3GPP TS 29.198 V3.3.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Architecture (OSA)

Application Programming Interface (API) - Part 1

(Release 1999)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA, network

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

11Foreword

1
Scope
11
2
References
12
3
Definitions and abbreviations
13
3.1
Definitions
13
3.2
Abbreviations
13
4
Open Service Architecture
14
5
Methodology
15
5.1
Tools and Languages
15
5.2
Packaging
15
5.3
Colours
15
5.4
Naming scheme
15
5.5
Error results
16
5.6
References
16
5.7
Number of out parameters
17
5.8
Strings and Collections
17
5.9
Prefixes
17
5.10
Naming space across CORBA modules
17
6
Class diagrams
18
6.1
Class diagrams common across OSA
18
6.1.1
Base OSA interface
18
6.1.2
Generic Service Capability Feature interface
20
6.2
Class diagrams for the Framework
20
6.2.1
Top level Framework packages
20
6.2.2
Service Discovery
21
6.2.3
Trust and Security Management
22
6.2.3.1
IpInitial
22
6.2.3.2
IpAppAuthentication
22
6.2.3.3
IpAuthentication
23
6.2.3.4
IpAccess
23
6.2.3.5
IpAppAccess
23
6.2.4
Integrity Management
24
6.2.4.1
IpHeartBeatMgmt
24
6.2.4.2
IpAppHeartBeatMgmt
24
6.2.4.3
IpHeartBeat
25
6.2.4.4
IpAppHeartBeat
25
6.2.4.5
IpLoadManager
25
6.2.4.6
IpAppLoadManager
26
6.2.4.7
IpFaultManager
26
6.2.4.8
IpAppFaultManager
26
6.2.4.9
IpOAM
27
6.2.4.10
IpAppOAM
27
6.2.5
Service Registration
27
6.2.6
Service Factory
28
6.3
Generic Call Control
28
6.3.1
Interface Classes
30
6.3.1.1
IpAppCallControlManager
30
6.3.1.2
IpCallControlManager
30
6.3.1.3
IpAppCall
30
6.3.1.4
IpCall
31
6.4
Generic User Interaction and Call User Interaction
31
6.4.1
Relation between IpCall and IpUICall during call related user interaction
32
6.4.2
Interface Classes
33
6.4.2.1
IpAppUIManager
33
6.4.2.2
IpUIManager
33
6.4.2.3
IpAppUI
33
6.4.2.4
IpUI
35
6.4.2.5
IpAppUICall
35
6.4.2.6
IpUICall
35
6.5
Data Session Control
36
6.5.1
Interface Classes
37
6.5.1.1
IpAppDataSessionControlManager
37
6.5.1.2
IpDataSessionControlManager
38
6.5.1.3
IpAppDataSession
38
6.5.1.4
IpDataSession
39
6.6
Network User Location
40
6.6.1
Network User Location SCF interface
40
6.6.2
Network User Location application interface
41
6.7
User Status
41
6.7.1
User Status SCF interface
42
6.7.2
User Status application interface
42
6.8
Terminal Capabilities
42
6.8.1
Terminal Capabilities SCF interface
43
7
State Transition Diagrams
43
7.1
Framework
44
7.1.1
IpAuthentication
44
7.1.1.1
Idle state
44
7.1.1.2
Init Authentication state
45
7.1.1.3
Wait For Application Result state
45
7.1.1.4
Application Authenticated state
45
7.1.2
IpAccess
45
7.1.2.1
Active state
45
7.1.3
IpServiceDiscovery
46
7.1.3.1
Active state
46
7.1.4
IpLoadManager
47
7.1.4.1
Idle State
47
7.1.4.2
Registered State
47
7.1.4.3
Notifying
47
7.1.4.4
Suspending Notification
48
7.1.4.5
Normal Load state
48
7.1.4.6
Application overload state
48
7.1.4.7
Internal overload
48
7.1.4.8
Internal and application overload
49
7.1.5
IPFaultManager
49
7.1.5.1
Framework Active state
49
7.1.5.2
Framework Faulty state
49
7.1.5.3
The Service Activity Test state
49
7.1.5.4
The Framework Activity Test state
49
7.1.6
IpHeartbeatmgmt
50
7.1.6.1
Application not supervised
50
7.1.6.2
Application supervised
50
7.1.7
IpHeartBeat
51
7.1.7.1
FW Supervised by Application state
51
7.1.8
IpOAM
51
7.1.8.1
Active state
52
7.1.9.
IpServiceRegistration
52
7.1.9.1
Registering SCF
52
7.1.9.2
SCF Registered
52
7.2
Generic Call Control
53
7.2.1
Call Control Manager
53
7.2.1.1
Active state
53
7.2.1.2
Notification terminated state
53
7.2.2
Call
54
7.2.2.1
Active state
54
7.2.2.1.1
1 Party in Call state
54
7.2.2.1.2
2 Parties in Call state
55
7.2.2.3
Network released state
55
7.2.2.4
Finished state
55
7.2.2.5
Application released state.
55
7.3
User Interaction
56
7.3.1
UI Manager
56
7.3.1.1
Active state
56
7.3.1.2.
Notification Terminated state
56
7.3.2
UI

57
7.3.2.1
Active state
57
7.3.2.2
Release Pending state
57
7.3.2.3
Finished
57
7.3.3
UI Call
58
7.3.3.1
Active state
58
7.3.3.2
Release Pending state
58
7.3.3.3
Finished
59
7.4
Data Session
59
7.4.1
Active state
59
7.4.1.1
Setup state
59
7.4.1.2
Established state
60
7.4.2
 Network Released state
60
7.4.3
Finished state
60
7.4.4
Application released state.
60
7.5
Network User Location
60
7.5.1
Active state
60
7.6
User Status
61
7.6.1
Active State
61
8
Data Definitions
61
8.1
Common Data definitions
61
8.1.1
Primitive Data Types
61
8.1.2
Structured data types classification
61
8.1.2.1
Structures made of data elements
61
8.1.2.2
Tagged choice of data elements (i.e.: Free unions)
62
8.1.2.3
Collection of data elements
62
8.1.2.4
References
62
8.1.3
Interface Definitions
63
8.1.3.1
IpOsa

