3GPP TR 23.700-22 V0.3.0 (2024-05)
14
Release 19

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 23.700-22 V0.3.0 (2024-05)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on CAPIF Phase 3;
[bookmark: specRelease](Release 19)

		

	

	

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

[bookmark: _MON_1684549432]
	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
https://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	7
Introduction	8
1	Scope	9
2	References	9
3	Definitions of terms, symbols and abbreviations	9
3.1	Terms	9
3.2	Symbols	9
3.3	Abbreviations	10
4	 Gap analysis and requirements	10
5	Key issues	10
5.1	Key issue #1: Managing resource owner consent	10
5.1.1	Description	10
5.1.2	Open issues	10
5.2	Key issue #2: Supporting Single Sign-On	11
5.2.1	Description	11
5.2.2	Open issues	11
5.3	Key issue #3: RNAA architecture enhancements	11
5.3.1	Description	11
5.3.2	Open issues	11
5.4	Key issue #4: CAPIF interconnection	12
5.4.1	Description	12
5.4.2	Open issues	12
5.5	Key issue #5: Enhancing support to API Invoker on-boarding	13
5.5.1	Description	13
5.5.2	Open issues	13
5.6	Key issue #6: UE-deployed API invoker accessing resources not owned by that UE	13
5.6.1	Description	13
5.6.2	Open issues	14
5.7	Key issue #7: CAPIF enhancement for AEF status and service API status	14
5.7.1	Description	14
5.7.2	Open issues	14
6	Solutions	14
6.1	Mapping of solutions to key issues	14
6.2	Solution #1: Backend For Frontend	15
6.2.1	Solution description	15
6.2.2	Architecture Impacts	15
6.2.3	Corresponding APIs	18
6.2.4	Solution evaluation	19
6.3	Solution #2: User consent for nested API invocation	19
6.3.1	Solution description	19
6.3.1.1	General	19
6.3.1.2	Enhancement to clause 8.32.3 of 3GPP TS 23.222	19
6.3.2	Architecture Impacts	20
6.3.3	Corresponding APIs	20
6.3.4	Solution evaluation	20
6.4	Solution #3: Finer granularity of access control for service API	20
6.4.1	Solution description	20
6.4.1.1	Impact to existing CAPIF procedures	21
8.11.3	Procedure	21
6.4.2	Architecture Impacts	21
6.4.3	Corresponding APIs	22
6.4.4	Solution evaluation	22
6.5	Solution #4: CAPIF interconnection	22
6.5.1	Solution description	22
6.5.1.1	General	22
6.5.1.3	Procedures to support CAPIF interconnection	22
6.5.1.3.1	API invoker obtaining authorization for service API access in CAPIF interconnection	22
6.5.1.3.2	Procedure for CAPIF revoking API invoker authorization in CAPIF interconnection	23
6.5.1.3.3	Procedure for obtaining access control policy in CAPIF interconnection	23
6.5.1.3.4	Procedure for obtaining security information in CAPIF interconnection	24
6.5.2	Architecture Impacts	25
6.5.3	Corresponding APIs	25
6.5.4	Solution evaluation	25
6.6	Solution #5: Enhancing API Invoker onboarding	25
6.6.1	Solution description	25
6.6.2	Architecture Impacts	27
6.6.3	Corresponding APIs	28
6.6.4	Solution evaluation	28
6.7	Solution #6: API instantiation based on service discovery	28
6.7.1	Solution description	28
6.7.2	Architecture Impacts	28
6.7.3	Corresponding APIs	29
6.7.4	Solution evaluation	29
6.8	Solution #7: API based activation for service API discover	29
6.8.1	Solution description	29
6.8.1.1	General	29
6.8.1.2	Procedure	29
8.3.2.1	Service API publish request	29
8.7.3	Procedure	30
6.8.2	Architecture Impacts	30
6.8.3	Corresponding APIs	31
6.8.4	Solution evaluation	31
6.9	Solution #8: AEF based instantiation for service API discover	31
6.9.1	Solution description	31
6.9.1.1	General	31
6.9.1.2	Procedure	31
8.7.3	Procedure	31
6.9.2	Architecture Impacts	32
6.9.3	Corresponding APIs	32
6.9.4	Solution evaluation	33
6.10	Solution #9: Support more API invoker info in RNAA	33
6.10.1	Solution description	33
6.10.1.1	General	33
6.10.1.3	Procedures	33
6.10.1.3.1	Authorization	33
6.10.2	Architecture Impacts	33
6.10.3	Corresponding APIs	33
6.10.4	Solution evaluation	33
6.11	Solution #10: Access Control Management of Service API	34
6.11.1	Solution description	34
6.11.1.1	General	34
6.11.2	Architecture Impacts	34
6.11.3	Corresponding APIs	34
6.11.4	Solution evaluation	34
6.12	Solution #11: Resource Owner Consent Revocation	34
6.12.1	Solution description	34
6.12.1.1	General	34
6.12.1.2	 Procedure for resource owner consent revocation	34
6.12.2	Architecture Impacts	35
6.12.3	Corresponding APIs	35
6.12.4	Solution evaluation	35
7	Deployment scenarios	35
7.1	General	35
7.x	Deployment model #x: <Title>	35
8	Business Relationships	36
9	Overall evaluation	36
10	Conclusions	36
10.1	General conclusions	36
10.2	Conclusions of key issue #x	36
Annex A: Change history	37

[bookmark: foreword][bookmark: _Toc168041369]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall	indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should	indicates a recommendation to do something
should not	indicates a recommendation not to do something
may	indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can	indicates that something is possible
cannot	indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc168041370]Introduction
CAPIF as specified in 3GPP TS 23.222 [2] is a common API framework for controlled exposure of service APIs. CAPIF is now considered by different 3GPP groups (e.g. SA2, SA5) and external bodies like GSMA, ETSI, ORAN Alliance to enable exposure of APIs. In Rel.18, CAPIF was enhanced considering some RNAA requirements. Further CAPIF enhancements are envisioned to enable use of CAPIF as the API framework for APIs exposure considered by different groups and external bodies.
This TR provides a thorough study of potential enhancements to CAPIF under the scope provided in clause 1.
[bookmark: scope][bookmark: _Toc168041371]
1	Scope
The present document studies the potential enhancements to CAPIF (as specified in 3GPP TS 23.222[2]) to support: a) authentication and authorization interactions between Resource Owner and Authorization Functionality, b) UE-deployed API invoker accessing resources not owned by that UE, c) more granular access control (e.g., at the level of service operations or resources), d) CAPIF with further enhancements to service API status and AEF status, e) CAPIF enhancements identified or originated from other WGs or SDOs/industry forums and f) more CAPIF interconnection services.
[bookmark: references][bookmark: _Toc168041372]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.222: "Common API Framework for 3GPP Northbound APIs".
[3]	3GPP TS 33.122: "Security aspects of Common API Framework (CAPIF) for 3GPP northbound APIs".
[4]	3GPP TS 22.261: "Service requirements for the 5G system".
[5]	IETF draft-ietf-oauth-browser-based-apps-17: "OAuth 2.0 for Browser-Based Apps".
Editor's note:	The reference to draft-ietf-oauth-browser-based-apps-17 will be revised to RFC when finalized by IETF.
[6]	IETF 6749: "The OAuth 2.0 Authorization Framework".

