the longest fault.

TpInt32 TotalDuration; //
The cumulative total during the period.

TpInt32 NumberOfClientsAffected; // Those informed of
the fault by the Framework.

};

 typedef sequence <TpFaultStats> TpFaultStatsSet;

struct TpFaultStatsRecord { // The set of fault information records to be
returned for the

// requested time period.
TpTimeInterval Period;
TpFaultStatsSet FaultRecords;

};

N5-000138

1

3GPP Meeting CN5 #5 Document N5-000138
Bristol, 5-7 Sept 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 011R1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 August 2000

Subject: Alignment of Framework with Parlay 2.1, one interface per application correction

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The FW of TS 29.198 contains a few differences compared to Parlay 2.1, mainly in the
area of different parameter names and data-types. In the TS29.198 some of operations
of the load manager and fault manager have a parameter for indicating the client
application that wants to use an operation. As the interface is created per application
this parameter is not needed and should be removed.

Clauses affected: 6.2, 9.2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000138

2

6.2.4.5 IpLoadManager

<<Interface>>

IpLoadManager

reportLoad(requester : in TpClientAppID, loadLevel : in TpLoadLevel) : TpResult

queryLoadReq(requester : in TpClientAppID, serviceIDs: in TpServiceIDList, timeInterval : in
TpTimeInterval) : TpResult

queryAppLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

registerLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

unregisterLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

resumeNotification(serviceIDs: in TpServiceIDList) : TpResult

suspendNotification(serviceIDs: in TpServiceIDList) : TpResult

6.2.4.7 IpFaultManager

<<Interface>>

IpFaultManager

activityTestReq(activityTestID: in TpActivityTestID, svcID: in TpServiceID, appID: in
TpClientAppID): TpResult

appActivityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes):
TpResult

svcUnavailableInd(serviceID: in TpServiceID, appID: in TpClientAppID): TpResult

genFaultStatsRecordReq(timePeriod: in TpTimeInterval, serviceIDsList: in TpServiceIDList,
appID: in TpClientAppID): TpResult

N5-000138

3

9.2.4 Integrity Management IDL
#include <fw.idl>

..

/* The Load Manager Framework interface is used by the client application for load
balancing

management. */
interface IpLoadManager : IpOsa {

/* This method is invoked by the client application to notify framework its current
load

level (0,1, or 2) when the load level on the application has changed. */
void reportLoad (
in TpClientAppID requester, // The identifier of the client application for

// callbacks from the load balancing SCF.
in TpLoadLevel loadLevel // The application's load level.
) raises (TpGeneralException);

/* This method is invoked by the client application to request load statistic records
for

the framework and specified SCFs. */
void queryLoadReq (
in TpClientAppID requester, // The identifier of the client application for

// callbacks from the load balancing SCF.
in TpServiceIDList serviceIDs, // Specifies the framework and SCFs for which the

// load statistics shall be reported.
in TpTimeInterval timeInterval // The time interval within which the load

statistics
// are generated.

) raises (TpGeneralException);

/* This method is invoked by the client application to report load statistics back to
the

framework that requested the information. */
void queryAppLoadRes (
in TpLoadStatisticList loadStatistics // The application's load statistics.
) raises (TpGeneralException);

/* This method is invoked by the client application to return an error response to
the

framework that requested the application's load statistics information. */
void queryAppLoadErr (
in TpLoadStatisticErrorList loadStatisticsError // The error code associated with

the
// failed attempt to retrieve the
// application's load statistics.

) raises (TpGeneralException);

/* This method is invoked by the client application to register the client
application for

load management under various load conditions. */
void registerLoadController (
in TpClientAppID requester, // Identifies the client application for

callbacks
// from the load balancing SCF.

in TpServiceIDList serviceIDs // Specifies the framework and SCFs to be
// registered for load control.

) raises (TpGeneralException);

/* This method is invoked by the client application to unregister for load
management. */

void unregisterLoadController (
in TpClientAppID requester, // Identifies the client application for

callbacks from
// the load balancing SCF.

in TpServiceIDList serviceIDs // Specifies the framework or SCFs to be
// unregistered for load control.