63
8.1.3.2
IpOsaRef
63
8.1.3.3
IpOsaRefRef
63
8.1.3.4
IpService
63
8.1.3.5
IpServiceRef
63
8.1.3.6
IpServiceRefRef
63
8.1.4
Non primitive and structured type types definition
63
8.1.4.1
TpAssignmentID
63
8.1.4.2
TpSessionID
63
8.1.4.3
TpSessionIDSet
63
8.1.4.4
TpDuration
63
8.1.4.5
TpResult
64
8.1.4.6
TpResultType
64
8.1.4.7
TpResultFacility
64
8.1.4.8
TpResultInfo
64
8.1.4.9
TpDate
66
8.1.4.10
TpTime
66
8.1.4.11
TpDateAndTime
66
8.1.4.12
TpAddress
67
8.1.4.13
TpAddressSet
67
8.1.4.14
TpAddressPlan
68
8.1.4.15
TpAddressPresentation
68
8.1.4.16
TpAddressRange
68
8.1.4.17
TpAddressScreening
69
8.1.4.18
TpAddressError
69
8.1.4.19
TpURL
69
8.1.4.20
TpPrice
69
8.1.4.21
TpAoCInfo
69
8.1.4.22
TpAoCOrder
70
8.1.4.23
TpCallAoCOrderCategory
70
8.1.4.24
TpChargeAdviceInfo
70
8.1.4.25
TpCAIElements
70
8.1.4.26
TpChargePerTime
71
8.2
Framework Data Definitions
71
8.2.1
Common Framework Data Definitions
71
8.2.1.1
TpClientAppID
71
8.2.1.2
TpClientAppIDList
71
8.2.1.3
TpDomainID
71
8.2.1.4
TpDomainIDType
72
8.2.1.5
TpEntOpID
72
8.2.1.6
TpPropertyName
72
8.2.1.7
TpPropertyValue
72
8.2.1.8
TpProperty
72
8.2.1.9
TpPropertyList
72
8.2.1.10
TpEntOpIDList
72
8.2.1.11
TpFwID
72
8.2.1.12
TpService
72
8.2.1.13
TpServiceList
73
8.2.1.14
TpServiceDescription
73
8.2.1.15
TpServiceID
73
8.2.1.16
TpServiceIDList
73
8.2.1.17
TpServiceIDRef
73
8.2.1.18
TpServiceNameString
73
8.2.1.19
TpServiceSpecString
74
8.2.1.20
TpUniqueServiceNumber
74
8.2.1.21
TpServiceTypeProperty
74
8.2.1.22
TpServiceTypePropertyList
74
8.2.1.23
TpServicePropertyMode
74
8.2.1.24
TpServicePropertyTypeName
74
8.2.1.25
TpServicePropertyName
75
8.2.1.26
TpServicePropertyNameList
75
8.2.1.27
TpServicePropertyValue
75
8.2.1.28
TpServicePropertyValueList
75
8.2.1.29
TpServiceProperty
75
8.2.1.30
TpServicePropertyList
75
8.2.1.31
TpServiceSupplierID
75
8.2.1.32
TpServiceTypeDescription
75
8.2.1.33
TpServiceTypeName
76
8.2.1.34
TpServiceTypeNameList
76
8.2.2
Trust and Security Management Data Definitions
76
8.2.2.1
TpAccessType
76
8.2.2.2
TpAuthType
76
8.2.2.3
TpAuthCapability
76
8.2.2.4
TpAuthCapabilityList
77
8.2.2.5
TpEndAccessProperties
77
8.2.2.6
TpAuthDomain
77
8.2.2.7
TpInterfaceName
77
8.2.2.8
TpServiceAccessControl
77
8.2.2.9
TpServiceToken
78
8.2.2.10
TpSignatureAndServiceMgr
78
8.2.2.11
TpSigningAlgorithm
78
8.2.3
Integrity Management Data Definitions
78
8.2.3.1
TpActivityTestRes
78
8.2.3.2
TpFaultStatsRecord
78
8.2.3.3
TpFaultStats
79
8.2.3.4
TpFaultStatsSet
79
8.2.3.5
TpActivityTestID
79
8.2.3.6
TpInterfaceFault
79
8.2.3.7
TpSvcUnavailReason
79
8.2.3.8
TpFWUnavailReason
79
8.2.3.9
TpLoadLevel
80
8.2.3.10
TpLoadThreshold
80
8.2.3.11
TpLoadInitVal
80
8.2.3.12
TpTimeInterval
80
8.2.3.13
TpLoadPolicy
80
8.2.3.14
TpLoadStatistic
81
8.2.3.15
TpLoadStatisticList
81
8.2.3.16
TpLoadStatisticData
81
8.2.3.17
TpLoadStatisticEntityID
81
8.2.3.18
TpLoadStatisticEntityType
81
8.2.3.19
TpLoadStatisticInfo
82
8.2.3.20
TpLoadStatisticInfoType
82
8.2.3.21
TpLoadStatisticError
82
8.3
Generic Call Control Data Definitions
82
8.3.1
Interface definitions
82
8.3.1.1
IpAppCall
82
8.3.1.2
IpAppCallRef
82
8.3.1.3
IpAppCallRefRef
82
8.3.1.4
IpAppCallControlManager
83
8.3.1.5
IpAppCallControlManagerRef
83
8.3.1.6
IpCall

83
8.3.1.7
IpCallRef
83
8.3.1.8
IpCallRefRef
83
8.3.1.9
IpCallControlManager
83
8.3.1.10
IpCallControlManagerRef
83
8.3.2
Event Notification data definitions
83
8.3.2.1
TpCallEventName
83
8.3.2.2
TpCallEventCriteria
84
8.3.2.3
TpCallEventCriteriaResult
84
8.3.2.4
TpCallEventCriteriaResultSet
84
8.3.2.5
TpCallNotificationType
84
8.3.2.6
TpCallEventInfo
84
8.3.3
Generic Call Control Type definitions
85
8.3.3.1
TpCallAlertingMechanism
85
8.3.3.2
TpCallAppInfo
85
8.3.3.3
TpCallAppInfoType
85
8.3.3.4
TpCallAppInfoSet
86
8.3.3.5
TpCallBearerService
86
8.3.3.6
TpCallChargePlan
86
8.3.3.7
TpCallChargeOrder
87
8.3.3.8
TpCallChargeOrderCategory
87
8.3.3.9
TpCallEndedReport
87
8.3.3.10
TpCallError
88
8.3.3.11
TpCallAdditionalErrorInfo
88
8.3.3.12
TpCallErrorType
88
8.3.3.13
TpCallFault
88
8.3.3.14
TpCallIdentifier
89
8.3.3.15
TpCallIdentifierRef
89
8.3.3.16
TpCallInfoReport
89
8.3.3.17
TpCallInfoType
89
8.3.3.18
TpCallMonitorMode
90
8.3.3.19
TpCallNetworkAccessType
90
8.3.3.20
TpCallOverloadType
90
8.3.3.21
TpCallServiceCode
90
8.3.3.22
TpCallServiceCodeType
91
8.3.3.23
TpCallPartyCategory
91
8.3.3.24
TpCallReleaseCause
91
8.3.3.25
TpCallReport
92
8.3.3.26
TpCallAdditionalReportInfo
92
8.3.3.27
TpCallReportRequest
92
8.3.3.28
TpCallAdditionalReportCriteria
92
8.3.3.29
TpCallReportRequestSet
93
8.3.3.30
TpCallReportType
93
8.3.3.31
TpCallTeleService
94
8.3.3.32
TpCallSuperviseReport
94
8.3.3.33
TpCallSuperviseTreatment
95
8.4
User Interaction Data Definitions
95
8.4.1
Interface definitions
95
8.4.1.1
IpUI