[bookmark: definitions][bookmark: _Toc168041373]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc168041374]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
API invoker frontend: An API invoker incapable of maintaining the confidentiality of their credentials (e.g., clients executing on the device used by the resource owner, such as an installed native application or a web browser-based application), and incapable of secure invoker authentication via any other means.
[bookmark: _Toc168041375]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc168041376]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
BFF	Backend For Frontend

[bookmark: clause4][bookmark: _Toc168041377]4		Gap analysis and requirements
Editor's Note:	This clause gathers the requirements (within the scope of the WID) from WGs and SDOs/industry forums with respect to CAPIF.
Editor's Note:	Any requirement/gap in this clause should be mapped to one or more Key Issues in clause 5.
[bookmark: _Toc168041378]5	Key issues
[bookmark: _Toc147904923][bookmark: _Toc168041379]5.1	Key issue #1: Managing resource owner consent
[bookmark: _Toc168041380]5.1.1	Description
With the introduction of support for Subscriber-aware Northbound API access in 3GPP Rel-18 a number of requirements were added at stage 1, one of which was motivated by the desire for a UE to be able to control whether or not to provide information considered private to a 3rd party entity. Specifically, the requirement is that the 5G system shall be able to allow the UE to provide/revoke consent for information (e.g., location, presence) to be shared with the third-party. At stage 2 the CAPIF-8 reference point was introduced to CAPIF where the aspect of consent was highlighted through the statement that the resource owner communicates with the authorization function in the CAPIF core function to manage resource owner consent, with such communication being expected to be performed over CAPIF-8. However, the mechanism for managing such consent was not specified with the functionalities over CAPIF-8 being is FFS and out of scope of the Rel-18 of the specification.
[bookmark: _Toc168041381]5.1.2	Open issues
The CAPIF does not address management of resource owner consent in the context of supporting RNAA. The open issues are:
1.	How consent of the resource owner can be managed through communication between the resource owner and authorization function in the CAPIF core function
2.	How to enable retrieval of the resource owner consent parameters by an API exposure function from the authorization function.
3.	Whether (and how) “purpose of data processing” will be captured, where will it be stored and how will it be retrieved by the consent enforcement point, i.e., AEF (e.g., via CAPIF-3 in case it is available in the CCF).
4.	How to align and manage access control that is more granular than simply granted/denied for service API (e.g., service operation level, resource level, service API originator/requestor details) with the provided resource owner consent to ensure appropriate usage of resource owner consent at the enabler layer.
NOTE:	Aspects pertaining to the definition of resource owner consent/authorization over CAPIF-8 are in the scope of SA3, noting that the R18 security aspects of CAPIF supporting RNAA are specified in 3GPP TS 33.122 [3].
[bookmark: _Toc168041382]5.2	Key issue #2: Supporting Single Sign-On
[bookmark: _Toc168041383]5.2.1	Description
For the Authorization code flow in RNAA, CAPIF-8 reference point (between User Agent/ROF and Authorization Server/CCF) is used to support end-user interactions with the resource owner e.g., obtaining permission from resource owner (also known as consent) and user authentication. According to 3GPP TS 23.222 clause 6.4.16, the CAPIF-8 reference point between CCF and ROF is kept out of Release 18.
The RO is authenticating (via CAPIF-8) to CCF as part of the interaction between API invoker and authorization function (which part of CCF).
Single sign-on (SSO) is an authentication method that enables users to securely authenticate with multiple applications by using just one set of credentials. In CAPIF RNAA context, Single Sign-On (SSO) can enable an Resource Owner to use one authentication procedure to authenticate multiple API invokers to use one or more AEFs exposing resources related to the resource owner. Specifically, to implement Single Sign-On (SSO) in RNAA, a Resource Owner needs to determine in advance which API invokers can be authorized with the authentication information for Single Sign-On (SSO), and then they provide to API invokers this Single Sign-On (SSO) information. Therefore, how to manage and provide information on API invokers subject to Single sign-on (SSO) authentication for the Resource Owner should be considered.
[bookmark: _Hlk160439445][bookmark: _Toc168041384]5.2.2	Open issues
1.	Whether and how to enhance CAPIF architecture and procedures considering Single sign-on (SSO)?
NOTE:	The detailed security aspects related to address Single sign-on (SSO)should be provided by SA3.
[bookmark: _Toc168041385]5.3	Key issue #3: RNAA architecture enhancements
[bookmark: _Toc168041386]5.3.1	Description
Clause 6.2.3 of 3GPP TS 23.222 [2] specifies the high-level functional architecture for CAPIF supporting Resource owner-aware northbound API access (RNAA). The security procedures for CAPIF supporting RNAA are specified in 3GPP TS 33.122 [3]. As per the architecture and security procedures the role and responsibilities of Resource Owner Function to support RNAA are not fully specified in Release 18.
It is required to study the role and responsibilities of Resource Owner Function and its interactions with CAPIF entities considering the requirements specified in 3GPP TS 22.261 [4] as shown below:
	The 5G system shall be able to:
-	provide a third-party with secure access to APIs (e.g. triggered by an application that is visible to the 5G system), by authenticating and authorizing both the third-party and the UE using the third-party’s service.
-	provide a UE with secure access to APIs (e.g. triggered by an application that is not visible to the 5G system), by authenticating and authorizing the UE.
-	allow the UE to provide/revoke consent for information (e.g., location, presence) to be shared with the third-party.
-	preserve the confidentiality of the UE’s external identity (e.g. MSISDN) against the third-party.
-	provide a third-party with information to identify networks and APIs on those networks.

[bookmark: _Hlk160439651]
[bookmark: _Toc168041387]5.3.2	Open issues
Open issues to study:
1.	Further enhancements to CAPIF architecture considering Resource Owner Function functionalities and its interactions with CAPIF entities (e.g., CAPIF-8 related interactions).
NOTE:	The security aspects for the architecture enhancements need to be coordinated with SA3.
[bookmark: _Toc168041388][bookmark: _Toc113264267]5.4	Key issue #4: CAPIF interconnection
[bookmark: _Toc168041389]5.4.1	Description
Service federation between different service providers is important in application enabler to support service sharing. Two organizations with a business relationship that have each deployed CAPIF may need to interoperate to allow API invokers in each trust domain to utilize service APIs from both CAPIFs as illustrated in figure 4.12.1-1 of 3GPP TS 23.222 [2].
Figure 5.4.1-1 is used as an example to show the architectural model for the CAPIF interconnection which allows API invokers of a CAPIF provider to utilize the service APIs from the 3rd party CAPIF provider.

