57

Release 17
56
3GPP TS 31.131 V17.0.0 (2022-04)

	[bookmark: page1]3GPP TS 31.131 V17.0.0 (2022-04)

	Technical Specification

	3rd Generation Partnership Project;
Technical Specification Group Core Network and Terminals;
C-language binding to (U)SIM API
(Release 17)

	

	
	

	

	[bookmark: warningNotice]The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© 2022, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents
Foreword	6
1	Scope	7
2	References	7
3	Definitions and abbreviations	8
3.1	Definitions	8
3.2	Abbreviations	8
4	Description	9
4.1	Overview	9
4.2	Design Rationale and Upward Compatibility	10
4.3	Application Triggering	10
4.4	Proactive command handling	13
4.5	Application Loading	13
5	'C'-language binding for (U)SIM API	13
5.1	Overview	13
5.2	Toolkit Application Functions	14
5.2.1	main	14
5.2.2	CatGetFrameworkEvent	15
5.2.3	CatExit	15
5.3	Registry	16
5.3.1	CatSetMenuString	16
5.3.2	CatNotifyOnFrameworkEvent	16
5.3.3	CatNotifyOnEnvelope	17
5.3.4	CatNotifyOnEvent	17
5.4	Man-Machine Interface	17
5.4.1	CatAddItem	17
5.4.2	CatSelectItem	17
5.4.3	CatEndSelectItem	18
5.4.4	CatDisplayText	18
5.4.5	CatGetInKey	18
5.4.6	CatGetInput	19
5.4.7	CatSetupIdleModeText	19
5.4.8	CatPlayTone	20
5.5	Timers	20
5.5.1	CatGetTimer	20
5.5.2	CatFreeTimer	20
5.5.3	CatStartTimer	20
5.5.4	CatGetTimerValue	21
5.6	Supplementary Card Reader Management	21
5.6.1	CatPowerOnCard	21
5.6.2	CatPowerOffCard	21
5.6.3	CatPerformCardAPDU	22
5.6.4	CatGetReaderStatus	22
5.7	UICC File Store Access	22
5.7.1	CatSelect	23
5.7.2	CatStatus	23
5.7.3	CatGetCHVStatus	23
5.7.4	CatReadBinary	23
5.7.5	CatUpdateBinary	24
5.7.6	CatReadRecord	24
5.7.7	CatUpdateRecord	24
5.7.8	CatSearch	25
5.7.9	CatIncrease	25
5.7.10	CatInvalidate	25
5.7.11	CatRehabilitate	25
5.8	Miscellaneous	26
5.8.1	CatGetTerminalProfile	26
5.8.2	CatMoreTime	26
5.8.3	CatPollingOff	26
5.8.4	CatPollInterval	26
5.8.5	CatRefresh	27
5.8.6	CatLanguageNotification	27
5.8.7	CatLaunchBrowser	27
5.9	Low-level Interface	28
5.9.1	CatResetBuffer	28
5.9.2	CatStartProactiveCommand	29
5.9.3	CatSendProactiveCommand	29
5.9.4	CatOpenEnvelope	29
5.9.5	CatSendEnvelopeResponse	29
5.9.6	CatSendEnvelopeErrorResponse	29
5.9.7	CatPutData	29
5.9.8	CatPutByte	30
5.9.9	CatPutTLV	30
5.9.10	CatPutBytePrefixedTLV	30
5.9.11	CatPutOneByteTLV	30
5.9.12	CatPutTwoByteTLV	30
5.9.13	CatGetByte	31
5.9.14	CatGetData	31
5.9.15	CatFindNthTLV	31
5.9.16	CatFindNthTLVInUserBuffer	31
5.10	Network Services	32
5.10.1	CatGetLocationInformation	32
5.10.2	CatGetTimingAdvance	32
5.10.3	CatGetIMEI	32
5.10.4	CatGetNetworkMeasurementResults	32
5.10.5	CatGetDateTimeAndTimeZone	33
5.10.6	CatGetLanguage	33
5.10.7	CatSetupCall	33
5.10.8	CatSendShortMessage	34
5.10.9	CatSendSS	35
5.10.10	CatSendUSSD	35
5.10.11	CatOpenCSChannel	36
5.10.12	CatOpenGPRSChannel	37
5.10.13	CatCloseChannel	39
5.10.14	CatReceiveData	39
5.10.15	CatSendData	40
5.10.16	CatGetChannelStatus	40
5.10.17	CatServiceSearch	40
5.10.18	CatGetServiceInformation	41
5.10.19	CatDeclareService	41
5.10.20	CatRunATCommand	41
5.10.21	CatSendDTMFCommand	42
5.11	Supporting Data Types	42
5.11.1	CatRecordAccessMode	42
5.11.2	CatSearchMode	42
5.11.3	CatFrameworkEventType	42
5.11.4	CatEnvelopeTagType	43
5.11.5	CatEventType	43
5.11.6	CatTextString	43
5.11.7	CatAlphaString	43
5.11.8	CatIconIdentifier	43
5.11.9	CatIconOption	44
5.11.10	CatDCSValue	44
5.11.11	CatDisplayTextOptions	44
5.11.12	CatGetInKeyOptions	44
5.11.13	CatGetInputOptions	44
5.11.14	CatSelectItemOptions	45
5.11.15	CatTimeUnit	45
5.11.16	CatTone	45
5.11.17	CatRefreshOptions	45
5.11.18	CatGetReaderStatusOptions	45
5.11.19	CatDevice	46
5.11.20	CatGeneralResult	46
5.11.21	CatTimerValue	47
5.11.22	CatTimeInterval	47
5.11.23	CatFileStatus	47
5.11.24	CatLanguageNotificationOptions	48
5.11.25	CatLocationInformation	48
5.11.26	CatTimingAdvance	48
5.11.27	CatLaunchBrowserOptions	48
5.11.28	CatSetupCallOptions	48
5.11.29	CatTypeOfNumberAndNumberingPlanIdentifier	49
5.11.30	CatSendShortMessageOptions	49
5.11.31	CatSendDataOptions	49
5.11.32	CatMEInterfaceTransportLevelType	50
5.11.33	CatBearer	50
5.11.34	CatOpenChannelOptions	50
5.11.35	CatAddressType	50
5.11.36	CatFID	50
5.11.37	CatTextFormat	51
5.11.38	CatTextForegroundColour	51
5.11.39	CatTextBackgroundColour	51
Annex A (normative):	Application executable architecture	52
Annex B (informative):	Example	54
Annex C (informative):	Change history	56

[bookmark: _Toc169974273]
Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
[bookmark: _Toc169974274]
1	Scope
A Subscriber Identity Module Application Programming Interface (SIM API) has been defined in TS 42.019 [4] as a technology-independent API by which toolkit applications and (U)SIMs co-operate. That specification is independent of the programming language technology used to create the application, the platform used to host the application and the runtime environment used to execute the application.
The present document includes information applicable to (U)SIM toolkit application developers creating applications using the C programming language ISO/IEC 9899 [7]. The present document describes an interface between toolkit applications written in the C programming language and the (U)SIM in order to realize the co-operation set forth in TS 42.019 [4]. In particular, the API described herein provides the service of assembling proactive commands and disassembling the responses to these commands for the application programmer.
Software tools, integrated software development environments and software management systems that may be used to create application programs are explicitly out of scope of the present document.
[bookmark: _Toc169974275]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
· For a specific reference, subsequent revisions do not apply.
· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 31.111: "USIM Application Toolkit (USAT)".
 [3]	3GPP TS 23.048: "Security Mechanisms for the (U)SIM application toolkit; Stage 2".
[4]	3GPP TS 42.019: "Subscriber Identity Module Application Programming Interface (SIM API); Stage 1".
[5]	ISO 639 (1988): "Code for the representation of names of languages".
[6]	3GPP TS 23.038: "Alphabets and language‑specific information".
[7]	ISO/IEC 9899: "Programming Languages - C".
[8]	3GPP TS 11.14: "Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM – ME) interface".
[9]	Tool Interface Standard (TIS) Executable and Linking Format Specification Version 1.2.
[10]	SYSTEM V Application Binary Interface, Edition 4.1.
[11]	3GPP TS 51.011: "Specification of the Subscriber Identity Module - Mobile Equipment (SIM‑ME) interface".
[12]	Void.
[13]	3GPP TS 31.115: "Secured packet structure for (U)SIM Toolkit applications".
[14]	3GPP TS 31.116: "Remote APDU Structure for (U)SIM Toolkit applications".
[15]	3GPP TS 31.102: "Characteristics of the USIM Application".
[16]	3GPP TS 31.101: "UICC-Terminal Interface, Physical and Logical Characteristics".
[bookmark: ref][bookmark: _Toc169974276]3	Definitions and abbreviations
[bookmark: _Toc169974277]3.1	Definitions
For the purposes of the present document, the following terms and definitions apply:
application: computer program that defines and implements a useful domain-specific functionality
The term may apply to the functionality itself, to the representation of the functionality in a programming language, or to the realization of the functionality as executable code.
application executable: representation of an application as collection of executable codes
application program: representation of an application in a programming language such as assembly language, C, Java, WML or XHTML
Application Programming Interface (API): collection of entry points and data structures that an application program can access when translated into an application executable
byte code: processor-independent representation of a basic computer operation such as "increment by one" that is executed by computer program called a byte code interpreter
data structure: memory address that can be accessed by an application executable in order to read or write data
entry point: memory address that can be branched to by an application executable in order to access functionality defined by an application-programming interface
Depending on the software technology, an entry point is also called a subroutine, a function or a method.
executable code: generic term for either byte code or native code
framework: defines a set of Application Programming Interface (API) functions for developing applications and for providing system services to those applications
loadfile: representation of an application executable that is transmitted from the terminal to the smart card operating system
A loadfile typically includes information about the application executable in addition to the application executable itself.
native code: processor-dependent representation of a basic computer operation such as "increment by one" that is executed by the hardware circuitry of a computer's central processing unit
toolkit application: uses the commands described in TS 31.111 [2] and TS 11.14 [8]
[bookmark: _Toc169974278]3.2	Abbreviations
For the purpose of the present document, the following abbreviations apply:
APDU	Application Protocol Data Unit
API	Application Programming Interface
CAT	Card Application Toolkit
CS	Circuit Switched
DCS	Digital Cellular System
DF	Dedicated File
DTMF	Dual Tone Multiple Frequency
EF	Elementary File
ELF	Executable and Linkable Format
FID	File Identifier
GSM	Global System for Mobile communications
ME	Mobile Equipment
NAA	Network Access Application (SIM or USIM)
OTA	Over The Air
SIM	Subscriber Identity Module
SMS	Short Message Service
STK	SIM ToolKit
SW	Status Word
TAR	Toolkit Application Reference
TLV	Tag, Length, Value
TPDU	Transport Protocol Data Unit
UICC	(not an acronym)
URL	Uniform Resource Locator
USIM	Universal Subscriber Identity Module
USSD	Unstructured Supplementary Services Data
[bookmark: _Toc169974279]4	Description
The (U)SIM Application consists of the following:
-	APDU handlers for communicating with the ME;
-	File system and file access control;
-	Toolkit Framework that provides services to Toolkit applications.
The present document describes the C programming language binding for the interface between the (U)SIM application and toolkit applications described in TS 42.019 [4]. This API allows application programmers using the C programming language to access functions and data described in TS 31.111 [2] and TS 11.14 [8], such that the (U)SIM-based applications and the services they implement can be developed and loaded onto ICCs. If required and supported by the underlying smart card technology, toolkit applications can be loaded or deleted remotely, after the card has been issued.
[bookmark: _Toc169974280]4.1	Overview
The 'C'-binding for (U)SIM API shall provide function calls for pro-active functions and transport functions. The figure below shows the interactions between a typical toolkit application (shown in blue) and the various functional blocks of the (U)SIM (shown in orange). The C-bindings for these APIs are presented in subclause 4.2.