95
8.4.1.2
IpUIRef
95
8.4.1.3
IpUIRefRef
95
8.4.1.4
IpUIManager
95
8.4.1.5
IpUIManagerRef
95
8.4.1.6
IpAppUI
96
8.4.1.7
IpAppUIRef
96
8.4.1.8
IpAppUIRefRef
96
8.4.1.9
IpAppUIManager
96
8.4.1.10
IpAppUIManagerRef
96
8.4.2
Type definitions
96
8.4.2.1
TpUICallIdentifier
96
8.4.2.2
TpUICallIdentifierRef
96
8.4.2.3
TpUICollectCriteria
96
8.4.2.4
TpUIError
97
8.4.2.5
TpUIEventCriteria
98
8.4.2.6
TpUIEventInfo
98
8.4.2.7
TpUIEventInfoDataType
98
8.4.2.8
TpUIFault
98
8.4.2.9
TpUIIdentifier
99
8.4.2.10
TpUIIdentifierRef
99
8.4.2.11
TpUIInfo
99
8.4.2.12
TpUIInfoType
99
8.4.2.13
TpUIReport
99
8.4.2.14
TpUIResponseRequest
100
8.4.2.15
TpUIVariableInfo
100
8.4.2.16
TpUIVariableInfoSet
100
8.4.2.17
TpUIVariablePartType
100
8.5
Data Session Control Data Definitions
101
8.5.1
Interface definitions
101
8.5.1.1
IpAppDataSession
101
8.5.1.2
IpAppDataSessionRef
101
8.5.1.3
IpAppDataSessionRefRef
101
8.5.1.4
IpAppDataSessionControlManager
101
8.5.1.5
IpAppDataSessionControlManagerRef
101
8.5.1.6
IpDataSession
101
8.5.1.7
IpDataSessionRef
101
8.5.1.8
IpDataSessionRefRef
101
8.5.1.9
IpDataSessionControlManager
101
8.5.1.10
IpDataSessionManagerRef
101
8.5.2
Event Notification data definitions
102
8.5.2.1
TpDataSessionEventName
102
8.5.2.2
TpDataSessionMonitorMode
102
8.5.2.3
TpDataSessionEventCriteria
102
8.5.2.4
TpDataSessionEventInfo
103
8.5.2.5
TpDataSessionChargePlan
103
8.5.2.6
TpDataSessionChargeOrder
103
8.5.2.7
TpDataSessionChargeOrderCategory
104
8.5.2.8
TpChargePerVolume
104
8.5.2.9
TpDataSessionIdentifier
104
8.5.2.10
TpDataSessionError
104
8.5.2.11
TpDataSessionAdditionalErrorInfo
105
8.5.2.12
TpDataSessionErrorType
105
8.5.2.13
TpDataSessionFault
105
8.5.2.14
TpDataSessionReleaseCause
105
8.5.2.15
TpDataSessionSuperviseVolume
106
8.5.2.16
TpDataSessionSuperviseReport
106
8.5.2.17
TpDataSessionSuperviseTreatment
106
8.5.2.18
TpDataSessionReport
106
8.5.2.19
TpDataSessionAdditionalReportInfo
107
8.5.2.20
TpDataSessionReportRequest
107
8.5.2.21
TpDataSessionReportRequestSet
107
8.5.2.22
TpDataSessionReportType
107
8.5.2.23
TpDataSessionEventCriteriaResultSetRef
107
8.5.2.24
TpDataSessionEventCriteriaResultSet
107
8.5.2.25
TpDataSessionEventCriteriaResult
108
8.6
Network User Location and User Status Data definitions
108
8.6.1
Interface Definitions
108
8.6.1.1
IpAppUserStatus
108
8.6.1.2
IpAppUserStatusRef
108
8.6.1.3
IpUserStatus
108
8.6.1.4
IpAppUserLocationCamel
108
8.6.1.5
IpAppUserLocationCamelRef
108
8.6.1.6
IpUserLocationCamel
108
8.6.2
Common Data Definitions for Network User Location and User Status
108
8.6.2.1
TpGeographicalPosition
108
8.6.2.2
TpLocationUncertaintyShape
110
8.6.2.3
TpMobilityDiagnostic
110
8.6.2.4
TpMobilityError
110
8.6.2.5
TpMobilityStopAssignmentData
111
8.6.2.6
TpMobilityStopScope
111
8.6.3
Network User Location Data Definitions
111
8.6.3.1
TpLocationCellIDOrLAI
112
8.6.3.2
TpLocationTriggerCamel
112
8.6.3.3
TpUserLocationCamel
112
8.6.3.4
TpUserLocationCamelSet
113
8.7
User Status Data Definitions
113
8.7.1.1
TpUserStatus
113
8.7.1.2
TpUserStatusSet
113
8.7.1.3
TpUserStatusIndicator
113
8.8
Terminal Capabilities Data Definitions
113
8.8.1
Interface Definitions
113
8.8.1.1
IpTerminalCapabilities
113
8.8.1.2
IpTerminalCapabilitiesRef
113
8.8.2
Terminal Capabilities Data Definitions
113
8.8.2.1
terminalIdentity
114
8.8.2.2
TpTerminalCapabilities
114
8.8.2.3
TpTerminalCapabilitiesError
114
9
IDL Interface Definitions
115
9.1
Generic IDL
115
9.2
Framework IDL
118
9.2.1
Common Data Types for the Framework
118
9.2.2
Service Discovery IDL
120
9.2.3
Trust and Security Management IDL
121
9.2.4
Integrity Management IDL
124
9.2.5
Registration IDL
130
9.3
Call Control
131
9.3.1
Common Data Types for Call Control
131
9.3.2
Generic Call Control IDL
137
9.3.3
Enhanced Call Control IDL
140
9.4
User Interaction IDL
142
9.4.1
Common data types for User Interaction
142
9.4.2
Generic User Interaction IDL
144
9.5
Data Session Control
147
9.6
Network User Location and User Status IDL
152
9.6.1
Common definitions for Network User Location and User Status: MM.idl
152
9.6.2
Network User Location: MMul.idl
153
9.6.3
User Status: MMus.idl
155
9.7
Terminal Capabilities: TERMCAP.idl
156
Annex A (informative):
Change history
158

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

This document specifies the stage 3 of the Open Service Architecture (OSA) Application Programming Interface (API). The concepts and the functional architecture of the Open Service Architecture (API) are described by 3GPP TS 23.127 [2]. This document describes the stage 3 specification of the Open Service Architecture API.

The Open Service Architecture defines an architecture that enables service providers to make use of network functionality through an open standardised interface, i.e. the OSA API. The network functionality is describes as Service Capability Servers. Within the OSA concepts the following Service Capability Servers are identified:


CAMEL Service Environment (see in 3GPP TS 23.078 [4])


WAP execution platform (i.e. WAP Gateway & WAP Push Proxy, see in [13])


Home Location Register (HLR)
The stage 3 documentation of the OSA R’99 API consists of two parts:


The API specification (Part 1).
This is a normative stage 3 specification of the capabilities of the OSA R’99 API and describes the OSA API interface classes, containing class diagrams (see section 6), state transition diagrams (see section 7), data type definitions (section 8), and the IDLs (see section 9).

-
The Mapping specification of the OSA R’99 API and the network protocols (Part2).
This is an informative specification to provide an example how the OSA API can be mapped on the network protocols (i.e. MAP [7], CAP[8] and WAP[9]). It is an informative document, since this mapping is considered as implementation/vendor dependent. On the other hand this mapping will provide potential service designers with a better understanding of the relationship of the OSA API interface classes and the behavior of the network associated to these interface classes.