Figure 5.4.1-1: High level functional architecture for CAPIF interconnection with multiple CAPIF provider domains (as described in clause 6.2.1 of TS 23.222 [2])
The existing CAPIF procedures supporting interconnection are described in 3GPP TS 23.222 [2] clause 8.25 which includes service API publish/retrieval/update/unpublish and discovery over CAPIF-6/6e reference point.
However, in above architecture example, the API provider domain functions are registered in a CCF within the same trusted domain (domain-A). The CCFs are connected via CAPIF-6e, in order to share service APIs. The API provider domain functions (e.g. AEF) don’t see the interconnected CCF in another domain, but is able to provide AEF service APIs to API invoker onboarded in a CCF in another domain (domain-B) via CAPIF-2e.
In above figure, the AEF of domain-B authenticates and authorizes the API access (together with CCF in domain-B). The API invoker obtains authorization from CCF in domain-A. It is under-specified how authentication and authorization are done in CAPIF interconnection.
Also, it is worth intestigating what existing CAPIF event exposure services in clause 10.4.1 of 3GPP TS 23.222 [2] are applicable for CAPIF-6/6e and if any new event exposure service is needed to support CAPIF interconnection.
[bookmark: _Toc168041390]5.4.2	Open issues
Solutions to this key issue will address the following aspects in CAPIF interconnection:
-	How to authenticate and authorize service API access for the AEF service API(s) exposed via CAPIF-6/6e;
NOTE:	Coordination with SA3 is needed for security details.
-	Investigate applicable events and new events (if any) for CAPIF-6/6e.
[bookmark: _Toc104797317][bookmark: _Toc122563636][bookmark: _Toc104878314][bookmark: _Toc151544819][bookmark: _Toc95120569][bookmark: _Toc168041391]5.5	Key issue #5: Enhancing support to API Invoker on-boarding
[bookmark: _Toc168041392]5.5.1	Description
Currently in 3GPP TS 23.222 clause 8.1 On-boarding of API Invoker to the CAPIF procedure, there is an assumption that API Invoker has sufficient API information to make decision of making an on-boarding request to CCF. However, in reality the API Provider exposes limited or only information that can be shared commonly to the API Invoker. The reason for this is beacause the trust relationship is yet to be established between the two parties (i.e. API Invoker and the API Provider).
In another scenario, after the API Invoker successfully on boards to the CAPIF, the API Invoker realizes that certain features or services that the API Invoker wishes to consume with assistance of CAPIF, are not supported. Then the API Invoker may off board from the CAPIF or take certain other actions like not consuming northbound APIs via the registered CCF. In such a scenario, it is waste of resources for the API invoker and the CCF to perform the on boarding and maintain the API Invoker profile information. The features that API Invoker may be looking to consume from CCF and not supported by CCF, may include, the AEFs serving certain set of service API(s), availability of set of service APIs, support for certain security methods, support for certain security methods for certain AEFs / service APIs, interconnection with a given set of CCFs etc.
To address these cases, it is essential to study enhancing support to API Invoker on-boarding to reduce unnecessary on-boarding and wastage of resources.
[bookmark: _Toc168041393]5.5.2	Open issues
This key issue will study the following aspects:
1.	How to enhance the support of API Invoker on-boarding to reduce unnecessary on-boarding and wastage of resources?
2.	Any enhancements required to other CAPIF procedures e.g. Registering the API provider domain functions, Publish Service APIs to CCF?
[bookmark: _Toc168041394]5.6	Key issue #6: UE-deployed API invoker accessing resources not owned by that UE
[bookmark: _Toc168041395]5.6.1	Description
An API invoker may be either an application on a server or an application on a UE. According to clause 7.5 in 3GPP TS 23.222 [2], the API invoker may be deployed in any of the following ways:
a.	API invoker may be deployed as AF on the UE (i.e. 3rd party application).
b.	API invoker may be deployed as AF on the UE supporting several other 3rd party applications deployed on the UE.
c.	API invoker may be deployed on the network as AF.
As from clause 4.17.1 in 3GPP TS 23.222 [2], (for Release 18) the scope of an API invoker on a UE (i.e., options a and b) in Resource owner-aware northbound API access (RNAA) is limited to accessing its own resources only, i.e., resource owner is a user of the UE hosting the API invoker that can authorize the API access. This is also acknowledged by SA3 in clause 6.5.3 in 3GPP TS 33.222 [3], in which “only a UE accessing its own resources is considered if the API invoker is on a UE.”
However, there are cases in which it is needed to support for API invoker(s) which are deployed on the UE accessing resources of other resource owners (users), e.g., consider the clause 6.2.2 in 5GAA - C-V2X Use Cases and Service Level Requirements Volume I, dealing with Vehicle Health Monitoring in fleet management, in which an Application Client on UE 1 could request access to fetch location and/or vehicle health issues to another user (UE 2).
[bookmark: _Toc168041396]5.6.2	Open issues
This key issue will study:
1.	Whether (and how) RNAA can support the scenario where API invoker(s) which are deployed on the UE can access resources (hosted in the network) of other resource owners (users) (e.g., application client on UE is fetching location of another UE or setting QoS for PDU sessions of another UE)
NOTE 1:	The security aspects need to be coordinated with SA3.
NOTE 2:	The unwanted interactions with the RO user in this case need to be minimized.
[bookmark: _Toc146875942][bookmark: _Toc18900][bookmark: _Toc24736][bookmark: _Toc168041397]5.7	Key issue #7: CAPIF enhancement for AEF status and service API status
[bookmark: _Toc168041398]5.7.1	Description
For the previous CAPIF procedure specified in 3GPP TS 23.222 [2], the status of AEF instance is assumed to be instantiated. The service API can be published through service API publish procedure by APF, and dicovered by API invoker by using the service API discovery procedure. However, the AEF instance may have multiple possible status, in addition to the instatiated status, which may impact the current CAPIF procedures. Futhermore, there are possible richer service API status. Therefore, further study the CAPIF enhancement for AEF status and service API status is required.
[bookmark: _Toc168041399]5.7.2	Open issues
This key issue includes the following aspects:
-	Whether and what kinds of AEF availability status and service API status should be considered for service discovery.
-	Whether and how to enhance the current CAPIF mechnisms considering AFF status and service API status.
NOTE: Coordination and alignment with SA5 are required for AEF status and service API status related to instantiation.
[bookmark: _Toc168041400]6	Solutions
[bookmark: _Toc168041401][bookmark: _Toc147904934]6.1	Mapping of solutions to key issues
Table 6.1-1 Mapping of solutions to key issues
	
	KI #1
	KI #2
	KI #3
	KI #4
	KI #5
	KI #6
	KI #7

	Sol #1
	
	
	X
	
	
	
	

	Sol #2
	X
	
	
	
	
	
	

	Sol #3
	X
	
	
	
	
	
	

	Sol #4
	
	
	
	X
	
	
	

	Sol #5
	
	
	
	
	X
	
	

	Sol #6
	
	
	
	
	
	
	X

	Sol #7
	
	
	
	
	
	
	X

	Sol #8
	
	
	
	
	
	
	X

	Sol #9
	X
	
	
	
	
	
	

	Sol #10
	X
	
	
	
	
	
	

	Sol #11
	X
	
	
	
	
	
	