Figure 1
[bookmark: _Toc169974281]4.2	Design Rationale and Upward Compatibility
Some functions on the C SIM API take parameters that correspond to optional TLVs in TS 31.111 [2] and TS 11.14 [8]. If the actual parameter value passed to the function is NULL, the corresponding TLV is not passed to the ME; an example of an optional parameter is CatIconIdentifier that corresponds to the ICON IDENTIFIER TLV.
Some proactive commands have a very large number of optional TLVs, such as SETUP CALL. Therefore, this API offers two variants that address this aspect, CatSetupCall and CatSetupCallEx. The first function, CatSetupCall, takes as parameters everything that is necessary to issue a successful SETUP CALL proactive command (i.e. everything required to construct the mandatory TLVs as required by TS 31.111 [2] and TS 11.14 [8]) and also includes optional user interface TLVs (title and icon) for ease of use.
The second function, CatSetupCallEx, takes a parameter block that can be extended in future versions of the present specification. The parameter block contains members that correspond to all mandatory and optional TLVs for the SETUP CALL proactive command.
The reason for introducing the "…Ex" variants is threefold:
-	Rather than extend the parameter list of a function to take a large number of optional parameters for each call, it is preferable to set up the parameters using named structure members before issuing the call to the function.
-	If a future version of TS 31.111 [2] or TS 11.14 [8] extends the optional parameters for a proactive command, the corresponding parameter block can be extended to encompass these parameters without changing the function prototype.
-	Any source code written for an older version of this C SIM API can be recompiled with a later version without change and will remain upwardly compatible at the source as long as the suggested coding standards are adhered to.
[bookmark: _Toc169974282]4.3	Application Triggering
The application-triggering portion of the SIM Toolkit Framework is responsible for the activation of toolkit applications, based on the APDU received by the card.
The ME shall not be adversely affected by the presence of applications on the (U)ICC card. For instance a syntactically correct Envelope shall not result in an error status word in case of a failure of an application. The only application as seen by the ME is the (U)SIM application. As a result, a toolkit application may return an error, but this error will not be sent to the ME.
The difference between an application and a toolkit application is that a toolkit application does not typically handle APDUs directly. It will handle higher-level messages. Furthermore the execution of a function could span over multiple APDUs, in particular, the proactive protocol commands.
All the applications that have registered interest in the event are triggered in order of their priority.
-	The current context is switched to the toolkit application.
-	A pending transaction is aborted.
-	The current file context of the toolkit application is the MF.
-	The current file context of the current selected application is unchanged.
On termination of a toolkit application execution of CatExit():
-	The context switches back to the context of the current selected application, the NAA application.
-	A pending toolkit application transaction is aborted.
Here after are the events that can trigger a toolkit application:
EVENT_PROFILE_DOWNLOAD
Upon reception of the Terminal Profile command by the (U)SIM, the Toolkit Framework stores the ME profile and then triggers the registered toolkit application that may want to change their registry. A toolkit application may not be able to issue a proactive command.
EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST
A toolkit application might be activated upon selection in the ME's menu by the user, or request help on this specific menu.
In order to allow the user to choose in a menu, the Toolkit Framework shall have previously issued a SET UP MENU proactive command. When a toolkit application changes a menu entry of its registry object, the Toolkit Framework shall dynamically update the menu stored in the ME during the current card session. The SIM Toolkit Framework shall use the data of the EFsume file (TS 51.011 [11] and TS 31.102 [15]) when issuing the SET UP MENU proactive command.
The positions of the toolkit application menu entries in the item list, the requested item identifiers and the associated limits (e.g. maximum length of item text string) are defined at the loading of the toolkit application.
If at least one toolkit application registers to EVENT_MENU_SELECTION_HELP_REQUEST, the SET UP MENU proactive command sent by the Toolkit Framework shall indicate to the ME that help information is available. A toolkit application registered for one or more menu entries may be triggered by the event EVENT_MENU_SELECTION_HELP_REQUEST, even if it is not registered to this event. A toolkit application registered for one or more menu entries should provide help information.
EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV,
EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_UPD
A toolkit application can be activated upon the reception of a short message. There are two ways for a card to receive an SMS: via the Envelope SMS-PP Data Download or the UpdateRecord EFsms instruction.
The reception of the SMS by the toolkit application cannot be guaranteed for the Update Record EFsms instruction.
The received SMS may be:
-	formatted according to TS 23.048 [3] or an other protocol to identify explicitly the toolkit application for which the message is sent;
-	unformatted or using a toolkit application specific protocol the Toolkit Framework will pass this data to all registered toolkit applications.
EVENT_FORMATTED_SMS_PP_ENV
This event is triggered by an envelope APDU containing an SMS_DATADOWNLOAD BER TLV with an SMS_TPDU simple TLV according to TS 23.048 [3].
The Toolkit Framework shall:
-	verify the TS 23.048 [3] security of the SMS TPDU;
-	trigger the toolkit application registered with the corresponding TAR defined at application loading;
-	take the optional Application Data posted by the triggered toolkit application if present;
-	secure and send the response packet.
The toolkit application will only be triggered if the TAR is known and the security verified. Application data will also be deciphered.
EVENT_UNFORMATTED_SMS_PP_ENV
The registered toolkit applications will be triggered by this event and get the data transmitted in the APDU envelope SMS_DATADOWNLOAD.
EVENT_FORMATTED_SMS_PP_UPD
This event is triggered by Update Record EFsms with an SMS TP-UD field formatted according to TS 23.048 [3].
The Toolkit Framework shall:
-	update the EFsms file with the data received, it is then up to the receiving toolkit application to change the SMS stored in the file (i.e. the toolkit application need to have access to the EFsms file);
-	verify the TS 23.048 [3] security of the SMS TPDU;
-	convert the Update Record EFsms in a TLV List, an EnvelopeHandler;
-	trigger the toolkit application registered with the corresponding TAR defined at application loading.
EVENT_UNFORMATTED_SMS_PP_UPD
The SIM Toolkit Framework will first update the EFsms file, convert the received APDU as described above, and then trigger all the registered toolkit applications. All of them may modify the content of EFsms (i.e. the toolkit applications need to have access to the EFsms file).
EVENT_UNFORMATTED_SMS_CB
When the ME receives a new cell broadcast message, the cell broadcast page may be passed to the card using the envelope command. e.g. the application may then read the message and extract a meaningful piece of information that could be displayed to the user, for instance.
EVENT_CALL_CONTROL_BY_SIM
When the NAA is in call control mode and when the user dials a number, this number is passed to the Toolkit Framework. Only one toolkit application can handle the answer to this command: call barred, modified or accepted.
EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED,
EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS,
EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,
EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS
The toolkit application will be triggered by the registered event download trigger, upon reception of the corresponding Envelope command. In order to allow the toolkit application to be triggered by these events, the Toolkit Framework shall have previously issued a SET UP EVENT LIST proactive command. When a toolkit application changes one or more of these requested events of its registry, the Toolkit Framework shall dynamically update the event list stored in the ME during the current card session.
EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
Before sending an SMS MO entered by the user, the SMS is submitted to the Toolkit framework. Only one toolkit application can register to this event.
EVENT_TIMER_EXPIRATION
This event is registered when the application executes a successful Toolkit CatGetTimer(). The toolkit application can then manage this (these) timer(s), and it will be triggered at the reception of the APDU Envelope TIMER EXPIRATION. The Toolkit Framework shall reply busy to this Envelope APDU if it cannot guaranty to trigger the corresponding toolkit application.
EVENT_UNRECOGNIZED_ENVELOPE
The application registered to this event shall be triggered by the framework if the BER-TLV tag contained in the ENVELOPE APDU is not defined in the associated release of TS 31.111 [2] and TS 11.14 [8] and if no corresponding constant is defined in the list of the ToolkitConstants interface. By providing the means to transfer an arbitrary block of data, the Unrecognized Envelope Event will allow a toolkit application to handle the evolution of the specifications TS 31.111 [2] and TS 11.14 [8].
EVENT_STATUS_COMMAND
At reception of a STATUS APDU command, the SIM Toolkit Framework shall trigger the registered toolkit application.
A range of events is reserved for experimental and proprietary usage (from -128 to -1). As the definition of these events is not standardized, the use of these events may make the toolkit application behave differently on different platforms.
The toolkit application shall be triggered for the registered events upon reception, and shall be able to access to the data associated to the event using OpenEnvelope() or the low-level functions.
The order of triggering the toolkit application shall follow the priority level of each toolkit application defined at its loading. If several toolkit applications have the same priority level, the last loaded toolkit application takes precedence.
[bookmark: _Toc169974283]4.4	Proactive command handling
The (U)SIM application toolkit protocol (i.e. 91xx, Fetch, Terminal Response) is handled by the network access application and the Toolkit Framework. The toolkit application shall not handle those events.
The network access application and the Toolkit Framework shall handle the transmission of the proactive command to the ME, and the reception of the response. The Toolkit Framework will then return in the toolkit application just after the proactive command. It shall then provide to the toolkit application the values as indicated in the function parameters. It also provides the raw return information so that the toolkit application can analyse the response.
The proactive command is sent to the ME as defined and constructed by the toolkit library without any check of the Toolkit Framework.
The toolkit application shall not issue the following proactive commands: SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF; as those are system proactive commands that will affect the services of the Toolkit Framework.
[bookmark: _Toc169974284]4.5	Application Loading
Applications compliant to the present document are represented for loading as loadfiles in the Executable and Linkable Format (ELF) described in Tool Interface Standard (TIS) Executable and Linking Format Specification [9] and SYSTEM V Application Binary Interface [10]. The application executable in the ELF loadfile may be either native code or byte code that has been created through a process of compiling the representation of the application program in the C programming language.
The e_machine entry in the ELF header is set to according to the table in annex A and indicates the architecture for which the application executable in the loadfile has been prepared.
Coding for other processors, processor instruction set extensions and byte code interpreters will be defined as needed processor-specific or interpreter-specific supplements to SYSTEM V Application Binary Interface [10] may also be provided as needed.
Loadfile linkers, loaders and installers, whether on-card or off-card, return an error condition if the application representation in the loadfile cannot be accommodated or if resources requested by the application are not available.
The over-the-air application loading mechanism, protocol and application life cycle are defined in TS 23.028 [3].
[bookmark: _Toc169974285]5	'C'-language binding for (U)SIM API
[bookmark: _Toc169974286]5.1	Overview
This subclause presents the 'C'-language binding to (U)SIM API. It is divided into sections as follows:
-	Toolkit application entry and exit.
-	Man-Machine Interface.
-	Timers.
-	Supplementary card reader.
-	UICC file store access.
-	Registry.
-	Miscellaneous.
-	Low-level functions.
-	Network services.
-	Supporting data types.
For each function, the prototype is given followed by a table describing the parameters and whether they are input [in] or output [out] parameters. There is explanatory text which explains the function's purpose and whether it is a proactive command or not.
[bookmark: _Toc169974287]5.2	Toolkit Application Functions
Toolkit applications will start by executing the application-defined function main. There are no arguments to main, nor are there any return results. The application can find out why it was invoked using the CatGetFrameworkEventt function. The Framework events that can cause an application to be invoked can be split into the following groups:
-	Command monitoring.
-	ME monitor events.
-	Application lifecycle change.
Command monitoring enables applications to be invoked when the framework receives commands from the ME. Currently supported commands that can be monitored are:
-	TERMINAL PROFILE: monitoring this command enables an application to be invoked when the ME is powered on.
-	STATUS: monitoring this command enables an application to be invoked when the ME polls for proactive commands.
-	ENVELOPE: monitoring this command enables the application to be informed of specific envelope type arrival for example call control envelopes can be monitored.
ME monitor events are events that the framework can ask the ME to monitor; for example an event can be sent on call connection. ME monitored events are delivered to the application in the EVENT DOWNLOAD envelope as received from the ME.
The application lifecycle event enables the framework to invoke an application when the application status has changed. This is mainly to enable an application to be run at installation time so that it can set up its registry entries. The details of the application lifecycle events are provided in TS 31.116 [14].
[bookmark: _Toc169974288]5.2.1	main
void
main (void);

The main function is the application entry point. The application should not return from main; it must call the CatExit function.
An example main function is given below:
 void main(void)
 {
 switch (CatGetFrameworkEvent())
 {
 case EVENT_APPLICATION_LIFECYCLE_INSTALL:
 // set up registry for this application
 CatSetMenuString(…..
 CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
 CatNotifyOnEvent(CARD_READER_STATUS,1);
 break;
 case EVENT_ENVELOPE_COMMAND:
 {
 BYTE length;
 switch (CatOpenEnvelope(&length))
 {
 case MENU_SELECTION_TAG:
 // search for help request …..
 break;
 case SMS_PP_DOWNLOAD_TAG:
 …..
 break;
 case EVENT_DOWNLOAD_TAG:
 // search for card reader status event …..
 break;
 default:
 CatExit();
 }
 }
 break;
 default:
 CatExit();
 break;
 }
 CatExit();
 }

[bookmark: _Toc169974289]5.2.2	CatGetFrameworkEvent
CatFrameworkEventType
CatGetFrameworkEvent(void);

	RETURN
	
	Framework event type that caused the application to run; see CatFrameworkEventType for details.

[bookmark: _Toc169974290]5.2.3	CatExit
void
CatExit (void) ;

	
	
	

CatExit causes the application to terminate execution and return control to the framework. When the application is restarted, it enters at main.
[bookmark: _Toc169974291]5.3	Registry
The menu entry(ies) of the application, together with the set of framework events that the application is interested in, may be registered using the functions defined in this subclause.
[bookmark: _Toc169974292]5.3.1	CatSetMenuString
void
CatSetMenuString (BYTE MenuID,
 BYTE MenuStringLength, const void *MenuString,
 const CatIconIdentifier *IconIdentifier,
 BYTE HelpAvailable,
 BYTE NextAction);

	MenuID
	[in]
	The menu ID by which this entry is known.

	MenuStringLength
	[in]
	The length, in bytes, of MenuString.

	MenuString
	[in]
	The menu entry to be placed in the registry. If MenuString is NULL or MenuStringLength is zero, any existing menu entry associated with MenuID is removed and is not displayed by the ME.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	HelpAvailable
	[in]
	If non zero the application can supply help.

	NextAction
	[in]
	The (optional) next action value

CatSetMenuString allows the application to define a menu entry together with an icon. A non-zero value can be supplied if a next action indicator is required. This function will implicitly request that the application is notified of menu selection envelopes i.e. there is no requirement to call the CatNotifiyOnEnvelope function. An application can have several menu entries and must examine the menu selection envelope to decide which menu selection caused it to be invoked.
The ordering of menu entries within a menu presented by the ME is based on increasing integer values of identifiers selected by the application. Note that any application's menu item ordering may be further overridden by an external source, e.g. card issuer, via a request to the SIM Toolkit framework this mechanism is beyond the scope of the present document.
[bookmark: _Toc169974293]5.3.2	CatNotifyOnFrameworkEvent
void
CatNotifyOnFrameworkEvent(CatFrameworkEventType Event, BYTE Enabled);

	Event
	[in]
	A framework event the application is interested in, see CatFrameworkEventType for details.

	Enabled
	[in]
	If non-zero the framework event is monitored otherwise the framework event isn't monitored. By default only application lifecycle events are monitored.

CatNotifyOnFrameworkEvent enables the application to add/remove a framework event to/from the set of framework events that it is interested in.
[bookmark: _Toc169974294]5.3.3	CatNotifyOnEnvelope
void
CatNotifyOnEnvelope(CatEnvelopeTagType Tag, BYTE Enabled);

	Tag
	[in]
	The particular envelope type to monitor; see CatEnvelopeTagType for details.

	Enabled
	[in]
	If non-zero the envelope type is monitored otherwise the envelope type isn't monitored.

CatNotifyOnEnvelope enables the application to add/remove an envelope monitoring event to/from the set of the envelope monitoring events it is interested in. Note that the monitoring of MENU SELECTION, TIMER EXPIRATION and EVENT DOWNLOAD envelopes is handled by the framework.
[bookmark: _Toc169974295]5.3.4	CatNotifyOnEvent
void
CatNotifyOnEvent(CatEventType EventType, BYTE Enabled);

	EventType
	[in]
	The particular event type to monitor; see CatEventType for details.

	Enabled
	[in]
	If non-zero the event type is monitored otherwise the event isn't monitored.

CatNotifyOnEvent enables the application to add/remove an ME monitored event to/from the set of ME monitored events it is interested in.
[bookmark: _Toc169974296]5.4	Man-Machine Interface
[bookmark: _Toc169974297]5.4.1	CatAddItem
void
CatAddItem(BYTE ItemTextLength, const void *ItemText, BYTE ItemIdentifier);

	ItemTextLength
	[in]
	The length in bytes of the following ItemText field.