The OSA API Stage 3 activity is performed jointly with ETSI SPAN3’s Service Provider Access Requirements activity. The contents of this document is related to the jointly owned 3GPP & ETSI document referred as the API Master document, which contains the API interface descriptions that are common and differentiated between ETSI & 3GPP.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: ”3G Vocabulary”

[2]
3GPP TS 23.127: “Virtual Home Environment / Open Service Architecture”

[3]
3GPP TS 23.057: “Mobile Station Application Execution Environment (MExE)”
[4]
3GPP TS 23.078: “CAMEL Phase 3, stage 2”

[5]
3GPP TS 22.101: ”Universal Mobile Telecommunications System (UMTS): Service Aspects; Service Principles”

[6]
World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side framework for content negotiation (www.w3.org)

[7]
3GPP TS 29.002: “Mobile Application Part (MAP)”

[8]
3GPP TS 29.078: “CAMEL Phase 3, , CAMEL Application Part (CAP) Specification”

[9]
Wireless Application Protocol (WAP), Version 1.2, UAProf Specification (www.wapforum.org)

[10]
Wireless Application Protocol (WAP), version 1.2, WAP Service Indication specification, (www.wapforum.org)

[11]
Wireless Application Protocol (WAP), version 1.2, WAP Push Architecture Overview (www.wapforum.org)

[12]
Wireless Application Protocol (WAP), version 1.2, WAP Architecture (www.wapforum.org)

[13]
SUN IDL Compiler (www.javasoft.com/products/jdk/idl/index.html)

[14]
UML Unified ModellingLanguage (www.rational.com/uml)

[15]
Object Management Group (www.omg.org)

[16]
3GPP TS 22.002: “Circuit Bearer Services supported by a PLMN”

[17]
3GPP TS 22.003: “Circuit Teleservices supported by a PLMN”

[18]
3GPP TS 24.002: “Public Land Mobile Network (PLMN) Access Reference Configuration”

[19]
ITU-T Q.763: “Signalling System No. 7 – ISDN user part formats and codes”

[20]
ITU-T Q.931: “ISDN user-network interface layer 3 specification for basic call control”

[21]
ISO 8601: “Data elements and interchange formats -- Information interchange -- Representation of dates and times”

[22]
ISO 4217: “Codes for the representation of currencies and funds ”

3
Definitions and abbreviations

3.1
Definitions

For the purposes of this specification, the following definitions apply:
Applications: Services, which are designed using service capability features.

Gateway: Synonym for Service Capability Server. From the viewpoint of applications, a Service Capability Server can be seen as a gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home Environment to provide services.
Home Environment: responsible for overall provision of services to users

Local Service: A service, which can be exclusively provided in the current serving network by a Value Added Service Provider.

OSA Interface: Standardised Interface used by application to access service capability features.
Personal Service Environment: contains personalised information defining how subscribed services are provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the standardised OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the terminal and serving network.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which additional charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and between terminals.

Further definitions are given in 3GPP TS 22.101 [5].

3.2
Abbreviations

For the purposes of this TS the following abbreviations apply:
CAMEL
Customised Application For Mobile Network Enhanced Logic

CSE
Camel Service Environment

HE
Home Environment

HE-VASP
Home Environment Value Added Service Provider

HLR
Home Location Register

IDL
Interface Description Language

MAP
Mobile Application Part

ME
Mobile Equipment

MExE
Mobile Station (Application) Execution Environment

MS
Mobile Station

MSC
Mobile Switching Centre

OSA
Open Service Architecture

PLMN
Public Land Mobile Network

PSE
Personal Service Environment

SAT
SIM Application Tool-Kit

SCP
Service Control Point

SIM
Subscriber Identity Module

SMS
Short Message Service

SMTP
Simple Mail Transfer Protocol

USIM
User Service Identity Module

VASP
Value Added Service Provider

VHE
Virtual Home Environment

WAP
Wireless Application Protocol

WGP
Wireless Gateway Proxy

WPP
Wireless Push Proxy

Further abbreviations are given in the 3GPP TR 21.905 [1].

4
Open Service Architecture

The concepts and Architecture of the Open Service Architecture are described within [2]. Within this stage 2 document several Service Capability Features are identified. However for OSA API Release 99, the set of addressed Service Capability Features are limited to the following:


Framework SCF


Service Discovery interface


Trust and Security Management interfaces (Initial Contact interfaces and Authentication interfaces)


Integrity Management interfaces (Load Manager interfaces, Fault Manager interfaces, OAM interfaces, Heart Beat interfaces)


Registration interfaces


Call Control SCF


User Interaction SCFs


Generic User Interaction SCF


Call User Interaction SCF


Network User Location SCF


User Status SCF


Terminal Capabilities SCF


Data Session SCF

The Framework API contains interfaces between the Application Server and the Framework, and between Network Service Capability Server (SCS) and the Framework.

The User Profiles are limited to the Terminal Capabilities for OSA R’99. Therefore, only limited functionality is available for the security within OSA R’99. The Framework & Network SCSs provide the following security mechanisms for OSA R’99:


Checking the subscriber’s registration to the SCS feature


Checking the subscriber’s activation of the SCS feature


Checking the subscriber’s privacy settings of the SCS feature
The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server interacts with in order to provide the Service Capability Features to the application. The specific underlying network and its protocols are transparent to the application.
For example, an application that has subscribed to the Network User Location SCF does not have to know whether the SCS provides location reports to the application based on information from the CSE or HLR. Similarly, the application does not have to know whether a message offered to the SCS for delivery to a terminal is actually sent by the SCS to the terminal via a WGP/WPP or SMS-C. It is the Service Capability Server that is capable of deciding how the message is to be sent. The OSA concept therefore leads to a shift of logic on dealing with the network from the applications to the Service Capability Servers.
5
Methodology

Following is a description of the methodology used for the establishment of stage 3 specification in the scope of 3GPP CN OSA.

5.1
Tools and Languages

The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams. Additionally, Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as the means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

5.2
Packaging

A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.threegpp.osa

Note that the CORBA module hierarchy defined in the IDLs does not necessrly parallels the logical UML package hierarchy.

5.3
Colours

For clarity, class diagrams follows a certain colour scheme. Blue for application interface packages and yellow for all the others.

5.4
Naming scheme

The following naming scheme is used for both documentation and IDLs.
packages

lowercase.

Using the domain-based naming (For example, org.threegpp.osa)

classes, structures and types. Start with T

TpCapitalizedWithInternalWordsAlsoCapitalized

Exception class:

TpClassNameEndsWithException

Interface. Start with Ip:

IpThisIsAnInterface

constants:

P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters

firstWordLowerCaseButInternalWordsCapitalized

collections (set, array or list types)

TpCollectionEndsWithSet

class/structure members

FirstWordAndInternalWordsCapitalized

Spaces in between words are not allowed.

5.5
Error results

As OMG IDL supports exception handling with high efficiency, OSA methods communicate errors in the form of CORBA exceptions of type TpGeneralException in the IDLs; the CORBA methods themselves always return void. But in the documentation, errors are communicated using a return parameter of type TpGeneralResult.

5.6
References

In the interface specification whenever parameters are to be passed by reference, the “Ref” suffix is appended to their corresponding data type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirection. Therefore, structured or primitive data type passed as out parameters are references. An interface passed as an in parameter is also a reference but an interface passed as an out parameter is a double indirection (i.e.: RefRef)

	Original Data type
	IN parameter declaration
	OUT parameter declaration

	TpPrimitive
	parm : IN TpPrimitive
	parm : OUT TpPrimitiveRef

	TpStructured
	parm : IN TpStructured
	parm : OUT TpStructuredRef

	IpInterface
	parm : IN IpInterfaceRef
	parm : OUT IpInterfaceRefRef

In IDL, however, the following rules apply:

-
Interfaces are implicitly passed by reference.