[bookmark: _Toc168041402]6.2	Solution #1: Backend For Frontend
[bookmark: _Toc464463366][bookmark: _Toc475064960][bookmark: _Toc478400631][bookmark: _Toc7485786][bookmark: _Toc78314760][bookmark: _Toc147904935][bookmark: _Toc168041403]6.2.1	Solution description
This solution relates to KI#3 on RNAA architecture enhancements. Specifically, it proposes the Backend For Frontend (BFF) pattern (as described, for example, in clause 6.1 of IETF draft-ietf-oauth-browser-based-apps-17 [5]) to be included as an architectural option.
In 3GPP TS 23.222 [2] clause 7.5, the RNAA deployment option in which the API invoker is deployed on a UE is presented. A UE can be considered as hosting public clients according to the OAuth 2.0 Authorization Framework [6]. Such public clients lack the ability to maintain the confidentiality of secrets such as their client credentials or even access tokens provided to them. Regarding this vulnerability, as an example, clause 5.1 of IETF draft-ietf-oauth-browser-based-apps-17 [5] highlights the danger of malicious JavaScript in relation to browser-based applications (highlighted as an example of a user-agent-based application public client in the OAuth 2.0 Authorization Framework [6]). This IETF draft presents the BFF application architecture pattern as an approach in which applications are built to rely on a backend component for handling OAuth responsibilities and then all requests are proxied through this backend component. Such an architectural approach is applicable to CAPIF as described in the next sub-clause.
NOTE:	The security aspects of the CAPIF architectural variant described in this solution are out of scope of the present document.
[bookmark: _Toc147904936][bookmark: _Toc168041404]6.2.2	Architecture Impacts
In relation to the OAuth 2.0 Authorization Framework [6] the CAPIF resource owner function is responsible for interactions with the resource owner, which is anticipated to be in a similar manner to the way in which interactions between the resource owner’s user agent are described by the OAuth framework.
With OAuth there is also a client (or client application) that interacts with the user-agent and authorization server in order to gain access to information exposed by a resource server.
The OAuth resource server is considered as the CAPIF API exposing function, aligned with clause 6.5.3.1 of 3GPP TS 33.122 [3].
The OAuth client is considered as the CAPIF API invoker (aligned with clause 6.5.3.1 of 3GPP TS 33.122 [3]), where that API invoker can be UE hosted as previously highlighted.
Then in this solution (as presented in Figure 6.2.2-1) it is proposed to support an option in which the API invoker hosted by a UE (API invoker frontend) interacts via a new reference point (CAPIF-X) with a “helper” API invoker (API invoker backend) that is placed server-side (network-side) and is considered alongside the Backend For Frontend component in the Application Architecture presented in clause 6.1.1 of IETF draft-ietf-oauth-browser-based-apps-17 [5].
According to that IETF draft, the BFF:
1.	Interacts with the authorization server as a confidential client
2.	Manages access and refresh tokens and does not share those with the client, i.e., the tokens are inaccessible to the client
3.	Proxies all requests from the client to the resource server, augmenting them with the correct access token before forwarding them to the resource server
In the IETF draft, an OAuth user-agent-based application is considered in which the client application runs within the user-agent. On the other hand, for an OAuth native application, the user-agent and client application are presented as separate entities, which is also the case the architectural solution proposal in Figure 6.2.2-1.
In the proposed architecture for CAPIF supporting BFF, the API invoker is split between a frontend and backend component. The backend acts as a proxy on behalf of the frontend. Through the API invoker backend, the API invoker frontend can leverage the capabilities of CAPIF including service discovery and authorization prior to accessing the service API over CAPIF-1(e) and service API invocation over CAPIF-2(e). However, it is the API invoker backend that onboards to the CAPIF core function (CCF) and mutually authenticates with it.
[image:]
Figure 6.2.2-1: High level functional architecture for CAPIF supporting BFF
NOTE:	Impacts to the reference points with their assocaited procedures between the API provider domain functions and the CAPIF core function are not anticipated (and hence have not been depicted in Figure 6.2.2-1).
[image:]
Figure 6.2.2-2: BFF based procedure for service API access
Figure 6.2.2-2 illustrates the BFF based procedure.
Pre-condition:
The API invoker frontend and API invoker backend have an established secure session.
Firstly, in step 1, the UE hosted API invoker (API invoker frontend) initiates the authorization flow, where the API invoker’s objective is to gain access to particular resources offered through the service APIs exposed by the API provider domain.
In step 2, the API invoker backend, initiates the authorization flow towards the CCF authorization function (CCF(AuthF)). The request is redirected via the UE hosted User agent,.
In step 3, mutual authentication is performed between the CCF(AuthF) and the Resource owner via the Resource owner function and any required user consent obtained.
Once mutual authentication has been successfully perform, in step 4 the CCF(AuthF) provides indication of that granted authorization to the API invoker backend using redirection via the User agent.
Next in step 5, the API invoker backend requests access to the API exposing function’s service APIs from the CCF(AuthF) using the authorization obtained in step 4.
The API invoker backend maintains an association between its session with API invoker frontend and access information it obtains in step 6 from the CCF(AuthF).
The API invoker backend then provides authorization granted notification to the API invoker frontend that service API access is permitted via the User agent in step 7. The access security token itself is not passed to the API invoker frontend, but is stored by the User agent.
When the API invoker frontend subsequently initiates a service API request (to the AEF via API invoker backend), it does so via the User agent. The User agent then adds the access security token (that it obtained from the CCF(AuthF) in step 8) to the request.
The API invoker backend then uses its granted service API access that it received from the authorization function (that is associated with the API invoker frontend’s resource owner function to API invoker backend session) to make the request towards the service API (step 9).
The response from the service API (step 10) is then forwarded towards the API invoker frontend by the API invoker backend (step 11).
[bookmark: _Toc147904937][bookmark: _Toc168041405]6.2.3	Corresponding APIs
The following API calls are described in the context of those described in the BFF IETF RFC draft, draft-ietf-oauth-browser-based-apps-17 [5].
Editor's note:	Mapping of the API calls to existing CAPIF capabilities is FFS.
CAPIF-X (API invoker frontend – API invoker backend)
-	Initiate authorization request, from API invoker frontend to API invoker backend (step 1, clause 6.2.2)
-	Access granted indication, from API invoker backend to API invoker frontend via User agent (step 7, clause 6.2.2)
-	API service request, from API invoker frontend to API invoker backend (step 8, clause 6.2.2)
-	API service response, from API invoker backend to API invoker frontend (step 11, clause 6.2.2)
CAPIF-8 (ROF – CCF(AuthF))
-	Granting authorization and user consent, from CCF(AuthF) to ROF (step 3, clause 6.2.2)
CAPIF-1 (API invoker backend – CCF)
-	Authorization request, from API invoker backend to CCF(AuthF) redirected via User agent (step 2, clause 6.2.2)
-	Authorization response from CCF(AuthF) to API invoker backend, redirected via User agent (step 4, clause 6.2.2)
-	API invoker backend makes authorization access request to CCF(AuthF) (step 5, clause 6.2.2)
-	CCF(AuthF) provides authorization access grant to API invoker backend (step 6, clause 6.2.2)
Editor's note:	The CAPIF-X related procedures are FFS.
[bookmark: _Toc532993748][bookmark: _Toc78314761][bookmark: _Toc147904938][bookmark: _Toc168041406]6.2.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041407]6.3	Solution #2: User consent for nested API invocation
[bookmark: _Toc168041408]6.3.1	Solution description
[bookmark: _Toc168041409]6.3.1.1	General
This solution proposes to extend the existing text in clause 8.32 of 3GPP TS 23.222 [2] on reducing authorization information inquiry in a nested API invocation, specifically the procedure described in clause 8.32.3.
The existing procedure focuses on ensuring the (primary) API invoker and secondary API invoker (API exposure function 1 (AEF-1)) have the necessary authorization to invoke the service APIs of their respective API exposure functions, AEF-1 & AEF-2 respectively. Such authorization may include a specific scope to provide course-grained access to resources exposed by the service API, for example limiting access to only certain attributes.
In this solution it is proposed that the secondary API invoker (AEF-1) performs an additional check to ensure suitable user consent has been provided before making service API invocation requests towards a secondary API exposing function (AEF-2). This enables the AEF-1 to check before inadvertently exposing user sensitive information for which appropriate user consent has not been obtained.
Editor's note:	The solution is described in relation to nested API invocation, where it is for further study whether it would be appropriate to consider it for the general case of single API invoker performing service invocation towards an API exposure function.
[bookmark: _Toc168041410]6.3.1.2	Enhancement to clause 8.32.3 of 3GPP TS 23.222
With this solution the procedure to reducing authorization information inquiry in a nested API invocation in clause 8.32.3 is enhanced with the following:
New pre-condition added:
Optionally, AEF-1 is configured with policy for user consent checking before making nested API service invocation requests.
New descriptive text is added after the existing text of Step 3 (“Based on the service API invocation request, the API exposing function 1 decides to invoke another service API exposed by the API exposing function 2”):
Before making the request, if the AEF is configured with policy regarding user consent checking, the AEF will check that the service API invocation request is not in breach of those requirements.
Examples for the user consent check could involve checking associated attributes in the request itself (e.g., a signed token relating to user consent) or the AEF may have to further interact with the resource owner function to gain the necessary permissions (possibly via the CCF / authorization function).
If the AEF doesn’t obtain the necessary user consent permissions, the (primary) API invoker’s service invocation request will be rejected with an appropriate failure result.
The additions are highlighted (in bold) in Figure 6.3.1.2-1.
[image:]
Figure 6.3.1.2-1: Enhancements to Figure 8.32.3-1 of 3GPP TS 23.222.
Editor's note: The mechanism to ascertain appropriate user consent at the AEF is in scope of SA3.
[bookmark: _Toc168041411]6.3.2	Architecture Impacts
None.
[bookmark: _Toc168041412]6.3.3	Corresponding APIs
Editor's note:	Whether new or enhanced APIs are required in support of this solution is in scope of SA3.
[bookmark: _Toc168041413]6.3.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041414]6.4	Solution #3: Finer granularity of access control for service API
[bookmark: _Toc168041415]6.4.1	Solution description
This solution addresses the KI#1 and enables the finer granularity of the access control for service API, i.e.:
1.	Service operation level access, the API invoker may request and the CAPIF may grant the access for the given service operation(s) of the service API.
2.	Resource level access, the API invoker may request and the CAPIF may grant the access for the given resource(s) (i.e., the object or component of the API on which the operations are acted upon as defined in clause 3.1 of 3GPP TS 23.222 [2]) of the service API.
Editor's Note:	The feature-level access (e.g., access to optional enhancements of the API functionality) is FFS
[bookmark: _Toc168041416]6.4.1.1	Impact to existing CAPIF procedures
The CAPIF procedure in 3GPP TS 23.222 [2] can be enhanced (highlighted in bold italics) as follows.
Editor's Note:	The related impact to API publishing and discovery procedures is FFS.
	[bookmark: _Toc168041417]8.11.3	Procedure
Figure 8.11.3-1 illustrates the procedure for obtaining authorization to access the service API.
Pre-condition:
1.	The API invoker is onboarded and has received an API invoker identity.

Figure 8.11.3-1: Procedure for the API invoker obtaining authorization for service API access
1.	The API invoker sends an obtain service API authorization request to the CAPIF core function for obtaining permission to access the service API, service operation(s) of the service API, and/or service API resource(s) by including the API invoker identity information and any information required for authentication of the API invoker.
2.	The CAPIF core function validates the authentication of the API invoker (using authentication information) and checks whether the API invoker is permitted to access the requested service API, service operation(s) of the service API, and/or service API resource(s).
NOTE 1:	The authentication process is specified in subclause 6.5.2.3 of 3GPP TS 33.122 [12].
3.	Based on the API invoker's subscription information the authorization information to access the service APIs, service operation(s) of the service API, and/or service API resource(s) is sent to the API invoker in the obtain service API authorization response.
NOTE 2:	The mechanism for distribution of the authorization information for the API invoker to the API exposing function is specified in subclause 6.5.2.3 of 3GPP TS 33.122 [12].