) raises (TpGeneralException);

/* This method is invoked by the client application to resume load management
notifications

to it from the framework and specified SCFs. */
void resumeNotification (
in TpServiceIDList serviceIDs // Specifies the framework and SCFs for which

N5-000138

4

// notifications are to be resumed.
) raises (TpGeneralException);

/* This method is invoked by the client application to suspend load management
notifications to it from the framework and specified SCFs, while it handles a

temporary
load condition. */
void suspendNotification (
in TpServiceIDList serviceIDs // Specifies the framework and SCFs for which

// notifications are to be suspended.
) raises (TpGeneralException);

};

..

/* The Fault Manager Framework interface is used by the client application to inform the
Framework of events that affect the integrity of the Framework and SCFs, and to request
information about the integrity of the system. */
interface IpFaultManager : IpOsa {

/* This method may be invoked by the client application to test that the Framework or
a

SCF is operational. */
void activityTestReq (
in TpActivityTestID activityTestID, // Identifier provided by the client

// application to correlate the
// response with this request.

in TpServiceID svcID, // Identifies for which SCF the
client

 // application is requesting the
activity test

// be done.
in TpClientAppID appID // Identifies which client

application is
// requesting the activity test (and

therefore
// which application receives the

results).
) raises (TpGeneralException);

/* This method is invoked by the client application to return the result of a
previously

requested activity test. */
void appActivityTestRes (
in TpActivityTestID activityTestID, // Used by the Framework to correlate

this
// response with the original request.

in TpActivityTestRes activityTestResult // Result of the activity test.
) raises (TpGeneralException);

/* This method is invoked by the client application to inform the Framework that it
can no

longer use the indicated SCF. */
void svcUnavailableInd (
in TpServiceID serviceID, // Identity of the SCF which can no longer be

used.
in TpClientAppID appID // Identity of the application sending the

indication.
) raises (TpGeneralException);

/* This method is invoked by the client application to request fault statistics from
the

Framework. */
void genFaultStatsRecordReq (
in TpTimeInterval timePeriod, // The period over which the fault

statistics
// are to be generated.

in TpServiceIDList serviceIDList, // The SCFs that the application would
like

// to have included in the general fault
// statistics record.

in TpClientAppID appID // Identifies which client application is
// requesting the statistics record (and
// therefore should receive it).

N5-000138

5

) raises (TpGeneralException);

};

N5-000139

1

3GPP Meeting CN5 #5 Document N5-000139
Bristol, 5-7 Sept 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 012R1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 August 2000

Subject: Alignment of Framework with Parlay 2.1, only one error returned in load manager
query

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The FW of TS 29.198 contains a few differences compared to Parlay 2.1, mainly in the
area of different parameter names and data-types.
In case an error occurs during a load query, the load manager interfaces will return
only one error indication and not a list of errors.

Clauses affected: 6.2.4.5, 6.2.4.6

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000139

2

6.2.4.5 IpLoadManager

<<Interface>>

IpLoadManager

reportLoad(requester : in TpClientAppID, loadLevel : in TpLoadLevel) : TpResult

queryLoadReq(requester : in TpClientAppID, serviceIDs: in TpServiceIDList, timeInterval : in
TpTimeInterval) : TpResult

queryAppLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

registerLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

unregisterLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

resumeNotification(serviceIDs: in TpServiceIDList) : TpResult

suspendNotification(serviceIDs: in TpServiceIDList) : TpResult

6.2.4.6 IpAppLoadManager

<<Interface>>

IpAppLoadManager

queryAppLoadReq(serviceIDs: in TpServiceIdList, timeInterval : TpTimeInterval) : TpResult

queryLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

disableLoadControl(serviceIDs: in TpServiceIdList) : TpResult

enableLoadControl(loadStatistics : in TpLoadStatisticList) : TpResult

resumeNotification() : TpResult

suspendNotification() : TpResult

N5-000140

1

3GPP Meeting CN5 #5 Document N5-000140
Bristol, 5-7 Sept 2000 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.029.198 CR 013R1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: CN#09 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME UTRAN / Radio Core Network X
(at least one should be marked with an X)

Source: N5 Date: 27 August 2000

Subject: Alignment of Framework with Parlay 2.1, missing operation fwUnavailableInd in
IpAppFaultManager.