-
out parameters are also implicitly passed by reference.

This leads to:

-
Interface as an in parameter: Passed by Reference.

-
Structure or primitive type as an in parameter: Passed by Value.

-
Structure or primitive type as an out parameter: Passed by Reference.

-
Interface as an out parameter: As reference passed by reference.

To simplify the documentation without adding ambiguities, parameters (interfaces, structures and primitive data types) are used as is when specified as in or out parameters in the IDL. This means that there will be no “Ref” added after the data types of parameters in the IDL.

5.7
Number of out parameters

In order to support mapping to as many languages as possible, there is only 1 out parameter allowed per operation.

5.8
Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string. In IDL, the data type String is typedefed
 from the CORBA primitive string. This CORBA primitive is made up of a length and a variable array of byte.

For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set. In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a length and a variable array of elements of the same type.

Example: typedef sequence<TpSessionID> TpSessionIDSet;
Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part, and an array for the data part.
Example: The TpAddressSet data type may be defined in C++ as:
typedef struct {

 short number;

 TpAddress address [];

} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on "number".
5.9
Prefixes

OSA constants and data types are not defined in the global name space but in the org.threegpp.osa module.

5.10
Naming space across CORBA modules

The following shows the naming space used in this specification.

module org {

module threegpp { // cannot use 3gpp, names need to start with letter
module osa {

// The fully qualified name of the following constant

// is org::threegpp::osa::P_THIS_IS_AN_OSA_GLOBAL_CONST

const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;

// Add other OSA global constants and types here

module framework {

// no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST

const long P_FW_CONST= THIS_IS_AN_OSA_GLOBAL_CONST;

};

module mm {

// scoping required to access P_FW_CONST

const long P_M_CONST= framework::P_FW_CONST;

};

};

};

};
6
Class diagrams

Class diagrams are specified in UML: interface classes are shown as interface names within shaded rectangular boxes; relationships and generalizations as lines connecting pairs of interface classes.

All OSA interface classes should be packaged into the org.threegpp.osa module. Further sub-packaging is an implementation decision, but this section proposes a way to do it. Using this recommended packaging, a top-down approach is followed in the subsequent sections. Note that UML packaging is only a logical packaging and does not necessarily reflects IDL packaging.
6.1
Class diagrams common across OSA

All application and framework interfaces inherit from IpOsa interface. Network Service Capability Features on the other hand inherit from the common IpService interface. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

[image: image2.wmf]IpOsa

(

from org.3gpp.osa)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

Figure 6-1: OSA base interfaces

6.1.1
Base OSA interface

All application and framework interfaces inherit from the following interface.

	<<Interface>>

IpOsa

	

	

6.1.2
Generic Service Capability Feature interface

All Network SCF’s interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback(appInterface : in IpOsaRef) : TpResult

setCallbackWithSessionID(appInterface : in IpOsaRef, sessionID : in TpSessionID): TpResult

6.2
Class diagrams for the Framework

This section specifies the class diagrams that define the Framework, and proposes a way to package them.

6.2.1
Top level Framework packages

The top level view of the Framework consists of the following four packages:

[image: image3.wmf]PAppFramework

PFramework

PFWFramework

PSvcFramework

Figure 6‑2: Framework top level packages
The first two packages are de-composed in the following way:

[image: image4.wmf]PAppFramework

Consists of

·

PappTrustAndSecurityMgmt

·

PAppIntegrityMgmt

[image: image5.wmf]PFramework

Consists of

·

PServiceDiscovery

·

PTrustAndSecurityMgmt

·

PIntegrityMgmt

The latter two packages contain only one interface each:


PFWFramework consists of the Service Registration Interface


PSvcFramework consists of the Service Factory Interface

The top-level packages are de-composed as described above; between some of the resulting sub-packages there are dependencies, that reflect dependencies between any two classes in the sub-package. The following figure shows all this.

[image: image6.wmf]PAppIntegrityMgmt

PTrustAndSecurityMgmt

PIntegrityMgmt

PAppTrustAndSecurityMgmt

PServiceDiscovery

PAppFramework

PFramework

PFWFramework

PSvcFramework

Figure 6‑3: Framework sub-packages
6.2.2
Service Discovery

[image: image7.wmf]

IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

<<Interface>>

Figure 6‑4: Service Discovery Class Diagrams

	<<Interface>>

IpServiceDiscovery

	

	listServiceTypes(listTypes: out TpServiceTypeNameListRef) : TpResult

describeServiceType(name: in TpServiceTypeName, serviceTypeDescription: out TpServiceTypeDescriptionRef) : TpResult

discoverService(serviceTypeName: in TpServiceTypeName, desiredPropertyList: in TpServicePropertyList, max: in TpInt32, serviceList: out TpServiceListRef) : TpResult

listSubscribedServices(serviceList: out TpServiceListRef) : TpResult

6.2.3
Trust and Security Management

[image: image8.wmf]IpInitial

initiateAuthentication()

requestAccess()

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

accessCheck()

selectService()

signServiceAgreement()

terminateServiceAgreement()

endAccess()

<<Interface>>

IpAppAccess

signServiceAgreement()

terminateServiceAgreement()

terminateAccess()

<<Interface>>

<<uses>>

IpAuthentication

selectAuthMethod()

authenticate()

abortAuthentication()

<<Interface>>

IpAppAuthentication

authenticate()

abortAuthentication()

<<Interface>>

<<uses>>

Figure 6‑5: Trust and Security Management – Application and Framework Class Diagrams

6.2.3.1
IpInitial

	<<Interface>>

IpInitial

	

	initiateAuthentication(appDomain: in TpAuthDomain , authType : in TpAuthType, fwDomain: out TpAuthDomainRef) : TpResult

requestAccess(accessType: in TpAccessType, appAccessInterface; in IpOsaRef, fwAccessInterface: out IpOsaRefRef): TpResult

6.2.3.2
IpAppAuthentication

	<<Interface>>

IpAppAuthentication

	

	authenticate(prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.3
IpAuthentication

	<<Interface>>

IpAuthentication

	

	selectAuthMethod (authCaps: in TpAuthCapabiltyList, prescribedMethod: out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.4
IpAccess

	<<Interface>>

IpAccess

	

	obtainInterface(interfaceName: in TpInterfaceName, fwInterface: out IpOsaRefRef): TpResult

obtainInterfaceWithCallback(interfaceName: in TpInterfaceName, appInterface: in IpOsaRef, fwInterface: out IpOsaRefRef): TpResult

accessCheck(serviceToken: in TpServiceToken,securityContext: in TpString, securityDomain: in TpString, group : in TpString, serviceAccessTypes: in TpString, serviceAccessControl: out TpServiceAccessControlRef): TpResult

selectService(serviceID: in TpServiceID, serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpEndAccessProperties) : TpResult

6.2.3.5
IpAppAccess

	<<Interface>>

IpAppAccess

	

	signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: out TpStringRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

terminateAccess(terminationText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: in TpString) : TpResult

6.2.4
Integrity Management

[image: image9.wmf]0..*

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeTimePeriod()

<<Interface>>

IpAppHeartBeat

send()

<<Interface>>

1

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

registerLoadController()

unregisterLoadController()

resumeNotification()

suspendNotification()