[bookmark: _Toc168041418]6.4.2	Architecture Impacts
This solution is based on architecture of CAPIF as described in 3GPP TS 23.222 [2].
[bookmark: _Toc168041419]6.4.3	Corresponding APIs
This solution impacts the CAPIF_Security API defined in clause 10.6 of 3GPP TS 23.222 [2].
[bookmark: _Toc168041420]6.4.4	Solution evaluation
The coordination with SA3 is needed to align the information flows and procedures in 3GPP TS 33.122 [3].
[bookmark: _Toc168041421]6.5	Solution #4: CAPIF interconnection
[bookmark: _Toc160440304][bookmark: _Toc168041422]6.5.1	Solution description
[bookmark: _Toc168041423]6.5.1.1	General
This solution enables authorization for service API access in CAPIF interconnection for CCFs in different CAPIF provider domains. The proposed change is also applicable for CAPIF interconnection within a CAPIF provider domain where different CCFs of the same CAPIF provider are involved.
In addition, since the API invoker is onboarded in a different CCF when the AEF is trying to obtain information from its registered CCF, the inter-CCF interaction is needed to support authentication/authorization/policy information transfer.
[bookmark: _Toc168041424]6.5.1.3	Procedures to support CAPIF interconnection
[bookmark: _Toc168041425]6.5.1.3.1	API invoker obtaining authorization for service API access in CAPIF interconnection
Pre-condition:
1.	The API invoker has discovered service APIs provided by an AEF via procedure defined in step 1 and 2 of clause 8.25.3.2 of 3GPP TS 23.222 [2].
2.	The API invoker and the CCF-B are in the same trusted domain.
3.	The AEF and the CCF-A are in the same trusted domain.
4.	The CCF-A and the CCF-B are connected to each other, and they have business agreement for service API authorization.
5.	The CCF-A is the authorization function for service API access on the AEF.

Figure 6.5.1.3.1-1: Procedure for the API invoker obtaining authorization for service API access
1.	The API invoker sends an obtain service API authorization request to the CCF-B for obtaining permission to access the service API by including the API invoker identity information and any information required for authentication of the API invoker.
2.	After successful authentication validation of the API invoker, if the CCF-B determines that the service API access authorization cannot be done by itself alone, then the CCF-B sends an obtain API authorization from the CCF-A. In the request, the CCF-B can also send information about the API invoker so that the CCF-A can execute the authorization.
3.	Based on the API invoker's subscription information, the authorization information to access the service APIs is sent to the API invoker in the obtain service API authorization response.
[bookmark: _Toc138238574][bookmark: _Toc168041426]6.5.1.3.2	Procedure for CAPIF revoking API invoker authorization in CAPIF interconnection
Pre-conditions:
1.	The CCF-A is triggered to revoke API invoker authorization for service API access.

Figure 6.5.1.3.2-1: Procedure for revoking API invoker authorization in CAPIF interconnection
1.	If the CCF-B was delegated with service API authorization, the CCF-A sends revoke API invoker authorization request to the CCF-B with the details of the API invoker, the AEF and the service API.
2.	Upon receiving the information to revoke the API invoker's authorization for service API invocation, the CCF-B invalidates the API invoker authorization corresponding to the service API.
3.	The CCF-B sends a revoke API invoker authorization response to the CCF-A.
4.	Instead of step 1 to 3, if the CCF-A performed service API authorization, the CCF-A sends a revoke API invoker authorization notify to the CCF-B.
5.	The CCF-A invalidates the API invoker authorization corresponding to the service API.
6.	The CCF-B sends a revoke API invoker authorization notify to the API invoker whose authorization to access the service API has been revoked.
[bookmark: _Toc168041427]6.5.1.3.3	Procedure for obtaining access control policy in CAPIF interconnection
Pre-condition:
1.	The AEF is hosting the service API but the policy to perform access control is not available with AEF.
2.	The CCF-B has available access control policies corresponding to one or more service APIs.
3.	The AEF and the CCF-A are in the same trusted domain.

Figure 6.5.1.3.3-1: Procedure for obtaining access control policy in CAPIF interconnection
1.	The AEF sends an obtain access control policy request to the CCF-A for obtaining the policy to perform the access control on service API invocations by including the details of the hosted service API.
2.	After successful authentication validation of the AEF, if the CCF-A determines that the service API access control policy authorization cannot be done by itself alone, then the CCF-A sends an obtain access control policy request to the CCF-B.
NOTE 1:	If the CCF-A has enough access control policy available, it executes the procedure defined in clause 8.12.3 of 3GPP TS 23.222 [2] without interaction with the CCF-B.
3-4.	The CCF-B determines appropriate access control policy for service APIs upon the request sent by the CCF-A. The access control policy information is sent to the AEF (via the CCF-A) in the obtain access control policy response.
NOTE 2:	To maintain synchronization between the AEF and the CCF for the policy cached at AEF, the AEF can subscribe to the policy update event at the CCF-A according to the procedure in clause 8.8.3 of 3GPP TS 23.222 [2] and receive notifications about any updated policy at the CCF-A according to the procedure in clause 8.8.4. Correspondingly, the CCF-A can subscribe to policy update event at the CCF-B if service API authorization is performed by the CCF-B.
[bookmark: _Toc168041428]6.5.1.3.4	Procedure for obtaining security information in CAPIF interconnection
Pre-condition:
1.	The AEF has no security information available for authentication and/or authorization
2.	The CCF-B has security information available for authentication and/or authorization corresponding to one or more service APIs.
3.	The AEF and the CCF-A are in the same trusted domain.

Figure 6.5.1.3.4-1: Procedure for obtaining security information in CAPIF interconnection
1.	The AEF obtains the API invoker information required for authentication and/or authorization by the AEF from the CCF-A by including the details of the API invoker and hosted service API. After successful authentication validation of AEF, if the CCF-A determines that it has no security information, then the CCF-A obtains security information request from the CCF-B. Then the security information required for service API invocations is sent to the AEF.
NOTE 1:	If the CCF-A has security information available, it executes the procedure defined in clause 8.14.3, clause 8.15.3 or clause 8.16.3 of 3GPP TS 23.222 [2] without interaction with the CCF-B.
NOTE 2:	The CCF-A can subscribe to API invoker onboarding event at the CCF-B according to the procedure in clause 8.8.3 of 3GPP TS 23.222 [2] and receive notifications about any onboarded API invoker and its security related onboarding information at the CCF-B according to the procedure in clause 8.8.4 of 3GPP TS 23.222 [2].
[bookmark: _Toc160440305][bookmark: _Toc168041429]6.5.2	Architecture Impacts
[bookmark: _Toc160440306]Existing CAPIF architecture in 3GPP TS 23.222 [2] is used to accommodate new interactions between CCFs in this solution.
[bookmark: _Toc168041430]6.5.3	Corresponding APIs
Editor's note:	This clause provides the corresponding APIs for supporting the solution.
[bookmark: _Toc160440307][bookmark: _Toc168041431]6.5.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041432]6.6	Solution #5: Enhancing API Invoker onboarding
[bookmark: _Toc168041433]6.6.1	Solution description
This solution is related to Key issue #5: Enhancing support to API Invoker onboarding, proposing to enhance the API invoker onboarding procedure specified in 3GPP TS 23.222. The enhanced procedure enables the CCF to onboard an API Invoker to CAPIF, based on meeting the criteria information from the API invoker. The API invoker may include the criteria information in the API Invoker onboarding request message, to inform that it wishes to onboard to CCF only if the criteria information in the request is met by CCF.
Figure 6.6.1-1 illustrates the procedure for enhanced onboarding of the API Invoker to the CAPIF.

Figure 6.6.1-1: Enhanced API Invoker onboarding procedure
1.	The API Invoker sends the onboard API invoker request message to the CCF, to onboard itself to the CAPIF, as specified in 3GPP TS 23.222, along with additional onboarding criteria information. The onboarding criteria information may include the information about AEFs serving certain set of service API(s), availability of AEFs serving a set of service APIs, support of security methods for certain AEFs / AEF types/ service APIs/ Service API categories, interconnection with a given set of CCFs etc.
Table 6.6.3-1: On-board API Invoker request
	Information element
	Status
	Description

	Onboarding information
	M
	The information of the API invoker including enrolment details, required for on boarding

	APIs for enrolment
	O
	List of APIs being enrolled for.

	Proposed expiration time
	O
	Proposed expiration time for the onboarding.