	ItemText
	[in]
	Text associated with item.

	ItemIdentifier
	[in]
	Specifies a unique identifier to be associated with this selection. This value is returned in the SelectedItem parameter of CatSelectItem if this item is selected from the menu.

CatAddItem adds an item to a list for the user to select. See CatSelectItem below for details on the construction of a display list.
[bookmark: _Toc169974298]5.4.2	CatSelectItem
void
CatSelectItem (BYTE TitleLength, const void *Title,
 CatSelectItemOptions Options);

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	Title of the list of choices.

	Options
	[in]
	Acceptable values for this parameter are listed in CatSelectItemOptions.

CatSelectItem initiates the construction of a list of items to be displayed to the user and from which the user is expected to select exactly one entry. After CatSelectItem has been called, entries are added to the list one at a time using the CatAddItem entry point above. When all items have been added to the list, the list is sent to the ME using the CatEndSelectItem entry point below. CatEndSelectItem causes the list to be displayed and returns to the caller the item selected.
[bookmark: _Toc169974299]5.4.3	CatEndSelectItem
CatGeneralResult
CatEndSelectItem (BYTE *SelectedItem,
 const CatIconIdentifier *IconIdentifier);

	SelectedItem
	[out]
	Index of item selected by user.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SELECT ITEM proactive command.

CatEndSelectItem issues the proactive command SELECT ITEM that displays on the ME a list of items for the user to choose from. The terminal response is parsed and if successful the SelectedItem parameter is set to the index of the item chosen. See CatSelectItem above for details on the construction of a display list.
[bookmark: _Toc169974300]5.4.4	CatDisplayText
CatGeneralResult
CatDisplayText (CatDCSValue TextDCS, BYTE TextLength, const void *Text,
 CatDisplayTextOptions TextOptions,
 CatTextFormat TextFormat,
 CatForegroundColor ForegroundColour,
 CatBackgroundColour BackgroundColour,
 const CatIconIdentifier *IconIdentifier,
 BYTE ImmediateResponse);

	TextDCS
	[in]
	The data coding scheme for Text. Acceptable values for this parameter are listed in CatDCSValue.

	TextLength
	[in]
	The length in bytes of Text.

	Text
	[in]
	String to display on ME.

	TextOptions
	[in]
	Acceptable values for this parameter are listed in CatDisplayTextOptions.

	TextFormat
	[in]
	Format of text; e.g. bold, italic, etc.

	ForegroundColour
	[in]
	Foreground colour of text; i.e. colour of the letters.

	BackgroundColour
	[in]
	Background colour of text; i.e. colour filled in behind the letters.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ImmediateResponse
	[in]
	True-program continues execution as soon as ME receives instruction.
False-program waits until text is cleared on the ME before continuing, and the Immediate Response TLV is not passed to the ME.

	RETURN
	
	The GeneralResult code of the DISPLAY TEXT proactive command.

[bookmark: _Toc169974301]5.4.5	CatGetInKey
CatGeneralResult
CatGetInKey (CatDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 CatGetInKeyOptions Options,
 const CatIconIdentifier *IconIdentifier,
 CatDCSValue *DCSOut, void *KeyOut);

	TitleDCS
	[in]
	The data-coding scheme for Title. Acceptable values for this parameter are listed in CatDCSValue.

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display on ME.

	Options
	[in]
	Acceptable values for this parameter are listed in CatGetInKeyOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	DcsOut
	[out]
	The packing type of the returned key. This parameter is set to one of the values listed in .

	KeyOut
	[out]
	The key pressed.

	RETURN
	
	The GeneralResult code of the GET INKEY proactive command.

CatGetInKey issues the proactive command GET INKEY. The terminal response is parsed and if successful the DCSOut and KeyOut parameters are updated.
[bookmark: _Toc169974302]5.4.6	CatGetInput
CatGeneralResult
CatGetInput(CatDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 CatGetInputOptions Options,
 CatDCSValue DefaultReplyDCS,
 BYTE DefaultReplyLength, const void *DefaultReply,
 BYTE MinimumResponseLength,
 BYTE MaximumResponseLength,
 const CatIconIdentifier *IconIdentifier,
 CatDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut);

	TitleDCS
	[in]
	The data-coding scheme for Title. Acceptable values for this parameter are listed in .

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display on ME while waiting for the user to press a key.

	Options
	[in]
	Acceptable values for this parameter are listed in CatGetInputOptions.

	DefaultReplyDCS
	[in]
	The data-coding scheme for DefaultReply. Acceptable values for this parameter are listed in .

	DefaultReplyLength
	[in]
	The length in bytes of DefaultReply.

	DefaultReply
	[in]
	Default response string; use NULL for "no reply"-no Default Reply tag length value (TLV) is sent to the ME.

	MinimumResponseLength
	[in]
	Minimum allowed length for the response, in either characters or digits.

	MaximumResponseLength
	[in]
	Maximum allowed length for the response, in either characters or digits.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	MsgOutDCS
	[out]
	Packing type of the returned data. This parameter is set to one of the values listed in .

	MsgOutLength
	[out]
	Length of the returned message in bytes.

	MsgOut
	[out]
	A pointer to where the returned string or message is placed.

	RETURN
	
	The GeneralResult code of the GET INPUT proactive command.

CatGetInput issues the proactive command GET INPUT. The terminal response is parsed and if successful MsgOutDCS, MsgOutLength, MsgOut parameters are updated.
[bookmark: _Toc169974303]5.4.7	CatSetupIdleModeText
CatGeneralResult
CatSetupIdleModeText (CatDCSValue TextDCS, BYTE TextLength, const void *Text,
 const CatIconIdentifier *IconIdentifier);

	TextDCS
	[in]
	The data-coding scheme for Text. Acceptable values for this parameter are listed in .

	TextLength
	[in]
	The length in bytes of Text.

	Text
	[in]
	String to display while ME is idle.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SETUP IDLE MODE TEXT proactive command.

CatSetupIdleModeText issues the proactive command SET UP IDLE MODE TEXT that sets the ME's default text string.
[bookmark: _Toc169974304]5.4.8	CatPlayTone
CatGeneralResult
CatPlayTone (BYTE TextLength, const void *Text,
 CatTone Tone,
 CatTimeUnit Units, BYTE Duration,
 const CatIconIdentifier *IconIdentifier);

	TextLength
	[in]
	The length in bytes of the string Text to display on the ME.

	Text
	[in]
	String to display on ME while sound is being played.

	Tone
	[in]
	Specifies tone to play. Acceptable values for this parameter are listed in CatTone.

	Units
	[in]
	Unit of time specified for duration parameter. Acceptable values for this parameter are listed in CatTimeUnit.

	Duration
	[in]
	Amount of time to play the tone, in units specified in the Units parameter

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the PLAY TONE proactive command.

CatPlayTone issues the proactive command PLAY TONE.
[bookmark: _Toc169974305]5.5	Timers
[bookmark: _Toc169974306]5.5.1	CatGetTimer
BYTE
CatGetTimer (void);

	RETURN
	
	The identifier of the timer.

CatGetTimer returns the ID of a timer that is not currently in use. If no timer is available, this function returns zero. Timer identifiers are assigned by the framework.
[bookmark: _Toc169974307]5.5.2	CatFreeTimer
void
CatFreeTimer (BYTE TimerID);

	TimerID
	[in]
	ID of timer to free; obtained from CatGetTimer.

CatFreeTimer frees the handle to the specified timer, making it available for the next request. It is not a proactive command. No information is passed to the ME by this function.
[bookmark: _Toc169974308]5.5.3	CatStartTimer
void
CatStartTimer (BYTE TimerID, CatTimerValue *TimerValue);

	TimerID
	[in]
	ID of the timer to initialize; obtained from CatGetTimer.

	TimerValue
	[in]
	Initial value of the timer. The value is specified in a structure of type CatTimerValue.

	RETURN
	
	The GeneralResult code of the TIMER MANAGEMENT proactive command.

CatStartTimer issues a proactive TIMER MANAGEMENT command to initialize a timer to the parameter values.
[bookmark: _Toc169974309]5.5.4	CatGetTimerValue
void
CatGetTimerValue (BYTE TimerID, CatTimerValue *TimerValue);

	TimerID
	[in]
	ID of the timer from which to obtain values; obtained from CatGetTimer

	TimerValue
	[out]
	The time remaining to run of timer TimerID. The value is returned in a structure of type CatTimerValue.

	RETURN
	
	The GeneralResult code of the TIMER MANAGEMENT proactive command.

CatGetTimerValue issues a proactive TIMER MANAGEMENT command to obtain the timer's current value.
[bookmark: _Toc169974310]5.6	Supplementary Card Reader Management
These functions access the supplementary card-reader on a dual-slot ME.
[bookmark: _Toc169974311]5.6.1	CatPowerOnCard
CatGeneralResult
CatPowerOnCard (CatDevice DeviceID, BYTE *ATRLength, void *ATR);

	DeviceID
	[in]
	The device to power on. An acceptable value for this parameter is a card reader device selected from CatDevice.

	ATRLength
	[in/out]
	Size of the ATR buffer on input and the umber of bytes returned by the card as the ATR on output.

	ATR
	[out]
	Pointer to where answer to reset (ATR) will be stored.

	
	
	

	RETURN
	
	The GeneralResult code of the POWER ON CARD proactive command.

CatPowerOnCard issues the proactive command POWER ON CARD that powers on a supplementary card reader. The terminal response is parsed and if successful the ATR and ATRLength parameters are.
[bookmark: _Toc169974312]5.6.2	CatPowerOffCard
CatGeneralResult
CatPowerOffCard (CatDevice DeviceID);

	DeviceID
	[in]
	The device to power off. An acceptable value for this parameter is a card reader device selected from CatDevice.

	RETURN
	
	The GeneralResult code of the POWER OFF CARD proactive command.

CatPowerOffCard issues the proactive command POWER OFF CARD that turns off the supplementary card reader.
[bookmark: _Toc169974313]5.6.3	CatPerformCardAPDU
CatGeneralResult
CatPerformCardAPDU (CatDevice DeviceID,
 BYTE CAPDULength,const void *CAPDU,
 BYTE *RAPDULength, void *RAPDU);

	DeviceID
	[in]
	The device to send the command APDU (C-APDU) to. An acceptable value for this parameter is a card reader device selected from CatDevice.

	CAPDU
	[in]
	Pointer to the command C-APDU to be sent to the additional card device.

	CAPDULength
	[in]
	The number of bytes in the C-APDU.

	RAPDU
	[out]
	Pointer to the buffer that will contain the response APDU (R-APDU) returned by the card in the additional card reader. You must allocate enough space to hold the R-APDU sent by the card.

	RAPDULength
	[out]
	The number of bytes returned by the card in the additional card reader.

	RETURN
	
	The GeneralResult code of the PERFORM CARD APDU proactive command.

CatPerformCardAPDU issues the proactive command PERFORM CARD APDU that sends application program data units (APDU) to the supplementary card reader. The terminal response is parsed and if successful the RAPDU and RAPDULength parameters are updated.
[bookmark: _Toc169974314]5.6.4	CatGetReaderStatus
CatGeneralResult
CatGetReaderStatus (CatDevice DeviceID, CatReaderStatusOptions Options,
 BYTE *Status);

	DeviceID
	[in]
	Device to detect status of. An acceptable value for this parameter is a card reader device selected from CatDevice.

	Options
	[in]
	Selects what type of status information to return. An acceptable value for this parameter is selected from CatGetReaderStatusOptions.

	Status
	[out]
	Status of additional card reader.

	RETURN
	
	The GeneralResult code of the GET READER STATUS proactive command.

CatGetReaderStatus issues the proactive command GET READER STATUS that retrieves the status of the additional card readers on the ME. The terminal response is parsed and if successful the Status parameter is updated.
[bookmark: _Toc169974315]5.7	UICC File Store Access
The abstract type FID is used to denote the file and a set of pre-processor macros are defined that enumerate all of the standard files of a NAA file store. A FID could be implemented as an unsigned 16-bit number as follows:
-	typedef unsigned short FID;
-	#define FID_MF	0x3F00
The starting file-context of a Toolkit application is the MF. When a Toolkit application exits, the file-context is lost.
The Access Control privileges of the application are granted during installation according to the level of trust. When an application requests access to UICC or operator specific files, the Toolkit Framework checks if this access is allowed by examination of the file control information stored on the card. If access is granted the Toolkit Framework will process the access request, if access is not granted, an appropriate status word will be returned.
Contents and coding of the file(s) containing access control information are defined in 3GPP TS 31.101 [16].
All UICC functions return the status bytes according to 3GPP TS 31.101 [16], where 90 00 represents success.
[bookmark: _Toc169974316]5.7.1	CatSelect
UINT16
CatSelect (CatFID FileIdentifier, CatFileStatus *Status);

	FileIdentifier
	[in]
	The file to select.

	Status
	[out]
	Useful information about the directory or file if it is successfully selected.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSelect selects the specified file as the current working file.
[bookmark: _Toc169974317]5.7.2	CatStatus
UINT16
CatStatus (CatFileStatus *Status);

	NumBytes
	[out]
	The number of bytes written.

	Status
	[out]
	The status of the currently selected file.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatStatus returns the file status of the currently selected file as specified in 3GPP TS 31.101 [16].
[bookmark: _Toc169974318]5.7.3	CatGetCHVStatus
void
CatGetCHVStatus (BYTE CHVStatus[4]);

	CHVStatus
	[out]
	Updates the CHVStatus array with the statusof CHV1, CHV2, UNBLOCKCHV1, and UNBLOCKCHV2 with CHV1 at array element zero.

CatGetCHVStatus returns the current CHV status values. The format of the returned bytes is specified in 3GPP TS 31.101 [16].
[bookmark: _Toc169974319]5.7.4	CatReadBinary
UINT16
CatReadBinary (DWORD Offset,
 DWORD *NumBytes,
 void *Buffer);

	Offset
	[in]
	The offset into the file.

	NumBytes
	[in/out]
	The number of bytes to be read on input and the actual number read on output

	Buffer
	[out]
	The buffer into which the data is written.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadBinary reads NumBytes from position Offset in the currently selected file into Buffer.
[bookmark: _Toc169974320]5.7.5	CatUpdateBinary
UINT16
CatUpdateBinary (DWORD Offset,
 DWORD NumBytes,
 const void *Buffer);

	Offset
	[in]
	The offset into the file.