<<Interface>>

IpAppLoadManager

queryAppLoadManager()

queryLoadRes()

queryLoadErr()

disableLoadControl()

enableLoadControl()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpFaultManager

activityTestReq()

appActivityTestRes()

serviceUnavailableInd()

genFaultStatsRecordReq()

<<Interface>>

IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

IpHeartBeat

send()

<<Interface>>

<<uses>>

1

0..*

Figure 6‑6: Integrity Management – Application and Framework Class Diagrams

6.2.4.1
IpHeartBeatMgmt

	<<Interface>>

IpHeartBeatMgmt

	

	enableHeartBeat(duration: in TpDuration, appInterface: in IpAppHeartBeatRef, session: out TpSessionIDRef) : TpResult

disableHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: in TpDuration, session: in TpSessionID) : TpResult

6.2.4.2
IpAppHeartBeatMgmt

	<<Interface>>

IpAppHeartBeatMgmt

	

	enableAppHeartBeat(duration: in TpDuration, fwInterface: in IpHeartBeatRef, session: in TpSessionID) : TpResult

disableAppHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: TpDuration, session: in TpSessionID) : TpResult

6.2.4.3
IpHeartBeat

	<<Interface>>

IpHeartBeat

	

	send(session: in TpSessionID) : TpResult

6.2.4.4
IpAppHeartBeat

	<<Interface>>

IpAppHeartBeat

	

	send(session: in TpSessionID) : TpResult

6.2.4.5
IpLoadManager

	<<Interface>>

IpLoadManager

	

	reportLoad(loadLevel : in TpLoadLevel) : TpResult

queryLoadReq(serviceIDs: in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr(loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController(serviceIDs: in TpServiceIDList) : TpResult

unregisterLoadController(serviceIDs: in TpServiceIDList) : TpResult

resumeNotification(serviceIDs: in TpServiceIDList) : TpResult

suspendNotification(serviceIDs: in TpServiceIDList) : TpResult

6.2.4.6
IpAppLoadManager

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq(serviceIDs: in TpServiceIdList, timeInterval : TpTimeInterval) : TpResult

queryLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr(loadStatisticsError : in TpLoadStatisticError) : TpResult

disableLoadControl(serviceIDs: in TpServiceIdList) : TpResult

enableLoadControl(loadStatistics : in TpLoadStatisticList) : TpResult

resumeNotification() : TpResult

suspendNotification() : TpResult

6.2.4.7
IpFaultManager

	<<Interface>>

IpFaultManager

	

	activityTestReq(activityTestID: in TpActivityTestID, svcID: in TpServiceID): TpResult

appActivityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): TpResult

svcUnavailableInd(serviceID: in TpServiceID): TpResult

genFaultStatsRecordReq(timePeriod: in TpTimeInterval, serviceIDs: in TpServiceIDList): TpResult

6.2.4.8
IpAppFaultManager

	<<Interface>>

IpAppFaultManager

	

	activityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): TpResult

appActivityTestReq(activityTestID: in TpActivityTestID): TpResult

fwFaultReportInd(fault: in TpInterfaceFault): TpResult

fwFaultRecoveryInd(fault: in TpInterfaceFault): TpResult

fwUnavailableInd(reason: in TpFwUnavailReason): TpResult

svcUnavailableInd(serviceID: in TpServiceID, reason: in TpSvcUnavailReason): TpResult

genFaultStatsRecordRes(faultStatistics: in TpFaultStatsRecord, serviceIDs: in TpServiceIDList): TpResult

6.2.4.9
IpOAM

	<<Interface>>

IpOAM

	

	systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out TpDateAndTimeRef) : TpResult

6.2.4.10
IpAppOAM

	<<Interface>>

IpAppOAM

	

	systemDateTimeQuery(systemDateAndTime: in TpDateAndTime, clientDateAndTime: out TpDateAndTimeRef) : TpResult

6.2.5
Service Registration

[image: image10.wmf]registerService()

announceServiceAvailability()

unregisterService()

describeService()

IpServiceRegistration

<<Interface>>

Figure 6‑7: Service Registration Class Diagram

	<<Interface>>

IpServiceRegistration

	

	registerService(serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList,

serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability(serviceID : in TpServiceID, serviceFactoryRef : in IpOSARef) : TpResult

unregisterService(serviceID : in TpServiceID) : TpResult

describeService(serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

6.2.6
Service Factory

[image: image11.wmf]getServiceManager()

IpSvcFactory

<<Interface>>

Figure 6‑8: Service Factory Class Diagram
	<<Interface>>

IpSvcFactory

	

	getServiceManager(application : in TpDomainID, serviceProperties : in TpServicePropertyList, serviceManager : out IpServiceRefRef) : TpResult

6.3
Generic Call Control

The Generic Call Control SCF provides the basic call control capabilities for the API. It allows calls to be instantiated from the network and routed through the network. The call model is based around a central call model that has zero to two call legs that are active (i.e., being routed or connected), each of which represents the logical relationship between the call and an address. However, the application does not have direct access to the call legs. Generic Call Control supports functionality to allow call routing and call management for Camel Phase 3 and earlier services.

Generic Call Control is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppCallManager and IpAppCall.

[image: image12.wmf]Pappgccs

Pgccs

Figure 6‑9: Generic Call Control Packages
[image: image13.wmf]IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

setAdviceOfCharge()

<<Interface>>

IpCallControlManage

r

enableCallNotification()

disableCallNotification()

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

<<Interface>>

1

1

<<

uses>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

<<Interface>>

1

1

<<

uses>>

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

callEnded()

changeCallNotification()

getCriteria()

Figure 6-10: Generic Call Control Class diagram Interface Classes

This section contains the detailed interface specifications of the interfaces shown in the Generic Call Control Class diagram.

6.3.1
Interface Classes

6.3.1.1
IpAppCallControlManager

	<<Interface>>

IpAppCallControlManager

	

	callAborted(callReference : in TpSessionID) : TpResult

callEventNotify(callReference : in TpCallIdentifier , eventInfo : in TpCallEventInfo , assignmentID : in TpAssignmentID , appInterface : out IpAppCallRefRef) : TpResult

callNotificationInterrupted() : TpResult

callNotificationContinued(): TpResult

6.3.1.2
IpCallControlManager

	<<Interface>>

IpCallControlManager

	

	enableCallNotification(appInterface : in IpAppCallControlManagerRef , eventCriteria : in TpCallEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification(assignmentID : in TpAssignmentID) : TpResult

changeCallNotification(assignmentID : in TpAssignmentID , eventCriteria : in TpCallEventCriteria) : TpResult

getCriteria(eventCriteria : out TpCallEventCriteriaResultSet) : TpResult

6.3.1.3
IpAppCall

	<<Interface>>

IpAppCall

	

	routeRes(callSessionID : in TpSessionID , eventReport : in TpCallReport, callLegSessionID : in TpSessionID) : TpResult

routeErr(callSessionID : in TpSessionID , errorIndication : in TpCallError, callLegSessionID : in TpSessionID) : TpResult

getCallInfoRes(callSessionID : in TpSessionID , callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

superviseCallRes(callSessionID : in TpSessionID , report : in TpCallSuperviseReport , usedTime : in TpDuration) : TpResult

superviseCallErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

callFaultDetected(callSessionID : in TpSessionID , fault : in TpCallFault) : TpResult

callEnded(callSessionID : in TpSessionID , report : in TpCallEndedReport) : TpResult