	Onboarding criteria
	O
	API Invoker indicates to the CCF that the API Invoker wishes to on board itself to the CCF only if the CCF supports the features in Criteria information (For example, AEFs serving certain set of service API(s), availability of AEFs serving a set of service APIs, support of certain security methods, support of certain security methods for certain AEFs / AEF types/ service APIs/ Service API categories, interconnection with a given set of CCFs and like so).

2.	On receipt of onboard API invoker request message, the CCF begins the onboarding process by verifying whether all the necessary information has been provided to onboard the API invoker. If the onboard API invoker request message includes criteria information, then CCF verifies whether the CCF can support the criteria information. The CCF further proceeds with API invoker onboarding procedure, only if the CCF supports the criteria information from the API Invoker.
3.	If the API invoker is granted permission to be onboarded, the CCF responds with the onboard API invoker with success message, including information about the provisioned API invoker profile/API Invoker enrolment details, which may include information to allow the API invoker to be authenticated and to obtain authorization for service APIs.
Figure 6.6.1-2 illustrates the new procedure for notifying the API invoker from CCF, once the onboarding criteria information is no longer supported by the CCF.
Pre-condition: CCF decides to notify the API invoker due to certain conditions like, onboarding criteria information not met.

Figure 6.6.1-2: notification procedure
1.	 CCF sends onboarding notification request to API Invoker, including the notification reason (onboarding condition not met)..
2.	The API invoker acknowledges the onboarding notification request message.
3.	The API invoker, based on the notification reason from CCF in step 1, may renew the API invoker’s enrolment to CCF using the procedures in clause 8.1 of 3GPP TS 23.222 with new criteria information or cancel the API invoker’s enrolment to CCF using the procedures in clause 8.2 of 3GPP TS 23.222.
[bookmark: _Toc168041434]6.6.2	Architecture Impacts
The existing CAPIF architecture as specified in 3GPP TS 23.222 [2], is used for the interactions between API Invoker and CCF defined in this solution.
[bookmark: _Toc168041435]6.6.3	Corresponding APIs
This solution impacts the CAPIF_API_Invoker_Management API as specified in clause 10.5 of 3GPP TS 23.222 [2]
[bookmark: _Toc168041436]6.6.4	Solution evaluation
[bookmark: startOfAnnexes][bookmark: _Toc82472215][bookmark: _Toc82473760][bookmark: _Toc82473822][bookmark: _Toc147904939]This solution addresses the key issue #5 by enabling the CCF to onboard an API Invoker to CAPIF based on meeting the criteria information from the API Invoker. Initial on-boarding of API Invoker is avoided when the CCF does not meet the criteria information, if provided by API invoker. Potentially, this results in API invoker actively consuming the CAPIF services / northbound APIs. Also, the solution proposes CCF sending notification to the API invoker when CCF cannot meet the onboarding criteria request from the API invoker. Thus, the enhanced onboarding and notification procedures result in, avoid any unnecessary on-boarding, managing dormant API Invoker profile information at CCF and to enhance the experience of onboarding management.
[bookmark: _Toc168041437]6.7	Solution #6: API instantiation based on service discovery
[bookmark: _Toc160824449][bookmark: _Toc168041438]6.7.1	Solution description
Figure 6.7.1-1 illustrates the procedure for Service API discovery procedure.

Figure 6.7.1-1: Procedure to trigger service API instantiation
1-2.	Same as step 1 and 2 in clause 8.7.3 of 3GPP TS 23.222 [2].
3.	If the CCF determines that the service API being discovered is not instantiated, then the CCF invokes AMF to perform service/AEF instantiation. The AMF is responsible for triggering service/AEF instantiation.
Editor's Note:		If service API level instantiation is not available by SA5 mechanisms, AMF would ask for the instantiation of the AEF providing such a service API. it is FFS whether SA5 can support service API level instantiation.
4.	Same as clause 8.3.3 of 3GPP TS 23.222 [2].
5.	Same as step 3 in clause 8.7.3 of 3GPP TS 23.222 [2].
[bookmark: _Toc168041439]6.7.2	Architecture Impacts
Editor's note:	This clause provides the architecture impacts of the solution and possible new SA6 capabilities and interfaces.
[bookmark: _Toc168041440]6.7.3	Corresponding APIs
Editor's note:	This clause provides the corresponding APIs for supporting the solution.
[bookmark: _Toc168041441]6.7.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041442][bookmark: _Hlk166510546]6.8	Solution #7: API based activation for service API discover
[bookmark: _Toc14903][bookmark: _Toc29086][bookmark: _Toc1823][bookmark: _Toc8438][bookmark: _Toc168041443]6.8.1	Solution description
[bookmark: _Toc108431760][bookmark: _Toc168041444]6.8.1.1	General
This paper proposes a solution for key issue #7 on CAPIF enhancement for service API status, to introduce the API based activation in service API discover procedure.
The API can be activated during the service API discover, if the required servcie API is inactive without API interface details, and the related AEF is already instantiated.
[bookmark: _Toc168041445]6.8.1.2	Procedure
The following text captures the solution by describing the neccesary changes in bold font compared with TS 23.222 v18.3.0 as shown below:
	
* * * Enhancement based on TS 23.222 v18.3.0 * * * *
[bookmark: _Toc433209705][bookmark: _Toc453260205][bookmark: _Toc453261092][bookmark: _Toc453279837][bookmark: _Toc459375175][bookmark: _Toc468105419][bookmark: _Toc468110514][bookmark: _Toc485420517][bookmark: _Toc154660801][bookmark: _Toc168041446]8.3.2.1	Service API publish request
Table 8.3.2.1-1 describes the information flow service API publish request from the API publishing function to the CAPIF core function.
Table 8.3.2.1-1: Service API publish request
	Information element
	Status
	Description

	API publisher information
	M
	The information of the API publisher may include identity, authentication and authorization information

	Service API information
	M (see NOTE 1)
	The service API information includes the service API name, API provider name (optional), List of public IP ranges of UEs (optional), service API type, service API status (e.g. active, inactive), communication type, description, Serving Area Information (optional), AEF location (optional), interface details (e.g. IP address, port number, URI), protocols, version numbers, and data format, Service KPIs (optional).

	Shareable information
	O (see NOTE 2)
	Indicates whether the service API or the service API category can be published to other CCFs. And if sharing, a list of CAPIF provider domain information where the service API or the service API category can be published is contained.

	NOTE 1:	The interface details shall be not present, if the API status is inactive.
NOTE 2:	If the shareable information is not present, the service API is not allowed to be shared.

* * * Enhancement based on TS 23.222 v18.3.0 * * * *
[bookmark: _Toc154660827][bookmark: _Toc168041447]8.7.3	Procedure
Figure 8.7.3-1 illustrates the procedure for discover service APIs.
The service API discover mechanism is supported by the CAPIF core function.
Pre-conditions:
1.	The API invoker is onboarded and has received an API invoker identity.
2.	The CAPIF core function is configured with a discover policy information (e.g. to restrict discover to category of APIs) for API invoker(s).
3.	The CAPIF core function obtains the service API information with the corresponding API status through service API publish procedure.

Figure 8.7.3-1: Discover service APIs
1.	The API invoker sends a service API discover request to the CAPIF core function. It includes the API invoker identity, and may include query information.
2.	Upon receiving the service API discover request, the CAPIF core function verifies the identity of the API invoker (via authentication). The CAPIF core function retrieves the stored service API(s) information from the CAPIF core function (API registry) as per the query information in the service API discover request. Further, the CAPIF core function applies the discover policy and performs filtering of service APIs information retrieved from the CAPIF core function.
3-4.	If the required service API is inactive, the CAPIF core function may request the AMF (i.e. API management function) to influence the require service API to be active, the CAPIF core function can obtain the required service API information including the API interface details after the API is activated by AMF.
NOTE 1:	This solution assumes that the AEF instance is already instantiated.

5.	The API publish update procedure is performed, with the updated API status (i.e. active).
6.	The CAPIF core function sends a service API discover response to the API invoker with the list of service API information for which the API invoker has the required authorization.