	NumBytes
	[in]
	The number of bytes to write.

	Buffer
	[in]
	The buffer containing the data to write to the file.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateBinary writes NumBytes contained in Buffer to position Offset in the currently selected file.
[bookmark: _Toc169974321]5.7.6	CatReadRecord
UINT16
CatReadRecord (DWORD RecordNumber,
 CatRecordAccessMode Mode,
 DWORD Offset, DWORD *NumBytes,
 void *Buffer);

	RecordNumber
	[in]
	The record number from which to read when Mode is ABSOLUTE or 0 otherwise.

	Mode
	[in]
	Indication of which record is to be read; viz. NEXT, PREVIOUS, CURRENT or ABSOLUTE.

	Offset
	[in]
	The offset into the record.

	NumBytes
	[in/out]
	The number of bytes to be read from the record on input and the number of bytes actually read on output

	Buffer
	[out]
	The buffer into which the data is read.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadRecord reads NumBytes from the record RecordNumber of the currently selected file into Buffer.
[bookmark: _Toc169974322]5.7.7	CatUpdateRecord
UINT16
CatUpdateRecord (DWORD RecordNumber,
 CatRecordAccessMode Mode,
 DWORD Offset, DWORD NumBytes,
 const void *Buffer);

	RecordNumber
	[in]
	The record number to which to write when Mode is ABSOLUTE or 0 otherwise

	Mode
	[in]
	Indication of which record is to be read; viz. NEXT, PREVIOUS, CURRENT or ABSOLUTE.

	Offset
	[in]
	The offset into the record.

	NumBytes
	[in]
	The number of bytes to write into the record.

	Buffer
	[out]
	The buffer containing the data to write to the record.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateRecord writes NumBytes into the record RecordNumber of the currently selected file from Buffer.
[bookmark: _Toc169974323]5.7.8	CatSearch
UINT16
CatSearch (CatSearchModes Mode,
 DWORD Offset, DWORD PatternLength,
 const void *Pattern);

	Mode
	[in]
	Defines the seek method, One of
SEEK_FROM_BEGINNING_FORWARD,
SEEK_FROM_END_BACKWARD,
SEEK_FROM_NEXT_FORWARD,
SEEK_FROM_PREVIOUS_BACKWARD

	Offset
	[in]
	The offset into the record at which to being pattern matching.

	PatternLength
	[in]
	The size in bytes of the pattern to search for.

	Pattern
	[in]
	The buffer containing the pattern to search for.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSearch searches records in the currently selected file starting at Offset for the pattern of length PatternLength contained in Pattern. If the pattern is found the current record is set appropriately.
[bookmark: _Toc169974324]5.7.9	CatIncrease
UINT16
CatIncrease(DWORD Increment,
 DWORD *Value);

	Increment
	[in]
	The value to increase by.

	Value
	[out]
	The new value.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatIncrease adds Increment to the current record of the selected cylic file and returns the new Value. The most significant byte of Increment is ignored.
[bookmark: _Toc169974325]5.7.10	CatInvalidate
UINT16
CatInvalidate (void);

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatInvalidate invalidates the selected file.
[bookmark: _Toc169974326]5.7.11	CatRehabilitate
UINT16
CatRehabilitate (void) ;

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatRehabilitate rehabilitates the selected file.
[bookmark: _Toc169974327]5.8	Miscellaneous
[bookmark: _Toc169974328]5.8.1	CatGetTerminalProfile
void
CatGetTerminalProfile (BYTE *ProfileOutLength, BYTE *Profile);

	ProfileOutLength
	[out]
	The number of bytes written to Profile.

	Profile
	[out]
	The address at which the terminal profile is written.

CatGetTerminalProfile returns the stored terminal profile in Profile.
[bookmark: _Toc169974329]5.8.2	CatMoreTime
CatGeneralResult
CatMoreTime (void);

	RETURN
	
	The GeneralResult code of the MORE TIME proactive command.

CatMoreTime issues the proactive command MORE TIME to the ME that it needs more time to process an application.
[bookmark: _Toc169974330]5.8.3	CatPollingOff
CatGeneralResult
CatPollingOff (void);

	RETURN
	
	The GeneralResult code of the POLLING OFF proactive command.

CatPollingOff issues the proactive command POLLING OFF that disables proactive polling; this essentially turns off CatPollInterval.
[bookmark: _Toc169974331]5.8.4	CatPollInterval
CatGeneralResult
CatPollInterval (CatTimeUnit Unit, BYTE Interval,
 CatTimeInterval *ActualIntervalOut);

	Unit
	[in]
	Desired time interval. Acceptable values for this parameter are listed in .

	Interval
	[in]
	Interval in units.

	ActualIntervalOut
	[out]
	Response from ME negotiating the interval. This may or may not be the same as Unit and Interval. The value returned is in a structure of type CatTimeInterval.

	RETURN
	
	The GeneralResult code of the POLL INTERVAL proactive command.

CatPollInterval issues the proactive command POLL INTERVAL that requests the ME to set a time interval between status application program data units (APDU) that the ME sends to the UICC. The ME responds with a time interval of its own that most closely matches the application programming interface (API) request.
Polling can be disabled by using CatPollingOff.
[bookmark: _Toc169974332]5.8.5	CatRefresh
CatGeneralResult
CatRefresh (CatRefreshOptions Options);
CatGeneralResult
CatRefreshWithFileList (CatRefreshOptions Options,
 BYTE FileListLength,
 const void *FileList);

	Options
	[in]
	Informs the ME of what needs refreshing. Acceptable values for this parameter are listed in CatRefreshOptions.

	FileListLength
	[in]
	The length, in bytes, of FileList.

	FileList
	[in]
	The file identifiers of the files that have changed.

	RETURN
	
	The GeneralResult code of the REFRESH proactive command.

CatRefresh issues the proactive command REFRESH that informs ME that the NAA has changed configuration due to UICC activity (such as an application running).
[bookmark: _Toc169974333]5.8.6	CatLanguageNotification
void
CatLanguageNotification (CatLanguageNotificationOptions Options,
 const void *Language);

	Options
	[in]
	Language options. An acceptable value for this parameter is a card reader device selected from CatLanguageNotificationOptions.

	Language
	[in]
	The 2-character language code as defined by ISO 639 [5], encoded using SMS default 7-bit coded alphabet as defined by TS 23.038 [6].

	RETURN
	
	The GeneralResult code of the LANGUAGE NOTIFICATION proactive command.

CatLanguageNotification issues the proactive command LANGUAGE NOTIFICATION that notifies the ME about the language currently used for any text string within proactive commands or envelope command responses.
[bookmark: _Toc169974334]5.8.7	CatLaunchBrowser
CatGeneralResult
CatLaunchBrowser (CatLaunchBrowserOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE URLLength, const void *URL,
 const CatIconIdentifier *IconIdentifier);

	Options
	[in]
	Options used to launch the browser. Acceptable values for this parameter are listed in CatLaunchBrowserOptions.

	TitleLength
	[in]
	The length in bytes of the string Title

	Title
	[in]
	String to display on the ME during the user confirmation phase.

	URLLength
	[in]
	The length in bytes of URL.

	URL
	[in]
	The URL to open the browser at.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the LAUNCH BROWSER proactive command.

CatLaunchBrowser and CatLaunchBrowserEx issue the proactive command LAUNCH BROWSER that launches a browser on the ME.
CatGeneralResult
CatLaunchBrowserEx (const CatLaunchBrowserExParams *params);

The structure CatLaunchBrowserExParams has the following members:
typedef struct
{
 // Mandatory fields
 CatLaunchBrowserOptions Options,
 BYTE URLLength;
 const void *URL;
 // Optional fields
 BYTE BrowserIdentityLength;
 const void *BrowserIdentity;
 BYTE BearerLength;
 const BYTE *Bearer;
 BYTE NumProvisioningFileReferences;
 BYTE *ProvisioningFileReferenceLengths;
 const BYTE **ProvisioningFileReferences;
 BYTE GatewayProxyIdLength;
 const void * GatewayProxyId;
 CatAlphaString Title;
 CatIconIdentifier IconIdentifier;
} CatLaunchBrowerExParams;

with the following members:

	URLLength
	[in]
	The length in bytes of URL.

	URL
	[in]
	The URL to open the browser at.

	BrowserIdentityLength
	[in]
	Length in bytes of BrowserIdentity.

	BrowserIdentity
	[in]
	The browser identity. If BrowserIdentity is NULL, no BROWSER IDENTITY TLV is sent to the ME.

	BearerLength
	[in]
	Length in bytes of Bearer.

	Bearer
	[in]
	The list of bearers in order of priority requested. The type CatBearer defines the values acceptable. If Bearer is NULL, no BEARER TLV is sent to the ME.

	NumProvisioningFileReferences
	[in]
	The number of Provisioning File References.

	ProvisioningFileReferenceLengths
	[in]
	A pointer to the array of Provisioning File References lengths.

	ProvisioningFileReferences
	[in]
	A pointer to the array of Provisioning File References.

	GatewayProxyIdLength
	[in]
	Length in bytes of GatewayProxyId.

	GatewayProxyId
	[in]
	The gateway or proxy identity. If GatewayProxyId is NULL, no TEXT STRING TLV describing the gateway/proxy is sent to the ME.

	Title
	[in]
	String to display on the ME; see CatAlphaString.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

[bookmark: _Toc169974335]5.9	Low-level Interface
This subclause presents a low-level programming interface that allows you to:
-	Construct proactive commands and send them to the ME.
-	Access the terminal response from the ME.
-	Search the terminal response and contents of envelopes for specified TLVs.
-	Unpack the contents of envelopes from the ME and send responses.
These functions are provided so that functionality that is not provided in the high level API is still accessible. All of these functions work on a single data buffer that has a single data pointer and can only be accessed sequentially. The high-level proactive functions may make use of the data buffer so consequently the high-level proactive functions should not be used whilst using the low-level functions.
[bookmark: _Toc169974336]5.9.1	CatResetBuffer
void
CatResetBuffer(void);

This function resets the data pointer to the beginning of the buffer.
[bookmark: _Toc169974337]5.9.2	CatStartProactiveCommand
void
CatStartProactiveCommand(BYTE Command,
 BYTE Options,
 BYTE To);

	Command
	[in]
	Command byte of proactive command.

	Options
	[in]
	Command options of proactive command.

	To
	[in]
	The destination device identity.

CatStartProactiveCommand resets the data pointer and starts the construction of a proactive command by writing the command tag, command details and device identities to the data buffer. The data pointer is left pointing after the device identities so that proactive command specific data can be written.
[bookmark: _Toc169974338]5.9.3	CatSendProactiveCommand
CatGeneralResult
CatSendProactiveCommand (BYTE *Length);

	Length
	[out]
	Pointer that is updated with the length of the terminal response

	RETURN
	
	The general result byte of the terminal response

CatSendProactiveCommand sends the contents of the data buffer as a proactive command and updates the data buffer with the terminal response. The general result byte of the terminal response is returned by this function. The length of the terminal response is written to *Length. The data pointer is set to point to the additional information of the terminal response.
[bookmark: _Toc169974339]5.9.4	CatOpenEnvelope
CatEnvelopeTagType
CatOpenEnvelope(BYTE *Length);

	Length
	[out]
	Pointer that is updated with the length of the envelope

	RETURN
	
	The envelope tag

CatOpenEnvelope returns the envelope tag of the data buffer and the length of the envelope data. The data pointer is set to point to the envelope data.
[bookmark: _Toc169974340]5.9.5	CatSendEnvelopeResponse
void
CatSendEnvelopeResponse (void);

CatSendEnvelopeResponse sends the contents of the data buffer as a successful envelope response.
[bookmark: _Toc169974341]5.9.6	CatSendEnvelopeErrorResponse
void
CatSendEnvelopeErrorResponse (void);

This function sends the contents of the data buffer as an unsuccessful envelope response.
[bookmark: _Toc169974342]5.9.7	CatPutData
void
CatPutData(BYTE Length,
 const void *Data);

	Length
	[in]
	Length of Data

	Data
	[in]
	Pointer to Data

CatPutData appends Length bytes of data to the data buffer.
[bookmark: _Toc169974343]5.9.8	CatPutByte
void
CatPutByte (BYTE Data);

	Data
	[in]
	Data byte.

CatPutByte appends the supplied data byte to the data buffer.
[bookmark: _Toc169974344]5.9.9	CatPutTLV
void
CatPutTLV (BYTE Tag,
 BYTE Length,
 const void *Value);

	Tag
	[in]
	Tag byte.

	Length
	[in]
	Length of value.

	Value
	[in]
	A pointer to the value.

CatPutTLV appends a general TLV to the data buffer.
[bookmark: _Toc169974345]5.9.10	CatPutBytePrefixedTLV
void
CatPutBytePrefixedTLV (BYTE Tag,
 BYTE Prefix,
 BYTE Length,
 const void *Value);

	Tag
	[in]
	Tag byte.

	Prefix
	[in]
	Prefix byte.

	Length
	[in]
	Length of value.

	Value
	[in]
	A pointer to the value.

CatPutBytePrefixedTLV appends a TLV to the data buffer with a single byte placed before the Value.
[bookmark: _Toc169974346]5.9.11	CatPutOneByteTLV
void
CatPutOneByteTLV (BYTE Tag,
 BYTE Value);

	Tag
	[in]
	Tag byte.

	Value
	[in]
	Value byte.

CatPutOneByteTLV appends a single byte valued TLV to the data buffer.
[bookmark: _Toc169974347]5.9.12	CatPutTwoByteTLV
void
CatPutTwoByteTLV (BYTE Tag,
 BYTE Value1,
 BYTE Value2);

	Tag
	[in]
	Tag byte.

	Value1
	[in]
	First Value byte.

	Value2
	[in]
	Second Value byte.

CatPutTwoByteTLV appends a two byte valued TLV to the data buffer.
[bookmark: _Toc169974348]5.9.13	CatGetByte
BYTE
CatGetByte (void);

	RETURN
	
	Data byte.

CatGetByte returns the byte at the current data pointer and increments the data pointer by one.
[bookmark: _Toc169974349]5.9.14	CatGetData
const void *
CatGetData (BYTE Length);

	Length
	[in]
	Length of Data

	RETURN
	
	Pointer to Data.