6.3.1.4
IpCall

	<<Interface>>

IpCall

	

	routeReq(callSessionID : in TpSessionID , responseRequested : in TpCallReportRequestSet , targetAddress : in TpAddress , originatingAddress : in TpAddress , originalDestinationAddress : in TpAddress , redirectingAddress : in TpAddress , appInfo : in TpCallAppInfoSet , callLegSessionID : out TpSessionIDRef) : TpResult

release(callSessionID : in TpSessionID , cause : in TpCallReleaseCause) : TpResult

deassignCall(callSessionID : in TpSessionID) : TpResult

getCallInfoReq(callSessionID : in TpSessionID , callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan(callSessionID : in TpSessionID , callChargePlan : in TpCallChargePlan) : TpResult

superviseCallReq(callSessionID : in TpSessionID , time : in TpDuration , treatment : in TpCallSuperviseTreatment) : TpResult

setAdviceOfCharge(callSessionID : in TpSessionID , aOCInfo : in TpAoCInfo , tariffSwitch : in TpDuration) : TpResult

6.4
Generic User Interaction and Call User Interaction

The Generic User Interaction interface and Call User Interaction SCFs are used by applications to interact with end users.

The GUIS is represented by the IpUIManager, IpUI and IpUICall interfaces that interface to service capabilities provided by the network.

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.
To handle responses and reports, the developer must implement IpAppUIManager, IpAppUI and IpAppUICall interfaces to provide the callback mechanism.

[image: image14.wmf]Pappguis

Pguis

Figure 6-11: Generic User Interaction Packages

[image: image15.wmf]IpUICall

abortActionReq()

<<Interface>>

IpAppUICall

abortActionRes()

abortActionErr()

<<Interface>>

1

1

<<

uses>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionEventNotify()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

1

1

<<

uses>>

IpUIManager

createUI()

createUICall()

enableUINotification()

disableUINotification()

<<Interface>>

1

1

<<

uses>>

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

Figure 6-12: Generic User interaction Class diagram

6.4.1
Relation between IpCall and IpUICall during call related user interaction

For call related user interaction, the IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call. This means that there is a relationship between a specific Call object and a UICall object. This is shown in the figure below.

[image: image16.wmf]IpUICall

<<Interface>>

IpCall

<<Interface>>

1

1

1

1

Figure 6-13: Relation between the UICall and the Call object.

In case a call requires user interaction, the application requests the UIManager to create the UICall object and provides a reference to the specific Call object. In this way the gateway is able to link the two objects together. It depends on the actual state of the call whether user interaction is really allowed.

6.4.2
Interface Classes

This section contains the detailed interface specifications of the interfaces shown in the Generic User Interaction Class diagram.

6.4.2.1
IpAppUIManager

	<<Interface>>

IpAppUIManager

	

	userInteractionAborted(userInteraction : in TpUIIdentifier) : TpResult

userInteractionEventNotify(ui : in TpUIIdentifier , eventInfo : in TpUIEventInfo ,
assignmentID : in TpAssignmentID , appInterface : out IpAppUIRefRef) : TpResult

userInteractionNotificationInterrupted(): TpResult

userInteractionNotificationContinued(): TpResult

6.4.2.2
IpUIManager

	<<Interface>>

IpUIManager

	

	createUI(appUI : in IpAppUIRef , userAddress : in TpAddress , userInteraction : out TpUIIdentifierRef) : TpResult

createUICall(appUI : in IpAppUICallRef , callIdentifier : in TpCallIdentifier ,
callLegIdentifier : in TpCallLegIdentifier , userInteraction : out TpUICallIdentifierRef) : TpResult

enableUINotification(appInterface : in IpAppUIManagerRef ,
eventCriteria : in TpUIEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableUINotification(assignmentID : in TpAssignmentID) : TpResult

6.4.2.3
IpAppUI

	<<Interface>>

IpAppUI

	

	sendInfoRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
response : in TpUIReport) : TpResult

sendInfoErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
error : in TpUIError) : TpResult

sendInfoAndCollectRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, response : in TpUIReport , info : in TpString) : TpResult

sendInfoAndCollectErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, error : in TpUIError) : TpResult

userInteractionFaultDetected(userInteractionSessionID : in TpSessionID , fault : in TpUIFault) : TpResult

6.4.2.4
IpUI

	<<Interface>>

IpUI

	

	sendInfoReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
variableInfo : in TpUIVariableInfoSet , repeatIndicator : in TpInt32 ,
responseRequested : in TpUIResponseRequest , assignmentID : out TpAssignmentIDRef) : TpResult

sendInfoAndCollectReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
variableInfo : in TpUIVariableInfoSet , criteria : in TpUICollectCriteria , responseRequested: in TpUIResponseRequest , assignmentID : out TpAssignmentIDRef) : TpResult

release(userInteractionSessionID : in TpSessionID) : TpResult

6.4.2.5
IpAppUICall

	<<Interface>>

IpAppUICall

	

	abortActionRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID) : TpResult

abortActionErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID ,
error : in TpUIError) : TpResult

6.4.2.6
IpUICall

	<<Interface>>

IpUICall

	

	abortActionReq(userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : TpResult

6.5
Data Session Control
The Data Session Control provides a means to control per data session basis the establishment of a new data session. This means espcially in the GPRS context that the establishment of a PDP session is modelled not the attach/detach mode. Change of terminal location is assumed to be managed by the underlying network and is therefore not part of the model. The underlying assumption is that a terminal initiates a data session and the application can reject the request for data session establishment, can continue the establishment or can continue and change the destination as requested by the terminal.

The modelling is hold similar to the Generic Call Control but assuming a simpler underlying state model. An IpDataSessionManager and IpData Session object are the interfaces used by the application, whereas the IpAppDataSessionManager and the IpAppDataSession interfaces are implemented by the application.

[image: image17.wmf]Pdscs

Pappdscs

Figure 6‑14: Data Session Control Packages
[image: image18.emf]IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpAppDataSessionManager

dataSessionAborted()

dataSessionEventNotify()

dataSessionNotificationContinued()

dataSessionNotificationInterrupted()

(from Pappdscs)

<<Interface>>

IpAppDataSession

dataSessionFaultDetected()

superviseDataSessionErr()

superviseDataSessionRes()

connectErr()

connectRes()

(from Pappdscs)

<<Interface>>

1 0..n 1 0..n

IpDataSessionManager

enableDataSessionNotification()

disableDataSessionNotification()

(from Pdscs)

<<Interface>>

1

1

<<uses>>

IpDataSession

connectReq()

release()

superviseDataSessionReq()

setDataSessionChargePlan()

setAdviceOfCharge()

(from Pdscs)

<<Interface>>

1

1

<<uses>>

1 0..n 1 0..n

Figure 6-15: Data Session Control Class diagram Interface Classes

This section contains the detailed interface specifications of the interfaces shown in the Data Session Control Class diagram.