[bookmark: _Toc158909671][bookmark: _Toc168041448]
6.8.2	Architecture Impacts
This solution is presented based on the existing CAPIF architecture in TS 23.222.
[bookmark: _Toc158909672][bookmark: _Toc168041449]6.8.3	Corresponding APIs
This solution is based on service API publish and service API discover, no new APIs are introduced.
[bookmark: _Toc158909673][bookmark: _Toc168041450]6.8.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041451]6.9	Solution #8: AEF based instantiation for service API discover
[bookmark: _Toc168041452]6.9.1	Solution description
[bookmark: _Toc168041453]6.9.1.1	General
This paper proposes a solution for key issue #7 on CAPIF enhancement for AEF status, to introduce the API based instantiation in service API discover procedure.
[bookmark: _Hlk166510658]For the current CAPIF specificiation, the status of AEF instance is assumed to be instantiated. However, the AEF instance may be instantiable but not yet instantiated, and its service API information will be available after the AEF instance is instantiated by management system.
Therefore, this solution proposes that the AEF status including instantiated, and instantiable but not yet instantiated should be added, and the related service API discover should be enhanced to trigger the AEF instantiation if the required API is not available.
[bookmark: _Toc168041454][bookmark: _Hlk166511115]6.9.1.2	Procedure
The following text captures the solution by describing the neccesary changes in bold font compared with 3GPP TS 23.222 v18.3.0 as shown below:
	[bookmark: _Hlk166511513]* * * Enhancement based on 3GPP TS 23.222 v18.3.0 * * * *
[bookmark: _Toc168041455]8.7.3	Procedure
Figure 8.7.3-1 illustrates the procedure for discover service APIs.
The service API discover mechanism is supported by the CAPIF core function.
Pre-conditions:
1.	The API invoker is onboarded and has received an API invoker identity.
2.	The CAPIF core function is configured with a discover policy information (e.g. to restrict discover to category of APIs) for API invoker(s).
3.	The CAPIF core function has obtained the AEF status from the management function (e.g. API management function), the AEF status may include instantiated, and instantiable but not yet instantiated.
NOTE:	The interface details (e.g. IP address, port number, URI) and service API status shall not be present, if the AEF status is instantiable but not yet instantiated.

Figure 8.7.3-1: Discover service APIs
1.	The API invoker sends a service API discover request to the CAPIF core function. It includes the API invoker identity, and may include query information.
2.	Upon receiving the service API discover request, the CAPIF core function verifies the identity of the API invoker (via authentication). The CAPIF core function retrieves the stored service API(s) information from the CAPIF core function (API registry) as per the query information in the service API discover request. Further, the CAPIF core function applies the discover policy and performs filtering of service APIs information retrieved from the CAPIF core function.
3.	If the required service API is not available due to AEF status is instantiable but not be instantiated, the CAPIF core function may request the management function (e.g. API management function) to instantiate the related AEF instance. After the AEF is instantiated, the CAPIF core function may obtain the required service API information including the API interface details (e.g. IP address, port number, URI).
[bookmark: _Hlk160187399]Editor's Note:	Whether the related the management function is OAM system needs to coordinate with SA5.
Editor’s Note:	If the OAM system is needed, whether CCF can initiate service API related instantiation (e.g. AEF instantiation) is FFS, and the AEF status is need to coordinate with SA5.
Editor’s Note:	Whether AEF status is to be visible to CAPIF core function is FFS.
4.	The API publish procedure is performed with the service API information.
5.	The CAPIF core function sends a service API discover response to the API invoker with the list of service API information for which the API invoker has the required authorization.

[bookmark: _Toc168041456][bookmark: _Hlk166511813]6.9.2	Architecture Impacts
This solution is presented based on the existing CAPIF architecture in 3GPP TS 23.222.
[bookmark: _Toc168041457]6.9.3	Corresponding APIs
This solution is based on service API publish and service API discover, no new APIs are introduced.
[bookmark: _Toc168041458]6.9.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041459]6.10	Solution #9: Support more API invoker info in RNAA
[bookmark: _Toc168041460]6.10.1	Solution description
[bookmark: _Toc168041461]6.10.1.1	General
This solution provides more API invoker info related to RNAA so that the resource owner can know better about which user and/or which service (and its provider) is asking for sensitive information (e.g. location) of the resource owner.
[bookmark: _Toc168041462]6.10.1.3	Procedures
[bookmark: _Toc168041463]6.10.1.3.1	Authorization

Figure 6.10.1.3.1-1: Procedure for the API invoker obtaining authorization for service API access
The procedure is similar to clause 8.11.3 of 3GPP TS 23.222 [2] with the following difference:
-	In step 1, more information about API invoker (application service info like ASP id, application id) and purpose of data processing can be sent from API invoker to CCF during service API authorization procedure.
NOTE:	Application service info are applicable for both AF side API invoker and UE side API invoker.
-	In step 2, if received, the CCF additionally verifies application service info.
[bookmark: _Toc168041464]6.10.2	Architecture Impacts
Existing CAPIF architecture in 3GPP TS 23.222 [2] is used to accommodate new impact to CAPIF-1/1e reference point.
[bookmark: _Toc168041465]6.10.3	Corresponding APIs
Existing CAPIF service API authorization API is enhanced.
[bookmark: _Toc168041466]6.10.4	Solution evaluation
This solution addresses KI#1 with more granular information about API invoker in the context of RNAA. It also addresses the purpose of data processing in KI#1. The impacted CAPIF procedure includes service API authorization.
[bookmark: _Toc168041467]6.11	Solution #10: Access Control Management of Service API
[bookmark: _Toc168041468]6.11.1	Solution description
[bookmark: _Toc168041469]6.11.1.1	General
This solution is for Key issue #1 to give a description of the service API invocation procedure based on authorization for granular service access.
The API invoker performs the authorization based on granular service access (e.g., per service API or per service operation or per service resource). The subsequent service API invocation over CAPIF-2/2e by API invoker on the AEF should comply with the received authorization.
[bookmark: _Toc168041470]6.11.2	Architecture Impacts
This solution is based on the existing CAPIF architecture in 3GPP TS 23.222 [2].
[bookmark: _Toc168041471]6.11.3	Corresponding APIs
Editor's note:	This clause provides the corresponding APIs for supporting the solution.
[bookmark: _Toc168041472]6.11.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.
[bookmark: _Toc168041473]6.12	Solution #11: Resource Owner Consent Revocation
[bookmark: _Toc168041474]6.12.1	Solution description
[bookmark: _Toc168041475]6.12.1.1	General
This solution is for Key issue #1 to manage the resource owner consent.
In current specification, the consent of resource assess will only be requested by API invoker before service API invocation procedure. However, the scenario where the resource owner's consent is revoked after the API invoker obtains it has not been considered (e.g., for a certain API invoker, the location permission may change from allowed to not allowed). To support the resource owner consent revocation a procedure of resource owner consent revocation is needed.
[bookmark: _Toc168041476]6.12.1.2		Procedure for resource owner consent revocation
Pre-condition:
1.	The resource owner can communicate with the API invoker.
2.	The service API access requires obtaining consent from resource owner.
3.	The resource owner function has provided the user consent for the API invoker.

Figure 6.12.1.2-1:	Procedure for resource owner consent revocation
1.	The resource owner function sends a resource owner consent revocation request to CAPIF core function/Authorization function in order to provide resource owner revocation information.
2.	The CAPIF core function/Authorization function processes the request and sends a revocation response to the resource owner function. Then triggers the procedure for revoking API invoker authorization as described in subclause 8.23.4 of 3GPP TS 23.222 [2].
[bookmark: _Toc168041477]6.12.2	Architecture Impacts
Editor's note:	This clause provides the architecture impacts of the solution and possible new SA6 capabilities and interfaces.
[bookmark: _Toc168041478]6.12.3	Corresponding APIs
Editor's note:	This clause provides the corresponding APIs for supporting the solution.
[bookmark: _Toc168041479]6.12.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.

[bookmark: _Toc168041480]7	Deployment scenarios
Editor's Note:	This clause considers any impact on the existing deployment scenarios as well as new ones.
[bookmark: _Toc147904940][bookmark: _Toc168041481][bookmark: _Toc82472216][bookmark: _Toc82473761][bookmark: _Toc82473823]7.1	General
Editor's Note:	This clause will provide a general description of the deployment scenarios.
[bookmark: _Toc147904941][bookmark: _Toc168041482]7.x	Deployment model #x: <Title>
Editor's Note:	Provide a description of the deployment scenarios.
[bookmark: _Toc147904942][bookmark: _Toc168041483]8	Business Relationships
Editor's Note:	Provide a description of the involved business relationships.