CatGetData returns the current data pointer and increments the data pointer by Length bytes.
[bookmark: _Toc169974350]5.9.15	CatFindNthTLV
const void *
CatFindNthTLV (BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

	Tag
	[in]
	Tag to find.

	Occurrence
	[in]
	Occurrence of Tag to find with "1" being the first.

	Length
	[out]
	Length of found TLV.

	RETURN
	
	Pointer to data of found TLV

CatFindNthTLV finds the nth TLV that matches Tag in the data buffer, where nth is specified by the Occurrence parameter. If a match is found the data pointer is updated to the found TLV, the function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer and the data pointer is left unchanged.
[bookmark: _Toc169974351]5.9.16	CatFindNthTLVInUserBuffer
const void *
CatFindNthTLVInUserBuffer (BYTE BufferLen,
 const void *Buffer,
 BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

	BufferLen
	[in]
	Length of buffer

	Buffer
	[in]
	Buffer to search

	Tag
	[in]
	Tag to find.

	Occurrence
	[in]
	Occurrence of Tag to find with "1" being the first.

	Length
	[out]
	Length of found TLV.

	RETURN
	
	Pointer to data of found TLV

CatFindNthTLVInUserBuffer finds the nth TLV that matches Tag is the supplied buffer. The function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer.
[bookmark: _Toc169974352]5.10	Network Services
[bookmark: _Toc169974353]5.10.1	CatGetLocationInformation
CatGeneralResult
CatGetLocationInformation (CatLocationInformation *LocationInformation);

	LocationInformation
	[out]
	A pointer to where the location information from the ME is placed. Refer to the CatLocalInformation section for member details.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

	
	
	The GeneralResult code of the DISPLAY TEXT proactive command.

CatProvideLocationInformation requests the ME to send location information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.
[bookmark: _Toc169974354]5.10.2	CatGetTimingAdvance
CatGeneralResult
CatGetTimingAdvance (CatTimingAdvance *TimingAdvance);

	TimingAdvance
	[out]
	A pointer to where the timing advance information from the ME is placed. Refer to the CatTimingAdvance section for member details.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatProvideTimingAdvance requests the ME to send timing advance information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.
[bookmark: _Toc169974355]5.10.3	CatGetIMEI
CatGeneralResult
CatGetIMEI (BYTE IMEI[8]);

	IMEI
	[out]
	A pointer to where the IMEI of the ME is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetIMEI requests the ME to send the IMEI to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.
[bookmark: _Toc169974356]5.10.4	CatGetNetworkMeasurementResults
CatGeneralResult
CatGetNetworkMeasurementResults (BYTE MeasurementResults[10]);

	MeasurementResults
	[out]
	A pointer to where the network measurement results from the ME is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetNetworkMeasurementResults requests the ME to send the network measurement results to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.
[bookmark: _Toc169974357]5.10.5	CatGetDateTimeAndTimeZone
CatGeneralResult
CatGetDateTimeAndTimeZone (BYTE DateTimeAndTimeZone[7]);

	DateTimeAndTimeZone
	[out]
	A pointer to where the date, time, and time zone from the ME is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetDateTimeAndTimeZones requests the ME to send the date, time, and time zone information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.
[bookmark: _Toc169974358]5.10.6	CatGetLanguage
CatGeneralResult
CatGetLanguage (BYTE Language[2]);

	DateTimeAndTimeZone
	[out]
	A pointer to where the language from the ME is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetLanguage requests the ME to send the language information to the (U)SIM using the PROVIDE LOCAL INFORMATION proactive command.
[bookmark: _Toc169974359]5.10.7	CatSetupCall
CatGeneralResult
CatSetupCall (BYTE CallSetupMessageLength, const void *CallSetupMessage,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 CatSetupCallOptions Options,
 const CatIconIdentifier *UserConfirmationIconIdentifier,
 BYTE CallSetupMessageLength, const void *CallSetupMessage,
 const CatIconIdentifier *CallSeupIconIdentifier);

	UserConfirmationMessageLength
	[in]
	Length in bytes of UserConfirmationMessage.

	UserConfirmationMessage
	[in]
	Message to display for user confirmation or NULL.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	[in]
	Length in bytes of DiallingNumber.

	DialingNumber
	[in]
	Number to call is coded as binary-coded decimal.

	Options
	[in]
	Acceptable values for this parameter are listed in CatSetupCallOptions.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	CallSetupMessageLength
	[in]
	Length in bytes of CallSetupMessage.

	CallSetupMessage
	[in]
	Message to display for call set up or NULL.

	CallSetupIconIdentifier
	[in]
	Optional icon identifier to use during the call setup phase; see CatIconIdentifier for member details. If CallSetupIconIdentifier is NULL or if CallSetupIconIdentifier.UseIcon is zero, no call setup phase icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SET UP CALL proactive command.

CatSetupCall and CatSetupCallEx issue the SET UP CALL proactive command to the ME.
CatGeneralResult
CatSetupCallEx (const CatSetupCallExParams *Params);

The type CatSetupCallExParams is defined as follows:
typedef struct
{
 // Mandatory fields
 CatSetupCallOptions Options;
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI;
 BYTE DiallingNumberLength;
 const void *DialingNumber;
 // Optional fields
 CatAlphaString UserConfirmationMessage;
 BYTE CapabilityConfigParamsLength;
 const void *CapabilityConfigParams;
 BYTE CalledPartySubaddressLength;
 const void *CalledPartySubaddress;
 CatTimeInterval RedialMaximumDuration;
 CatIconOption UserConfirmationIcon;
 CatAlphaString CallSetupMessage;
 CatIconOptions CallSetupIcon;
} CatSetupCallExParams;

With the following members:

	Options
	Acceptable values for this parameter are listed in CatSetupCallOptions.

	TONandNPI
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	Length in bytes of DiallingNumber.

	DialingNumber
	Number to call is coded as binary-coded decimal.

	UserConfirmationMessage
	String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME.

	CapabilityConfigParamsLength
	Length in bytes of CapabilityConfigParams.

	CapabilityConfigParams
	A pointer to the capability configuration parameters as coded for EFCCP.

	CalledPartySubaddressLength
	Length in bytes of CalledPartySubaddress.

	CalledPartySubaddress
	The called party subaddress.

	RedialMaximumDuration
	An optional maximum duration for the redial mechanism. If the timeInterval member of this structure is zero, no duration TLV is sent to the ME.

	UserConfirmationIcon
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	CallSetupMessage
	String to display during the call set up phase; see CatAlphaString.

	CallSetupIcon
	The icon to display during the call setup phase.

Optional parameters are specifically chosen to use an all-zero binary representation. This means that it is simple to set up only the required members of the SetupCallExParams structure by zeroing the whole structure using memset, filling in the required members, and sending the result to CatSetupCallEx. As all optional parameters use a zero binary representation, the memset serves to initialise them all to the "not present" status.
[bookmark: _Toc169974360]5.10.8	CatSendShortMessage
CatGeneralResult
CatSendShortMessage (BYTE TitleLength, const void *Title,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE AddressLength, const void *Address,
 BYTE SmsTPDULength, const void *SmsTPDU,
 CatSendShortMessageOptions Options,
 const CatIconIdentifier *IconIdentifier);

	TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display while ME is sending a message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in .

	AddressLength
	[in]
	Length in bytes of Address.

	Address
	[in]
	Address of the service center where message is being sent.

	SmsTPDULength
	[in]
	Length in bytes of SmsTPDU.

	SmTPDU
	[in]
	Formatted short message service (SMS) message to send.

	Options
	[in]
	Specifies who packs the message. Acceptable values for this parameter are listed in CatSendShortMessageOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND SHORT MESSAGE proactive command.

CatSendShortMessage issues the SEND SHORT MESSAGE proactive command.
[bookmark: _Toc169974361]5.10.9	CatSendSS
CatGeneralResult
CatSendSS (BYTE TitleLength, const void *Title,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE SSStringLength, const void *SSString,
 const CatIconIdentifier *IconIdentifier);

	TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display while ME is sending a message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed .

	SSStringLength
	[in]
	Length in bytes of SSString.

	SSString
	[in]
	SS string to ME.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND SS proactive command.

CatSendSS issues the SEND SS proactive command to the ME.
[bookmark: _Toc169974362]5.10.10	CatSendUSSD
CatGeneralResult
CatSendUSSD (BYTE TitleLength, const void *Title,
 CatDCSValue MessageDCS, BYTE MessageLength, const void *Message,
 CatDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut,
 const CatIconIdentifier *IconIdentifier);

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while ME is sending a message.

	MessageDCS
	[in]
	The data-coding scheme for Message. Acceptable values for this parameter are listed in .

	MessageLength
	[in]
	The length in bytes of Message.

	Message
	[in]
	Message to send.

	MsgOutDCS
	[out]
	Identifies type of DCS for the returned message.

	MsgOutLength
	[out]
	Length of the returned message in bytes.

	MsgOut
	[out]
	Returned string or message.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND USSD proactive command.

CatSendUSSD issues the SEND USSD proactive command. The terminal response is parsed and if successful the MsgOutDCS, MsgOutLength and MsgOut parameters are updated.
[bookmark: _Toc169974363]5.10.11	CatOpenCSChannel
CatGeneralResult
CatOpenCSChannel(CatOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const CatIconIdentifier *UserConfimationIconIdentifier,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 BYTE BearerDescription[3],
 UINT16 *BufferSize,
 CatDevice *ChannelIdentifier);

	Options
	[in]
	Acceptable values for this parameter are listed in CatOpenChannelOptions.

	UserConfirmationLength
	[in]
	Length in bytes of UserConfirmation.

	UserConfirmation
	[in]
	String to display when ME alerts user that channel is to be opened.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	[in]
	Length in bytes of DiallingNumber.

	DialingNumber
	[in]
	Number to call is coded as binary-coded decimal.

	BearerDescription
	[in/out]
	Initially contains the bearer description parameters (data rate, bearer service and connection element) and is modified to the actual bearer description as allocated by the ME.

	BufferSize
	[in/out]
	Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatGeneralResult
CatOpenCSChannelEx(const CatOpenCSChannelExParams *Params,
 CatDevice *ChannelIdentifier,
 BYTE BearerDescription[3],
 UINT16 *BufferSize);

	Params
	[in]
	Constant parameter set as defined below.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	BearerDescription
	[out]
	An array to which the actual bearer description allocated by the ME will be written.

	BufferSize
	[out]
	The actual buffer size allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatOpenCSChannel and CatOpenCSChannelEx issue the proactive command OPEN CHANNEL related to a CS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.
The type CatOpenCSChannelExParams is defined as follows:
typedef struct
{
 // Mandatory fields
 CatOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[3];
 UINT16 BufferSize;
 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE SubAddressLength;
 const BYTE *SubAddress;
 BYTE Duration1Defined;
 CatTimeInterval Duration1;
 BYTE Duration2Defined;
 CatTimeInterval Duration2;
 CatAddressType LocalAddress;
 CatTextString UserLogin;
 CatTextString UserPassword;
 CAT_MEInterfaceTransportLevelType CAT_MEInterfaceTransportLevel;
 CatAddressType DataDestinationAddress;
} CatOpenCSChannelExParams;

With the following members:

	Options
	Acceptable values for this parameter are listed in CatOpenChannelOptions. This field is mandatory.

	AddressLength
	Length in bytes of Address. This field is mandatory.

	Address
	The address to call. This field is mandatory.

	BearerDescription
	The desired bearer parameters (data rate, bearer service and connection element). This field is mandatory.

	BufferSize
	The desired buffer size. This field is mandatory.

	UserConfirmationMessage
	String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationMessage is not null but UserConfirmationMessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

	UserConfirmationIconIdentifier
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	SubAddressLength
	Length in bytes of SubAddress.

	SubAddress
	The subaddress to call.

	Duration1Defined
	Set to nonzero if Duration1 is defined.

	Duration1
	Duration of reconnect tries; see CatTimeInterval.

	Duration2Defined
	Set to nonzero if Duration2 is defined.

	Duration2
	Duration of timeout; see CatTimeInterval.

	LocalAddress
	The LocalAddress; see CatAddressType.

	UserLogin
	The user login string.

	UserPassword
	The user password string.

	CAT_MEInterfaceTransportLevel
	See CAT_MEInterfaceTransportLevelType.

	DataDestinationAddress
	The DataDestinationAddress; see CatAddressType.

[bookmark: _Toc169974364]5.10.12	CatOpenGPRSChannel
CatGeneralResult
CatOpenGPRSChannel(CatOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const CatIconIdentifier *UserConfirmationIconIdentifier,
 BYTE BearerDescription[8],
 UINT16 *BufferSize,
 CatDevice *ChannelIdentifier);

	Options
	[in]
	Acceptable values for this parameter are listed in CatOpenChannelOptions.

	UserConfirmationLength
	[in]
	Length in bytes of UserConfirmation.

	UserConfirmation
	[in]
	String to display when ME alerts user that channel is to be opened.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	BearerDescription
	[in/out]
	Initially contains the bearer description and is modified to the actual bearer description as allocated by the ME.

	BufferSize
	[in/out]
	Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatGeneralResult
CatOpenGPRSChannelEx(const CatOpenGPRSChannelExParams *Params,
 CatDevice *ChannelIdentifier,
 BYTE ActualBearerDescription[8],
 UINT16 *ActualBufferSize);

	Params
	[in]
	Constant parameter set as defined below.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	ActualBearerDescription
	[out]
	An array to which the actual bearer description allocated by the ME will be written.

	ActualBufferSize
	[out]
	The actual buffer size allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatOpenGPRSChannel and CatOpenGPRSChannelEx issue the proactive command OPEN CHANNEL related to a GPRS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.
The type CatOpenGPRSChannelExParams is defined as follows:
typedef struct
{
 // Mandatory fields
 GsmOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[8];
 UINT16 BufferSize;
 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE AccessPointNameLength;
 const BYTE *AccessPointName;
 CatAddressType LocalAddress;
 CAT_ME_InterfaceTransportLevelType CAT_ME_InterfaceTransportLevel;
 CatAddressType DataDestinationAddress;
} GsmOpenGPRSChannelExParams;

With the following members:

	Options
	Acceptable values for this parameter are listed in CatOpenChannelOptions. This field is mandatory.