Work item: OSA

Category: F Correction X Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification Release 99 X

Release 00

Reason for
change:

The FW of TS 29.198 contains a few differences compared to Parlay 2.1, mainly in the
area of different parameter names and data-types. The operation for indicating that the
Framework is unavailable is missing in the IpAppFaultManager interface of TS 29.198

Clauses affected: 6.2, 8.2 9.2

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

N5-000140

2

6.2.4.8 IpAppFaultManager

<<Interface>>

IpAppFaultManager

activityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes):
TpResult

appActivityTestReq(activityTestID: in TpActivityTestID): TpResult

fwFaultReportInd(fault: in TpInterfaceFault): TpResult

fwFaultRecoveryInd(fault: in TpInterfaceFault): TpResult

fwUnavailableInd(reason: in TpFwUnavailReason): TpResult

svcUnavailableInd(serviceID: in TpServiceID, reason: in TpSvcUnavailReason): TpResult

genFaultStatsRecordRes(faultStatistics: in TpFaultStatsRecord, serviceIDs: in TpServiceIDList):
TpResult

8.2.3.7 TpFWAPIUnavailReason

Defines the reason why the FrameworkAPI is unavailable.
Name Value Description

FWAPI_UNAVAILABLE_UNDEFINED 0 Undefined

FWAPI_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

FWAPI_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed

FWAPI_UNAVAILABLE_OVERLOADED 3 The frameworkgateway is fully overloaded

FWAPI_UNAVAILABLE_CLOSED 4 The frameworkgateway has closed itself (e.g.
to protect from fraud or malicious attack)

FWAPI_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link
has failed

N5-000140

3

9.2.4 Integrity Management IDL

..

/* The Fault Manager client application interface is used by the Framework to inform the
application of events that affect the integrity of the Framework, SCF or client
application. */
interface IpAppFaultManager : IpOsa {

/* This method is invoked by the Framework, in response to an activityTestReq, to
return

the result of the activity test in this method. */
void activityTestRes (
in TpActivityTestID activityTestID, // The identifier provided

to correlate this
// response with the original request.

in TpActivityTestRes activityTestResult // Result of the activity test.
) raises (TpGeneralException);

/* This method is invoked by the Framework to request that the client application
carries

out an activity test to check that is it operating correctly. */
void appActivityTestReq (
in TpActivityTestID activityTestID // The identifier provided to correlate

this
// response with the original request.

) raises (TpGeneralException);

/* This method is invoked by the Framework to notify the client application of a
failure

within the Framework. */
void fwFaultReportInd (
in TpInterfaceFault fault // The fault that has been detected.
) raises (TpGeneralException);

/* This method is invoked by the Framework to notify the client application that a
previously reported fault has been rectified. */
void fwFaultRecoveryInd (
in TpInterfaceFault fault // The fault from which the framework has

recovered.
) raises (TpGeneralException);

 void fwUnavailableInd (
 in TpFwUnavailReason reason
) raises (TpGeneralException);

/* This method is invoked by the Framework to inform the client application that it
can no

longer use the indicated SCF due to a failure. */
void svcUnavailableInd (
in TpServiceID serviceID, // Identity of the SCF which can no longer be

used.
in TpSvcUnavailReason reason // The reason why the SCF is no longer available.
) raises (TpGeneralException);

/* This method is invoked by the Framework to provide fault statistics to a client

application in response to a genFaultStatsRecordReq. */

void genFaultStatsRecordRes (
in TpFaultStatsRecord faultStatistics, // The fault statistics record.
in TpServiceIDList serviceIDs // The SCFs that have been included in the

// general fault statistics record.
) raises (TpGeneralException);

};

	NP-000519.doc
	29198cr001r1.doc
	29198cr003r2.doc
	29198cr004r1.doc
	29198cr005.doc
	29198cr006.doc
	29198cr007.doc
	29198cr008r2.doc
	29198cr009r2.doc
	29198cr010r2.doc
	29198cr011r1.doc
	29198cr012r1.doc
	29198cr013r1.doc