[bookmark: _Toc464463369][bookmark: _Toc475064963][bookmark: _Toc478400633][bookmark: _Toc83813088][bookmark: _Toc147904943][bookmark: _Toc168041484]9	Overall evaluation
Editor's Note:	This clause will provide evaluation of different solutions.

[bookmark: _Toc464463370][bookmark: _Toc475064964][bookmark: _Toc478400634][bookmark: _Toc83813089][bookmark: _Toc147904944][bookmark: _Toc168041485]10	Conclusions
[bookmark: _Toc532994046][bookmark: _Toc78314764][bookmark: _Toc147904945][bookmark: _Toc168041486]10.1	General conclusions
[bookmark: _Toc532994047]Editor's note:	This clause will provide general conclusions for the study.
[bookmark: _Toc78314765][bookmark: _Toc147904946][bookmark: _Toc168041487]10.2	Conclusions of key issue #x
[bookmark: tsgNames]Editor's Note:	This clause will provide conclusions for the specific key issue.

[bookmark: _Toc168041488]
Annex A:
Change history
	[bookmark: historyclause]Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2024-02
	SA6#59
	
	
	
	
	TR Skeleton as approved by 3GPP SA6 in S6-240385
	0.0.0

	2024-03
	SA6#59
	
	
	
	
	Implementation of the following pCRs approved by SA6: S6-240491, S6-240783, S6-240492, S6-240493, S6-240530, S6-240751, S6-240577
	0.1.0

	2024-04
	SA6#60
	
	
	
	
	Implementation of the following pCRs approved by SA6: S6-241341, S6-241597, S6-241343, S6-241647, S6-241348, S6-241349
	0.2.0

	2024-05
	SA6#61
	
	
	
	
	Implementation of the following pCRs approved by SA6: S6-242325, S6-242326, S6-242311, S6-242327, S6-242757, S6-242356, S6-242358, S6-242359, S6-242331, S6-242360, S6-242361, S6-242362, S6-242758
	0.3.0

3GPP
oleObject1.bin
[image: image1.png]~

5G

image2.emf

oleObject2.bin
[image: image1.png]=

A GLOBAL INITIATIVE

image3.emf
Trust domain of CAPIF provider A

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

CAPIF-4

API publishing function

API provider domain

CAPIF APIs

API management function

CAPIF-5

Trust domain of CAPIF provider B

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

CAPIF-4

API publishing function

API provider domain

CAPIF APIs

API management function

CAPIF-5

CAPIF-2e

CAPIF-2e

CAPIF-6e

Microsoft_Visio_2003-2010_Drawing.vsd
�

Trust domain of CAPIF provider A

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

CAPIF-4

API publishing function

�

API provider domain

CAPIF APIs

API management function

CAPIF-5

�

Trust domain of CAPIF provider B

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

CAPIF-4

API publishing function

�

API provider domain

CAPIF APIs

API management function

CAPIF-5

image4.emf

API invoker frontendResource owner function

API invoker backend

CAPIF core function

Authorization function

UE

CAPIF-8

CAPIF-1

CAPIF APIs
API exposing function

Service APIsService APIsService APIs

API provider domain

API publishing function

API management function

CAPIF-2

CAPIF-X

image5.emf

API invoker
frontend

User
agent

API invoker
backend CCF(AuthF) AEF

1. API invoker frontend initiates the authorization flow with an authorization
initiation request towards API invoker backend via User agent

4. CCF(AuthF) provides authorization response to API invoker
backend with redirection via the User agent

5. API invoker backend makes authorization
access request to CCF(AuthF)

6. CCF(AuthF) provides authorization access
grant to API invoker backend

7. API invoker backend provides authorization granted notification to API
invoker frontend via User agent

8. API invoker frontend makes API service request towards API invoker
backend via User agent

9. API invoker backend makes API service request towards
AEF with the access information it obtained in step 7

10. AEF provides API service response to API invoker
backend

11. API invoker backend forwards API service response to API invoker frontend,
via User agent

UE
Resource owner
function (ROF)

2. API invoker backend initiates authorization with CCF(Auth)
with a authorization request redirected via the User agent

3. Mutual authentication between CCF(AuthF) and ROF, through which ROF provides required user content

image6.emf

API invoker Resource
owner function CCF / AF AEF-1 AEF-2

1. API invoker requests authorization information

2. Service API invocation request with the authorization information

3. AEF-1 decides to invoke a service API provided by the AEF-2,
first checking user consent requirements if configured

4. AEF-1 (acting as API invoker) obtains
the authorization information

5. Service API invocation request
with the authorization information

6. Service API invocation response

7. Service API invocation response

image7.emf
API invoker CAPIF core function

2.Validate and authenticate the API invoker

1. Obtain service API authorization request

3. Obtain service API authorization response

Microsoft_Visio_2003-2010_Drawing1.vsd
�

API invoker

CAPIF core function

2.Validate and authenticate the API invoker

1. Obtain service API authorization request

image8.emf
API invoker CCF-B

1. Obtain service API authorization request

3. Obtain service API authorization response

CCF-A

2. Obtain service API authorization

Microsoft_Visio_2003-2010_Drawing2.vsd
�

API invoker

CCF-B

1. Obtain service API authorization request

image9.emf
API invoker CCF-B CCF-A

1. Revoke API invoker authorization

request

2. Invalidate the

authorization of the API

invoker for service API

3. Revoke API invoker authorization

response

6. Revoke API invoker authorization

notify

4. Revoke API invoker authorization

notify

5. Invalidate the

authorization of the API

invoker for service API

Microsoft_Visio_2003-2010_Drawing3.vsd
�

API invoker

CCF-B

CCF-A

1. Revoke API invoker authorization request

2. Invalidate the authorization of the API invoker for service API

3. Revoke API invoker authorization response

6. Revoke API invoker authorization notify

4. Revoke API invoker authorization notify

5. Invalidate the authorization of the API invoker for service API

image10.emf
AEF CCF-A

1. Obtain access control policy request

4. Obtain access control policy response

CCF-B

2. Obtain access control policy request

3. Obtain access control policy response

Microsoft_Visio_2003-2010_Drawing4.vsd
�

AEF

CCF-A

1. Obtain access control policy request

image11.emf
AEF CCF-A CCF-B

1. Obtain security information request

Microsoft_Visio_2003-2010_Drawing5.vsd
�

AEF

CCF-A

CCF-B

1. Obtain security information request

image12.emf
API invoker CAPIF core function

2. Onboarding approval

1. Onboard API invoker request

3. Onboard API invoker response

4. API invoker is

onboarded

Microsoft_Visio_2003-2010_Drawing6.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

image13.emf
API invoker CAPIF core function

Trigger onboarding notification

1. Onboarding Notification Request

2. Onboarding Notification Response

3. May renew the enrolment to CCF as per clause 8.1 of 3GPP TS 23.122 or

cancel the enrolment to CCF as per clause 8.2 of 3GPP TS 23.222

Microsoft_Visio_2003-2010_Drawing7.vsd

image14.emf
API invoker CAPIF core function

1.Service API discover request

5.Service API discover response

2.Retrieve service

API(s) information

AMF

3. service API instantiation

APF

4. publish service API

Microsoft_Visio_2003-2010_Drawing8.vsd
�

API invoker

CAPIF core function

1.Service API discover request

5.Service API discover response

2.Retrieve service API(s) information

AMF

3. service API instantiation

APF

4. publish service API

image15.emf

Microsoft_Word_Document.docx
API invoker

CAPIF core function

Management function

API publishing function

2. retrieve service API(s) information

1. service API discover request

6. service API discover response

5. API publish update

3. service API activation request

4. service API activation response

image16.emf

Microsoft_Word_Document1.docx
API invoker

CAPIF core function

Management function

API publishing function

2. retrieve service API(s) information

3. AEF instantiation

1. service API discover request

5. service API discover response

4. API publish

Microsoft_Visio_2003-2010_Drawing9.vsd
�

API invoker

CAPIF core function

2.Validate and authenticate the API invoker

1. Obtain service API authorization request

image17.emf
Resource Owner

Function

CAPIF core function/

Authorization function

1. Resource owner consent revocation request

2. Resource owner consent revocation response

Microsoft_Visio_Drawing.vsdx
Resource Owner Function
CAPIF core function/
Authorization function
1. Resource owner consent revocation request
2. Resource owner consent revocation response

image1.emf