	AddressLength
	Length in bytes of Address. This field is mandatory.

	Address
	The address to call. This field is mandatory.

	BearerDescription
	The desired bearer. This field is mandatory.

	BufferSize
	The desired buffer size. This field is mandatory.

	UserConfirmationMessage
	String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationMessage is not null but UserConfirmationMessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

	UserConfirmationIconIdentifier
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	AccessPointNameLength
	The length in bytes of AccessPoint.

	AccessPointName
	The Access Point Name.

	LocalAddress
	See CatAddressType.

	CAT_ME_InterfaceTransportLevel
	See CAT_MEInterfaceTransportLevelType.

	DataDestinationAddress
	See CatAddressType.

[bookmark: _Toc169974365]5.10.13	CatCloseChannel
CatGeneralResult
CatCloseChannel (CatDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 const CatIconIdentifier *IconIdentifier);

	ChannelIdentifier
	[in]
	The channel identifier as returned from one of the open commands

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while ME is closing the channel.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the CLOSE CHANNEL proactive command.

CatCloseChannel issues a CLOSE CHANNEL proactive command that closes an open channel.
[bookmark: _Toc169974366]5.10.14	CatReceiveData
CatGeneralResult
CatReceiveData (CatDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 BYTE RequestedChannelDataLength,
 const CatIconIdentifier *IconIdentifier,
 BYTE *ChannelData,
 BYTE *NumChannelBytesRead,
 BYTE *NumChannelBytesLeft);

	ChannelIdentifier
	[in]
	The channel identifier as returned from one of the open commands

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while ME is receiving data.

	RequestedChannelDataLength
	[in]
	The number of bytes requested to be read.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ChannelData
	[out]
	Received channel data.

	NumChannelBytesRead
	[out]
	The number of bytes received as channel data.

	NumChannelBytesLeft
	[out]
	The number of bytes remaining to be read from the channel buffer, or 255 if there are more than 255 bytes left to be read.

	RETURN
	
	The GeneralResult code of the RECEIVE DATA proactive command.

CatReceiveData issues a RECEIVE DATA proactive command that receives data from an open channel. The terminal response is parsed and if the command is successful the received data is copied into the ChannelData array and the NumChannelBytesRead and NumChannelBytesLeft parameters are updated.
[bookmark: _Toc169974367]5.10.15	CatSendData
CatGeneralResult
CatSendData (CatDevice ChannelIdentifier,
 CatSendDataOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE ChannelDataLength,
 const void *ChannelData,
 const CatIconIdentifier *IconIdentifier,
 BYTE *ActualBytesSent);

	ChannelIdentifier
	[in]
	The channel identifier as returned from one of the open commands

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while ME is receiving data.

	Options
	[in]
	Specifies who packs the message. Acceptable values for this parameter are listed in CatSendDataOptions.

	ChannelDataLength
	[in]
	The number of bytes to be sent from ChannelData.

	ChannelData
	[in]
	The data to be sent.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ActualBytesSent
	[out]
	The number of bytes sent (derived from the CHANNEL DATA LENGTH TLV in the TERMINAL RESPONSE).

	RETURN
	
	The GeneralResult code of the SEND DATA proactive command.

CatSendData issues the proactive command SEND DATA that sends data to an open channel.
[bookmark: _Toc169974368]5.10.16	CatGetChannelStatus
CatGeneralResult
CatGetChannelStatus (CatDevice ChannelIdentifier, void *ChannelStatus);

	ChannelIdentifier
	[in]
	The channel identifier.

	ChannelStatus
	[out]
	Returned channel status bytes.

	RETURN
	
	The GeneralResult code of the GET CHANNEL STATUS proactive command.

CatGetChannelStatus issues a proactive command GET CHANNEL STATUS. The terminal response is parsed if the command is successful to find the status of the supplied channel.
[bookmark: _Toc169974369]5.10.17	CatServiceSearch
CatGeneralResult
CatServiceSearch (CatBearer BearerId,
 BYTE AttributeLength, void *Attributes,
 void *ServiceAvailability);

	BearerId
	[in]
	The identifier of the bearer whose services will be searched.

	AttributeLength
	[in]
	The length of the following attribute array.

	Attributes
	[in]
	Attributes that describe bearer services, typically in a bearer specific format.

	ServiceAvailability
	[in]
	List of services offered by the bearer that satisfy the attributes, typically in a bearer specific format.

CatServiceSearch searches for a particular service on a bearer.
[bookmark: _Toc169974370]5.10.18	CatGetServiceInformation
CatGeneralResult
CatGetServiceInformation (BYTE TitleLength, const BYTE *Title,
 const catIconIdentifier *IconIdentifier,
 CatBearer BearerId,
 BYTE *AttributeLength, void *Attributes,
 void *ServiceInformation);

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display acquiring service information.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	BearerId
	[in]
	The identifier of the bearer whose service information is requested.

	AttributeLength
	[in]
	The number of bytes in the following attribute array.

	Attributes
	[in]
	Attributes describing the service information requested.

	ServiceInformation
	[out]
	The requested information.

CatGetServiceInformation retrieves information about a particular service on a bearer.
[bookmark: _Toc169974371]5.10.19	CatDeclareService
CatGeneralResult
CatDeclareService (CatBearer BearerId, BYTE ServiceId,
 CatTransportProtocol TransportProtocol,
 WORD *PortNumber,
 BYTE ServiceRecordLength,
 void *ServiceRecord);

	BearerId
	[in]
	The identifier of the bearer for which this service is being offered.

	TransportProtocol
	[in]
	The transport protocol on which the service is provided.

	PortNumber
	[in]
	The port on which the service is provided.

	ServiceRecordLength
	[in]
	The number of bytes in the following service record.

	ServiceRecord
	[in]
	The service record describing the service.

CatDeclareService describes a new service.
[bookmark: _Toc169974372]5.10.20	CatRunATCommand
CatGeneralResult
CatRunATCommand (BYTE TitleLength, const void *Title,
 BYTE CommandLength, const void *Command,
 const CatIconIdentifier *IconIdentifier,
 void *Response, BYTE *ResponseLength);

	TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display on ME while command is executing.

	CommandLength
	[in]
	Length in bytes of Command.

	Command
	[in]
	AT command string

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	Response
	[out]
	ME response string.

	ResponseLength
	[out]
	Length in bytes of ME response string.

	RETURN
	
	The GeneralResult code of the RUN AT COMMAND proactive command.

CatRunATCommand issues the proactive command RUN AT COMMAND that sends an AT command to the ME. The terminal response is parsed and if successful the parameters Response and ResponseLength are updated.
[bookmark: _Toc169974373]5.10.21	CatSendDTMFCommand
CatGeneralResult
CatSendDTMFCommand (BYTE TitleLength, const void *Title,
 BYTE DTMFCodeLength, const void *DTMFCode,
 const CatIconIdentifier *IconIdentifier);

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	Title displayed while the DTMF string is sent to the network.

	DTMFCodeLength
	[in]
	The length in bytes of DTMFCode.

	DTMFCode
	[in]
	DTMF string sent to the network.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND DTMF COMMAND proactive command.

CatSendDTMF issues the proactive command SEND DTMF COMMAND that sends a dual tone multiple frequency (DTMF) string to the network.
[bookmark: _Toc169974374]5.11	Supporting Data Types
-	typedef unsigned char BYTE.
-	typedef unsigned short WORD.
-	typedef unsigned long int DWORD.
[bookmark: _Toc169974375]5.11.1	CatRecordAccessMode
typedef enum {
	NEXT				= 0x02,
	PREVIOUS			= 0x03,
	CURRENT				= 0x04,
	ABSOLUTE			= 0x04
} CatRecordAccessMode;

[bookmark: _Toc169974376]5.11.2	CatSearchMode
typedef enum {
BEGINNING_FORWARD,
END_BACKWARD,
NEXT_FORWARD,
PREVIOUS_BACKWARD
} CatSearchMode;

[bookmark: _Toc169974377]5.11.3	CatFrameworkEventType
typedef enum
{
 // Command monitoring events
 EVENT_TERMINAL_PROFILE_COMMAND,
 EVENT_STATUS_COMMAND
 EVENT_ENVELOPE_COMMAND,
 // Application lifecycle events start here
 EVENT_APPLICATION_LIFECYCLE_INSTALL = 0x20
 // Framework fabricated events start here
 EVENT_UPDATE_EF_SMS = 0x40
 EVENT_PROFILE_DOWNLOAD,
 EVENT_FORMATTED_SMS_PP_UPD,
 EVENT_STATUS_COMMAND,
 EVENT_UNFORMATTED_SMS_PP_UPD,
 EVENT_MENU_SELECTION,
 EVENT_FORMATTED_SMS_PP_ENV,
 EVENT_UNFORMATTED_SMS_PP_ENV,
 EVENT_FORMATTED_SMS_PP_CB,
 EVENT_MENU_SELECTION_HELP_REQUEST,
 EVENT_CALL_CONTROL_BY_SIM,
 EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM,
 EVENT_TIMER_EXPIRATION,
 EVENT_DOWNLOAD_MT_CALL_EVENT,
 EVENT_DOWNLOAD_CALL_CONNECTED_EVENT,
 EVENT_DOWNLOAD_CALL_DISCONNECTED_EVENT,
 EVENT_DOWNLOAD_LOCATION_STATUS_EVENT,
 EVENT_DOWNLOAD_USER_ACTIVITY_EVENT,
 EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE_EVENT,
 EVENT_DOWNLOAD_CARD_READER_STATUS_EVENT,
 EVENT_DOWNLOAD_LANGUAGE_SELECTION_EVENT,
 EVENT_DOWNLOAD_BROWSER_TERMINATION_EVENT,
 EVENT_DOWNLOAD_DATA_AVAILABLE_EVENT,
 EVENT_DOWNLOAD_CHANNEL_STATUS_EVENT,
 EVENT_UNRECOGNIZED_ENVELOPE,
 EVENT_TERMINAL_RESPONSE,
 EVENT_APPLICATION_INSTALL
} CatFrameworkEventType;

[bookmark: _Toc169974378]5.11.4	CatEnvelopeTagType
typedef enum {
 SMS_PP_DOWNLOAD_TAG = 0xD1,
 CELL_BROADCAST_TAG = 0xD2,
 MENU_SELECTION_TAG = 0xD3,
 CALL_CONTROL_TAG = 0xD4,
 MO_SHORT_MESSAGE_CONTROL_TAG = 0xD5,
 EVENT_DOWNLOAD_TAG = 0xD6,
 TIMER_EXPIRATION = 0xD7
} CatEnvelopeTagType;

[bookmark: _Toc169974379]5.11.5	CatEventType
typedef enum {
 MT_CALL_EVENT = 0x00,
 CALL_CONNECTED_EVENT = 0x01,
 CALL_DISCONNECTED_EVENT = 0x02,
 LOCATION_STATUS_EVENT = 0x03,
 USER_ACTIVITY_EVENT = 0x04,
 IDLE_SCREEN_AVAILABLE = 0x05,
 CARD_READER_STATUS = 0x06,
 LANGUAGE_SELECTION = 0x07,
 BROWSER_TERMINATION = 0x08,
 DATA_AVAILABLE = 0x09,
 CHANNEL_STATUS = 0x0A
} CatEventType;

[bookmark: _Toc169974380]5.11.6	CatTextString
typedef struct
{
 CatDCSValue DCSValue;
 BYTE TextStringLength;
 const void *TextString;
} CatTextString;

[bookmark: _Toc169974381]5.11.7	CatAlphaString
typedef struct
{
 BYTE AlphaStringLength;
 const void *AlphaString;
} CatTextString;

[bookmark: _Toc169974382]5.11.8	CatIconIdentifier
typedef struct
{
 BYTE UseIcon;
 BYTE IconIdentifier;
 BYTE IconOptions;
} CatIconIdentifier;

The CatIconIdentifier structure is defined as follows:

	UseIcon
	If zero, the icon identifier is not used in the proactive command. If non-zero, the IconIdentifier and IconOption members are used in the proactive command.

	IconIdentifier
	Index of the icon to display.

	IconOptions
	Options with which to display the icon selected from CatIconOption. This is specified as a BYTE rather than CatIconOptios as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

[bookmark: _Toc169974383]5.11.9	CatIconOption
typedef enum
{
 SHOW_WITHOUT_TEXT = 0x00,
 SHOW_WITH_TEXT = 0x01
} CatIconOption;

[bookmark: _Toc169974384]5.11.10	CatDCSValue
typedef enum
{
 DCS_SMS_PACKED = 0x00,
 DCS_SMS_UNPACKED = 0x04,
 DCS_SMS_UNICODE = 0x08
} CatDCSValue;

[bookmark: _Toc169974385]5.11.11	CatDisplayTextOptions
typedef enum
{
 NORMAL_PRIORITY_AUTO_CLEAR = 0x00,
 NORMAL_PRIORITY_USER_CLEAR = 0x80,
 HIGH_PRIORITY_AUTO_CLEAR = 0x01,
 HIGH_PRIORITY_USER_CLEAR = 0x81
} CatDisplayTextOptions;

[bookmark: _Toc169974386]5.11.12	CatGetInKeyOptions
typedef enum
{
 YES_NO_OPTION_NO_HELP = 0x04,
 YES_NO_OPTION_WITH_HELP = 0x84,
 DIGITS_ONLY_NO_HELP = 0x00,
 DIGITS_ONLY_WITH_HELP = 0x80,
 SMS_CHARACTER_NO_HELP = 0x01,
 SMS_CHARACTER_WITH_HELP = 0x81,
 UCS2_CHARACTER_NO_HELP = 0x03,
 UCS2_CHARACTER_WITH_HELP = 0x83
} CatGetInKeyOptions;

[bookmark: _Toc169974387]5.11.13	CatGetInputOptions
typedef enum
{
 PACKED_DIGITS_ONLY_NO_HELP = 0x08,
 PACKED_DIGITS_ONLY_WITH_HELP = 0x88,
 PACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x0C,
 PACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x8C,
 UNPACKED_DIGITS_ONLY_NO_HELP = 0x00,
 UNPACKED_DIGITS_ONLY_WITH_HELP = 0x80,
 UNPACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x04,
 UNPACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x84,
 PACKED_SMS_ALPHABET_NO_HELP = 0x09,
 PACKED_SMS_ALPHABET_WITH_HELP = 0x89,
 PACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x0D,
 PACKED_SMS_ALPHABET_NO_ECHO_HELP = 0x8D,
 UNPACKED_SMS_ALPHABET_NO_HELP = 0x01,
 UNPACKED_SMS_ALPHABET_WITH_HELP = 0x81,
 UNPACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x05,
 UNPACKED_SMS_ALPHABET_NO_ECHO_WITH_HELP = 0x85,
 UCS2_ALPHABET_NO_HELP = 0x03,
 UCS2_ALPHABET_WITH_HELP = 0x83,
 UCS2_ALPHABET_NO_ECHO_NO_HELP = 0x07,
 UCS2_ALPHABET_NO_ECHO_WITH_HELP = 0x87
} CatGetInputOptions;

[bookmark: _Toc169974388]5.11.14	CatSelectItemOptions
typedef enum
{
 PRESENT_AS_DATA_VALUES_NO_HELP = 0x01,
 PRESENT_AS_DATA_VALUES_WITH_HELP = 0x81,
 PRESENT_AS_NAVIGATION_OPTIONS_NO_HELP = 0x03,
 PRESENT_AS_NAVIGATION_OPTIONS_WITH_HELP = 0x83,
 DEFAULT_STYLE_NO_HELP = 0x00,
 DEFAULT_STYLE_WITH_HELP = 0x80
} CatSelectItemOptions;

[bookmark: _Toc169974389]5.11.15	CatTimeUnit
typedef enum
{
 GSM_MINUTES = 0x00,
 GSM_SECONDS = 0x01,
 GSM_TENTHS_OF_SECONDS = 0x02
} CatTimeUnit;

[bookmark: _Toc169974390]5.11.16	CatTone
typedef enum
{
 DIAL_TONE = 0x01,
 CALLER_BUSY = 0x02,
 CONGESTION = 0x03,
 RADIO_PATH_ACKNOWLEDGE = 0x04,
 CALL_DROPPED = 0x05,
 SPECIAL_INFORMATION_OR_ERROR = 0x06,
 CALL_WAITING_TONE = 0x07,
 RINGING_TONE = 0x08,
 GENERAL_BEEP = 0x10,
 POSITIVE_ACKNOWLEDGE_TONE = 0x11,
 NEGATIVE_ACKNOWLEDGE_TONE = 0x12
} CatTone;

[bookmark: _Toc169974391]5.11.17	CatRefreshOptions
typedef enum
{
 REFRESH_SIM_INIT_AND_FULL_FILE_CHANGE_NOTIFICATION = 0x00,
 REFRESH_FILE_CHANGE_NOTIFICATION = 0x01,
 REFRESH_SIM_INIT_AND_FILE_CHANGE_NOTIFICATION = 0x02,
 REFRESH_SIM_INIT = 0x03,
 REFRESH_SIM_RESET = 0x04
} CatRefreshOptions;

[bookmark: _Toc169974392]5.11.18	CatGetReaderStatusOptions
typedef enum
{
 CARD_READER_STATUS = 0x00,
 CARD_READER_IDENTIFIER = 0x01
} CatGetReaderStatusOptions;

[bookmark: _Toc169974393]5.11.19	CatDevice
typedef enum
{
 DEVICE_KEPYAD = 0x01,
 DEVICE_DISPLAY = 0x02,
 DEVICE_EARPIECE = 0x03,
 DEVICE_CARD_READER_0 = 0x10,
 DEVICE_CARD_READER_1 = 0x11,
 DEVICE_CARD_READER_2 = 0x12,
 DEVICE_CARD_READER_3 = 0x13,
 DEVICE_CARD_READER_4 = 0x14,
 DEVICE_CARD_READER_5 = 0x15,
 DEVICE_CARD_READER_6 = 0x16,
 DEVICE_CARD_READER_7 = 0x17,
 DEVICE_CHANNEL_1 = 0x21,
 DEVICE_CHANNEL_2 = 0x22,
 DEVICE_CHANNEL_3 = 0x23,
 DEVICE_CHANNEL_4 = 0x24,
 DEVICE_CHANNEL_5 = 0x25,
 DEVICE_CHANNEL_6 = 0x26,
 DEVICE_CHANNEL_7 = 0x27,
 DEVICE_SIM = 0x81,
 DEVICE_ME = 0x82,
 DEVICE_NETWORK = 0x83
} CatDevice;

[bookmark: _Toc169974394]5.11.20	CatGeneralResult
typedef enum
{
 CAT_COMMAND_SUCCESSFUL = 0x00,
 CAT_COMMAND_SUCCESSFUL_WITH_PARTIAL_COMPREHENSION = 0x01,
 CAT_COMMAND_SUCCESSFUL_WITH_MISSING_INFORMATION = 0x02,
 CAT_REFRESH_SUCCESSFUL_WITH_ADDITIONAL_EFS_READ = 0x03,
 CAT_COMMAND_SUCCESSFUL_BUT_ICON_NOT_FOUND = 0x04,
 CAT_COMMAND_SUCCESSFUL_BUT_MODIFIED_BY_CALL_CONTROL = 0x05,
 CAT_COMMAND_SUCCESSFUL_BUT_LIMITED_SERVICE = 0x06,
 CAT_COMMAND_SUCCESSFUL_WITH_MODIFICATION = 0x07,
 CAT_ABORTED_BY_USER = 0x10,
 CAT_BACKWARD = 0x11,
 CAT_NO_RESPONSE = 0x12,
 CAT_HELP_REQUIRED = 0x13,
 CAT_USSD_ABORTED_BY_USER = 0x14,
 CAT_ME_UNABLE_TO_PROCESS_COMMAND = 0x20,
 CAT_NETWORK_UNABLE_TO_PROCESS_COMMAND = 0x21,
 CAT_USER_REJECTED_SETUP_CALL = 0x22,
 CAT_USER_CLEARED_BEFORE_RELEASE = 0x23,
 CAT_ACTION_CONTRADICT_TIMER_STATE = 0x24,
 CAT_TEMP_PROBLEM_IN_CALL_CONTROL = 0x25,
 CAT_LAUNCH_BROWSER_ERROR = 0x26,
 CAT_COMMAND_BEYOND_ME_CAPABILITIES = 0x30,
 CAT_COMMAND_TYPE_NOT_UNDERSTOOD = 0x31,
 CAT_COMMAND_DATA_NOT_UNDERSTOOD = 0x32,
 CAT_COMMAND_NUMBER_NOT_KNOWN = 0x33,
 CAT_SS_RETURN_ERROR = 0x34,
 CAT_SMS_RP_ERROR = 0x35,
 CAT_REQUIRED_VALUES_MISSING = 0x36,
 CAT_USSD_RETURN_ERROR = 0x37,
 CAT_MULTIPLE_CARD_COMMAND_ERROR = 0x38,
 CAT_PERMANENT_PROBLEM_IN_SMS_OR_CALL_CONTROL = 0x39,
 CAT_BEARER_INDEPENDENT_PROTOCOL_ERROR = 0x3A
} CatGeneralResult;

[bookmark: _Toc169974395]5.11.21	CatTimerValue
typedef struct
{
 BYTE hour;
 BYTE minute;
 BYTE second;
} CatTimerValue;

The CatTimerValue data type has three one-byte values:

	hour
	Hours part of timer.

	Minute
	Minutes part of timer.

	Second
	Seconds part of timer.

[bookmark: _Toc169974396]5.11.22	CatTimeInterval
typedef struct
{
 BYTE timeUnit;
 BYTE timeInterval;
} CatTimeInterval;

The CatTimInterval data type has two one-byte values:

	timeUnit
	One of the CatTimeUnit enumeration values. This is specified as a BYTE rather than CatTimeUnit as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

	TimeInterval
	The number of timeUnits.

[bookmark: _Toc169974397]5.11.23	CatFileStatus
typedef struct
{

 ;
 WORD recordLength;
 WORD numberOfRecords;
 BYTE lengthOfTrailer;
 BYTE trailer[];
} CatEFStatus;

typedef struct
{

 BYTE numberOfDFs;
 BYTE numberofEFs;

 BYTE CHV1Status;
 BYTE unblockCHV1Status;
 BYTE CHV2Status;
 BYTE unblockCHV2Status;

 BYTE lengthOfTrailer;
 BYTE trailer[];
} CatDFStatus;

typedef struct
{

 DWORD totalFileSize;
 UINT16 fileID;
 BYTE fileDescriptorByte;
 BYTE fileType; // 00=RFU, 01=MF, 02=DF, 04=EF
 BYTE fileLifeCycleStatus;
 union
 {
 CatEFStatus ef;
 CatDFStatus df;
 } u;
} CatFileStatus;

[bookmark: _Toc169974398]5.11.24	CatLanguageNotificationOptions
typedef enum
{
 LANGUAGE_NON_SPECIFIC_NOTIFICATION = 0x00,
 LANGUAGE_SPECIFIC_NOTIFICATION = 0x01
} CatLanguageNotificationOptions;

[bookmark: _Toc169974399]5.11.25	CatLocationInformation
typedef struct
{
 BYTE mobileCountryNetworkCodes[3];
 BYTE LAC[2];
 BYTE cellID[2];
} CatLocationInformation;

[bookmark: _Toc169974400]5.11.26	CatTimingAdvance
typedef struct
{
 BYTE MEStatus;
 BYTE timingAdvance;
} CatTimingAdvance;

[bookmark: _Toc169974401]5.11.27	CatLaunchBrowserOptions
typedef enum
{
 LAUNCH_BROWSER_IF_NOT_ALREADY_LAUNCHED = 0x00,
 USE_EXISTING_BROWSER = 0x02,
 CLOSE_EXISTING_BROWSER_AND_LAUNCH_NEW_BROWSER = 0x03
} CatLaunchBrowserOptions;

[bookmark: _Toc169974402]5.11.28	CatSetupCallOptions
typedef enum
{
 CALL_ONLY_IF_NOT_BUSY = 0x00,
 CALL_ONLY_IF_NOT_BUSY_WITH_REDIAL = 0x01,
 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD = 0x02,
 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD_WITH_REDIAL = 0x03,
 CALL_AND_DISCONNECT_ALL_OTHER_CALLS = 0x04,
 CALL_AND_DISCONNECT_ALL_OTHER_CALLS_WITH_REDIAL = 0x05
} CatSetupCallOptions;

[bookmark: _Toc169974403]5.11.29	CatTypeOfNumberAndNumberingPlanIdentifier
typedef enum
{
 TON_UNKNOWN_AND_NPI_UNKNOWN = 0x80,
 TON_INTERNATIONAL_AND_NPI_UNKNOWN = 0x90,
 TON_NATIONAL_AND_NPI_UNKNOWN = 0xA0,
 TON_NETWORK_AND_NPI_UNKNOWN = 0xB0,
 TON_SUBSCRIBER_AND_NPI_UNKNOWN = 0xC0,

 TON_UNKNOWN_AND_NPI_TELEPHONE = 0x81,
 TON_INTERNATIONAL_AND_NPI_TELEPHONE = 0x91,
 TON_NATIONAL_AND_NPI_TELEPHONE = 0xA1,
 TON_NETWORK_AND_NPI_TELEPHONE = 0xB1,
 TON_SUBSCRIBER_AND_NPI_TELEPHONE = 0xC1,

 TON_UNKNOWN_AND_NPI_DATA = 0x83,
 TON_INTERNATIONAL_AND_NPI_DATA = 0x93,
 TON_NATIONAL_AND_NPI_DATA = 0xA3,
 TON_NETWORK_AND_NPI_DATA = 0xB3,
 TON_SUBSCRIBER_AND_NPI_DATA = 0xC3,

 TON_UNKNOWN_AND_NPI_TELEX = 0x84,
 TON_INTERNATIONAL_AND_NPI_TELEX = 0x94,
 TON_NATIONAL_AND_NPI_TELEX = 0xA4,
 TON_NETWORK_AND_NPI_TELEX = 0xB4,
 TON_SUBSCRIBER_AND_NPI_TELEX = 0xC4,

 TON_UNKNOWN_AND_NPI_NATIONAL = 0x88,
 TON_INTERNATIONAL_AND_NPI_NATIONAL = 0x98,
 TON_NATIONAL_AND_NPI_NATIONAL = 0xA8,
 TON_NETWORK_AND_NPI_NATIONAL = 0xB8,
 TON_SUBSCRIBER_AND_NPI_NATIONAL = 0xC8,

 TON_UNKNOWN_AND_NPI_PRIVATE = 0x89,
 TON_INTERNATIONAL_AND_NPI_PRIVATE = 0x99,
 TON_NATIONAL_AND_NPI_PRIVATE = 0xA9,
 TON_NETWORK_AND_NPI_PRIVATE = 0xB9,
 TON_SUBSCRIBER_AND_NPI_PRIVATE = 0xC9,

 TON_UNKNOWN_AND_NPI_ERMES = 0x8A,
 TON_INTERNATIONAL_AND_NPI_ERMES = 0x9A,
 TON_NATIONAL_AND_NPI_ERMES = 0xAA,
 TON_NETWORK_AND_NPI_ERMES = 0xBA,
 TON_SUBSCRIBER_AND_NPI_ERMES = 0xCA
} CatTypeOfNumberAndNumberingPlanIdentifier;

[bookmark: _Toc169974404]5.11.30	CatSendShortMessageOptions
typedef enum
{
 PACKING_NOT_REQUIRED = 0x00,
 PACKING_BY_THE_ME_REQUIRED = 0x01
} CatSendShortMessageOptions;

[bookmark: _Toc169974405]5.11.31	CatSendDataOptions
typedef enum
{
 STORE_DATA_IN_TX_BUFFER = 0x00,
 SEND_DATA_IMMEDIATELY = 0x01
} CatSendDataOptions;

[bookmark: _Toc169974406]5.11.32	CatMEInterfaceTransportLevelType
typedef struct
{
 enum
 {
 UDP = 0x01,
 TCP = 0x02
 } TransportProtocolType;
 UINT16 CAT_ME_PortNumber;
} CAT_MEInterfaceTransportLevelType;

[bookmark: _Toc169974407]5.11.33	CatBearer
typedef enum
{
 BEARER_SMS = 0x00,
 BEARER_CSD = 0x01,
 BEARER_USSD = 0x02,
 BEARER_GPRS = 0x03
} CatBearer;

[bookmark: _Toc169974408]5.11.34	CatOpenChannelOptions
typedef enum
{
 ON_DEMAND_LINK_ESTABLISHMENT = 0x00,
 IMMEDIATE_LINK_ESTABLISHMENT = 0x01
} CatOpenChannelOptions;

[bookmark: _Toc169974409]5.11.35	CatAddressType
typedef struct
{
 enum
 {
 IPV4 = 0x21,
 IPV6 = 0x97
 } AddressType;
 BYTE AddressLength;
 const void *Address;
} CatAddressType;

[bookmark: CatFID][bookmark: _Toc169974410]5.11.36	CatFID

#define FID_DF_GRAPHICS 0x5F50
#define FID_DF_TELECOM 0x7F10
#define FID_EF_ADN 0x6F3A
#define FID_EF_ARR 0x2F06
#define FID_EF_BDN 0x6F4D
#define FID_EF_CCP 0x6F3D
#define FID_EF_DIR 0x2F00
#define FID_EF_EXT1 0x6F4A
#define FID_EF_EXT2 0x6F4B
#define FID_EF_EXT3 0x6F4C
#define FID_EF_EXT4 0x6F4E
#define FID_EF_FDN 0x6F3B
#define FID_EF_ICCID 0x2FE2
#define FID_EF_IMG 0x4F20
#define FID_EF_LND 0x6F44
#define FID_EF_MSISDN 0x6F40
#define FID_EF_PL 0x2F05
#define FID_EF_SDN 0x6F49
#define FID_EF_SMS 0x6F3C
#define FID_EF_SMSP 0x6F42
#define FID_EF_SMSR 0x6F47
#define FID_EF_SMSS 0x6F43

[bookmark: _Toc169974411]5.11.37	CatTextFormat
#define TEXT_FORMAT_LEFT							0x00
#define TEXT_FORMAT_CENTER							0x01
#define TEXT_FORMAT_RIGHT							0x02
#define TEXT_FORMAT_LANGUAGE_DEPENDENT 				0x03
#define TEXT_FORMAT_NORMAL_SIZE						0x00
#define TEXT_FORMAT_LARGE_SIZE						0x04
#define TEXT_FORMAT_SMALL_SIZE						0x08
#define TEXT_FORMAT_BOLD							0x10
#define TEXT_FORMAT_ITALIC							0x20
#define TEXT_FORMAT_UNDERLINED						0x40
#define TEXT_FORMAT_STRIKETHROUGH					0x80

[bookmark: _Toc169974412]5.11.38	CatTextForegroundColour
typedef enum {
BLACK						= 0x00,
DARK_GREY					= 0x01,
DARK_RED					= 0x02,
DARK_YELLOW					= 0x03,
DARK_GREEN					= 0x04,
DARK_CYAN					= 0x05,
DARK_BLUE					= 0x06,
DARK_MAGENTA				= 0x07,
GREY						= 0x08,
WHITE						= 0x09,
BRIGHT_RED					= 0x0A,
BRIGHT_YELLOW				= 0x0B,
BRIGHT_GREEN				= 0x0C,
BRIGHT_CYAN					= 0x0D,
BRIGHT_BLUE					= 0x0E,
BRIGHT_MAGENTA				= 0x0F
} CatTextForegroundColour;

[bookmark: _Toc169974413]5.11.39	CatTextBackgroundColour
typedef enum {
BLACK						= 0x00,
DARK_GREY					= 0x10,
DARK_RED					= 0x20,
DARK_YELLOW					= 0x30,
DARK_GREEN					= 0x40,
DARK_CYAN					= 0x50,
DARK_BLUE					= 0x60,
DARK_MAGENTA				= 0x70,
GREY						= 0x80,
WHITE						= 0x90,
BRIGHT_RED					= 0xA0,
BRIGHT_YELLOW				= 0xB0,
BRIGHT_GREEN				= 0xC0,
BRIGHT_CYAN					= 0xD0,
BRIGHT_BLUE					= 0xE0,
BRIGHT_MAGENTA				= 0xF0
} CatTextBackgroundColour;

[bookmark: _Toc169974414]
Annex A (normative):
Application executable architecture

	Name
	Value
	Meaning

	EM_NONE
	0
	No machine

	EM_M32
	1
	AT&T WE 32100

	EM_SPARC
	2
	SPARC

	EM_386
	3
	Intel 80386

	EM_68K
	4
	Motorola 68000

	EM_88K
	5
	Motorola 88000

	RESERVED
	6
	Reserved for future use

	EM_860
	7
	Intel 80860

	EM_MIPS
	8
	MIPS I Architecture

	EM_S370
	9
	IBM System/370 Processor

	EM_MIPS_RS3_LE
	10
	MIPS RS3000 Little-endian

	RESERVED
	11-14
	Reserved for future use

	EM_PARISC
	15
	Hewlett-Packard PA-RISC

	RESERVED
	16
	Reserved for future use

	EM_VPP500
	17
	Fujitsu VPP500

	EM_SPARC32PLUS
	18
	Enhanced instruction set SPARC

	EM_960
	19
	Intel 80960

	EM_PPC
	20
	PowerPC

	EM_PPC64
	21
	64-bit PowerPC

	RESERVED
	22-35
	Reserved for future use

	EM_V800
	36
	NEC V800

	EM_FR20
	37
	Fujitsu FR20

	EM_RH32
	38
	TRW RH-32

	EM_RCE
	39
	Motorola RCE

	EM_ARM
	40
	Advanced RISC Machines ARM

	EM_ALPHA
	41
	Digital Alpha

	EM_SH
	42
	Hitachi SH

	EM_SPARCV9
	43
	SPARC Version 9

	EM_TRICORE
	44
	Infineon Tricore embedded processor

	EM_ARC
	45
	Argonaut RISC Core

	EM_H8_300
	46
	Hitachi H8/300

	EM_H8_300H
	47
	Hitachi H8/300H

	EM_H8S
	48
	Hitachi H8S

	EM_H8_500
	49
	Hitachi H8/500

	EM_IA_64
	50
	Intel IA-64 processor architecture

	EM_MIPS_X
	51
	Stanford MIPS-X

	EM_COLDFIRE
	52
	Motorola ColdFire

	EM_68HC12
	53
	Motorola M68HC12

	EM_MMA
	54
	Fujitsu MMA Multimedia Accelerator

	EM_PCP
	55
	Siemens PCP

	EM_NCPU
	56
	Sony nCPU embedded RISC processor

	EM_NDR1
	57
	Denso NDR1 microprocessor

	EM_STARCORE
	58
	Motorola Star*Core processor

	EM_ME16
	59
	Toyota ME16 processor

	EM_ST100
	60
	STMicroelectronics ST100 processor

	EM_TINYJ
	61
	Advanced Logic Corp. TinyJ embedded processor family

	Reserved
	62-65
	Reserved for future use

	EM_FX66
	66
	Infineon FX66 microcontroller

	EM_ST9PLUS
	67
	STMicroelectronics ST9+ 8/16 bit microcontroller

	EM_ST7
	68
	STMicroelectronics ST7 8-bit microcontroller

	EM_68HC16
	69
	Motorola MC68HC16 Microcontroller

	EM_68HC11
	70
	Motorola MC68HC11 Microcontroller

	EM_68HC08
	71
	Motorola MC68HC08 Microcontroller

	EM_68HC05
	72
	Motorola MC68HC05 Microcontroller

	EM_SVX
	73
	Silicon Graphics SVx

	EM_ST19
	74
	STMicroelectronics ST19 8-bit microcontroller

	EM_VAX
	75
	Digital VAX

	EM_CRIS
	76
	Axis Communications 32-bit embedded processor

	EM_JAVELIN
	77
	Infineon Technologies 32-bit embedded processor

	EM_FIREPATH
	78
	Element 14 64-bit DSP Processor

	EM_ZSP
	79
	LSI Logic 16-bit DSP Processor

	EM_MMIX
	80
	Donald Knuth's educational 64-bit processor

	EM_HUANY
	81
	Harvard University machine-independent object files

	EM_PRISM
	82
	SiTera Prism

	EM_MEL
	83
	Multos Executable Language (MEL) byte codes

	EM_RTE
	84
	Microsoft Smart Card for Windows Runtime Environment byte codes

[bookmark: _Toc169974415]
Annex B (informative):
Example
/**
** Example of Toolkit Application written for the C SIM API
*/

#pragma AID A0000000090001

#include <stdlib.h>
#include "application.h"
#include "cat.h"
#include "catlow.h"

#define DF_GSM 0x7F20
#define EF_PUCT 0x6F41

const BYTE SERVER_OPERATION = 0x0F;
const BYTE EXIT_REQUESTED_BY_USER = 0x10;
static const char menuEntry[] = "Service1";
static const char menuTitle[]= "MyMenu";
static char item1[] = "ITEM1";
static char item2[] = "ITEM2";
static char item3[] = "ITEM3";
static char item4[] = "ITEM4";
static char textDText[] = "Hello, world";
static char textGInput[] = "Your name?";
BYTE ItemIdentifier;
static BYTE * byteptr;
static void * bufptr;
static BYTE buffer[10];
static BYTE itemId;
static BYTE result;
static BYTE repeat;

void main(void)
{
	switch (CatGetFrameworkEvent())
 {
 case EVENT_APPLICATION_LIFECYCLE_INSTALL:
		// Define the application Menu Entry and register to the EVENT_MENU_SELECTION
 		CatSetMenuString (1,sizeof(menuEntry),(const void *)MenuEntry,NULL,0,0);
		// register to the EVENT_UNFORMATTED_SMS_PP_ENV
 		CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
 break;
 case EVENT_ENVELOPE_COMMAND:
 {
 BYTE length;
 switch (CatOpenEnvelope(&length))
 {
 case MENU_SELECTION_TAG:
 // Prepare the Select Item proactive command
 // Append the Menu Title
 CatSelectItem (sizeof(MenuTitle),
(const void *)MenuTitle,
DEFAULT_STYLE_NO_HELP);
 // add all the Item
 CatSelectAddItem(sizeof(item1),(const void *)item1,1);
 CatSelectAddItem(sizeof(item2),(const void *)item2,2);
 CatSelectAddItem(sizeof(item3),(const void *)item3,3);
 CatSelectAddItem(sizeof(item4),(const void *)item4,4);
 // ask the CAT Toolkit Framework to send
 //the proactive command and check the result
 if (!CatEndSelectItem(&ItemId,NULL))
 {
 switch(ItemId)
 {
 case 1:
 case 2:
 case 3: // DisplayText
 CatDisplayText (DCS_SMS_UNPACKED,
					 													sizeof(textDText),
(const void *) textDText,
 NORMAL_PRIORITY_USER_CLEAR, NULL, 0);
 break;
 case 4: // Ask the user to enter data and display it
 repeat=0;
 do
 {
 if (CatGetInput(DCS_SMS_UNPACKED,
 sizeof(textGInput),
 (const void *) textGInput,
 UNPACKED_SMS_ALPHABET_NO_HELP,
 DCS_SMS_UNPACKED, 0, NULL,
 0, sizeof(buffer), NULL,
 (CatDCSValue *)&result,
 &repeat,
 (void *)buffer)==EXIT_REQUESTED_BY_USER)
 break;
 // display the entered text
 CatDisplayText ((CatDCSValue)result,
 repeat, (const void *) buffer,
 NORMAL_PRIORITY_USER_CLEAR, NULL, 0);
 } while (repeat);
 }
 }
 break;
 case EVENT_UNFORMATTED_SMS_PP_ENV:
 CatOpenEnvelope(&result);
									byteptr=(BYTE *)catGetData(1); /* go to numberlength */
									result=(*byteptr)>>1;
 /* calculate numberlength, rounded up */
									if ((*byteptr)&1)result++;
				 catGetData(result+12);		/* move to the beginning of the data */
 // get the offset of the instruction in the TP-UD field
 CatGetData(SERVER_OPERATION);
 result=CatGetBYTE();
		 					switch(result)
 {
 case 0x41 : // Update of a gsm file

 bufptr=CatGetData(3);
 // write these data in the Efpuct
 CatSelect(FID_DF_GSM);
 CatSelect(FID_EF_PUCT);
 CatUpdateBinary(0,3,bufptr);
 break;
 case 0x36 : // change the MenuTitle for the SelectItem

bufptr=CatGetData(sizeof(menuTitle));
 memcpy(bufptr,memuTitle,sizeof(menuTitle));
 }
 }
 }
 break;
 default:
 CatExit();
 break;
 }
 CatExit();
 }

[bookmark: _Toc169974416]
Annex C (informative):
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2003-03
	TP-19
	TP-030023
	001
	
	D
	Editorial Corrrections
	6.1.0

	2007-06
	-
	-
	-
	-
	-
	Update to Rel-7 version (MCC)
	7.0.0

	2009-03
	-
	-
	-
	-
	-
	Update to Rel-8 version (MCC)
	8.0.0

	2009-12
	CT-46
	CP-091011
	002
	1
	F
	References update
	8.1.0

	2009-12
	CT-46
	-
	-
	-
	-
	Upgrade of the specification to Rel-9
	9.0.0

	2011-03
	SP-51
	-
	-
	-
	-
	Upgrade of the specification to Rel-10
	10.0.0

	2012-09
	SP-57
	-
	-
	-
	-
	Upgrade of the specification to Rel-11
	11.0.0

	2014-10
	SP-65
	-
	-
	-
	-
	Upgrade of the specification to Rel-12
	12.0.0

	2015-12
	SP-70
	-
	-
	-
	-
	Upgrade of the specification to Rel-13
	13.0.0

	2017-03
	SA-75
	-
	-
	-
	-
	Update to Rel-14 version (MCC)
	14.0.0

	2019-01
	CT-81
	
	
	
	
	Update to Rel-15 version (MCC)
	15.0.0

	2020-07
	CT-88e
	-
	-
	-
	-
	Update to Rel-16 version (MCC)
	16.0.0

	2022-04
	-
	-
	-
	-
	-
	Update to Rel-17 version (MCC)
	17.0.0

3GPP
image3.wmf
Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

NAA

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

NAA File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

oleObject2.bin

Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

NAA

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

NAA File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

image1.jpeg

image2.emf

oleObject1.bin
[image: image1.jpg]K oy