6.5.1
Interface Classes

6.5.1.1
IpAppDataSessionControlManager

	<<Interface>>

IpAppDataControlManager

	

	dataSessionAborted(dataSessionID : in TpSessionID) : TpResult

dataSessionEventNotify(dataSessionReference : in TpdataSessionIdentifier , eventInfo : in TpDataSessionEventInfo , assignmentID : in TpAssignmentID , appInterface : out IpAppdataSessionRefRef) : TpResult

dataSessionNotificationContinued() : TpResult

dataSessionNotificationInterrupted(): TpResult

6.5.1.2
IpDataSessionControlManager

	<<Interface>>

IpDataSessionControlManager

	

	enableDataSessionNotification(appInterface : in IpAppDataSessionControlManagerRef , eventCriteria : in TpDataSessionEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableDataSessionNotification(assignmentID : in TpAssignmentID) : TpResult

6.5.1.3
IpAppDataSession

	<<Interface>>

IpAppDataSession

	

	connectRes(dataSessionID : in TpSessionID , eventReport : in TpDataSessionEventReport, assignmentID : in TpAssignmentID) : TpResult

connectErr(dataSessionID : in TpSessionID , errorIndication : in TpDataSessionError, assignmentID : in TpAssignmentID) : TpResult

superviseDataSessionRes(dataSessionID : in TpSessionID , report : in TpDataSessionSuperviseReport, usedVolume : in TpDataSessionSuperviseVolume) : TpResult

superviseDataSessionErr(dataSessionID : in TpSessionID , errorIndication : in TpDataSessionError) : TpResult

dataSessionFaultDetected(dataSessionID : in TpSessionID , fault : in TpDataSessionFault) : TpResult

6.5.1.4
IpDataSession

	<<Interface>>

IpDataSession

	

	connectReq(dataSessionID : in TpSessionID , responseRequested : in TpDataSessionReportRequestSet , targetAddress : in TpAddress , assignmentID : out TpAssignmentIDRef) : TpResult

release(dataSessionID : in TpSessionID , cause : in TpDataSessionReleaseCause) : TpResult

superviseDataSessionReq(dataSessionID : in TpSessionID, treatment : in TpDataSessionSuperviseTreatment , bytes : in TpDataSessionSuperviseVolume) : TpResult

setDataSessionChargePlan(dataSessionID: in TpSessionID, dataSessionChargePlan: in TpDataSessionChargePlan): TpResult

setAdviceOfCharge(dataSessionID : in TpSessionID, aoCInfo : in TpAoCInfo, tariffSwitch : in TpDuration): TpResult

6.6
Network User Location

The Network User Location (UL) SCF provides the IpUserLocationCamel interface, which provides methods for periodic and triggered location reporting. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppUserLocationCamel interface to provide the callback mechanism.

[image: image19.wmf]

<<Interface>>

IpOsa

<<Interface>>

IpService

<<Interface>>

IpUserLocationCamel

locationReportReq()

periodicLocationReportingStartReq()

periodicLocationReportingStop()

triggeredLocationReportingStartReq()

tri

ggeredLocationReportingStop()

<<Interface>>

IpAppUserLocationCamel

locationReportRes()

locationReportErr()

periodicLocationReport()

periodicLocationReportErr()

triggeredLocationReport()

triggered

LocationReportErr()

uses

setCallback()

Figure 6-16: Network User Location class diagram.

6.6.1
Network User Location SCF interface

This interface is the ‘SCF manager’ interface for Network User Location.

	<<Interface>>

IpUserLocationCamel

	

	locationReportReq(appLocationCamel : in IpAppUserLocationCamelRef, users : in TpAddressSet, assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStartReq(appLocationCamel : in IpAppUserLocationCamelRef, users : in TpAddressSet, reportingInterval : in TpDuration, assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStop(stopRequest : in TpMobilityStopAssignmentData) : TpResult

triggeredLocationReportingStartReq(appLocationCamel : in IpAppUserLocationCamelRef, users : in TpAddressSet, trigger : in TpLocationTriggerCamel, assignmentId : out TpSessionIDRef) : TpResult

triggeredLocationReportingStop(stopRequest : in TpMobilityStopAssignmentData) : TpResult

6.6.2
Network User Location application interface

The network user location application interface is implemented by the client application developer and is used to handle location reports that are specific for mobile telephony users.

	<<Interface>>

IpAppUserLocationCamel

	

	locationReportRes(assignmentId : in TpSessionID, locations : in TpUserLocationCamelSet) : TpResult

locationReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic)

periodicLocationReport(assignmentId : in TpSessionID, locations : in TpUserLocationCamelSet) : TpResult

periodicLocationReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic)

triggeredLocationReport(assignmentId : in TpSessionID, location : in TpUserLocationCamel, criterion : in TpLocationTriggerCamel) : TpResult

triggeredLocationReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic)

6.7
User Status

The User Status (US) SCF provides the IpUserStatus interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppUserStatus interface to provide the callback mechanism.

[image: image20.wmf]

<<Interface>>

IpAppUserStatus

statusReportRes()

statusReportErr()

triggeredStatusReport()

triggeredStatusReportErr()

<<Interface>>

IpOsa

<<Interface>>

IpService

<<Interface>>

IpUserStatus

statusReportReq()

triggeredStatusReportingStartReq()

triggeredStatusReportingStop()

uses

setCallback()

Figure 6-17: User Status class diagram.

6.7.1
User Status SCF interface

The user status interface represents the interface to the user status service capability feature.

	<<Interface>>

IpUserStatus

	

	statusReportReq(appStatus : in IpAppUserStatusRef, users : in TpAddressSet, assignmentId : out TpSessionIDRef) : TpResult

triggeredStatusReportingStartReq (appStatus : in IpAppUserStatusRef, users : in TpAddressSet, assignmentId : out TpSessionIDRef) : TpResult

triggeredStatusReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

6.7.2
User Status application interface

The user-status application interface is implemented by the client application developer and is used to handle user status reports.

	<<Interface>>

IpAppUserStatus

	

	statusReportRes(assignmentId : in TpSessionID, status : in TpUserStatusSet) : TpResult

statusReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic)

triggeredStatusReport(assignmentId : in TpSessionID, status : in TpUserStatus) : TpResult

triggeredStatusReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic)

6.8
Terminal Capabilities

The Terminal Capabilities SCF enables the application to retrieve the terminal capabilities of the specified terminal. The Terminal Capabilities service provides a SCF interface that is called IpTerminalCapabilities. There is no need for an application interface, since IpTerminalCapabilities only contains the synchronous method getTerminalCapabilities.

[image: image21.wmf]termcap

Figure 6-18: Terminal Capabilities package

[image: image22.wmf]IpTerminalCapabilities

getTerminalCapabilities()

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

Figure 6-19: Terminal Capabilities class diagrams

6.8.1
Terminal Capabilities SCF interface

The Terminal Capabilities SCF interface IpTerminalCapabilities contains the synchronous method getTerminalCapabilities. The application has to provide the terminaIdentity is input to this method. The result indicates whether or not the terminal capabilities are available in the network and, in case they are, it will return the terminal capabilities (see the data definition of TpTerminalCapabilities for more information).

	<<Interface>>

IpTerminalCapabilities

	

	getTerminalCapabilities(
terminalIdentity : in TpString,

Result : out TpTerminalCapabilitiesRef) : TpResult

7
State Transition Diagrams

This section contains the State Transition Diagrams for the objects that implement the interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will return the P_TASK_REFUSED exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

7.1
Framework

7.1.1
IpAuthentication

.[image: image23.wmf]Idle

IpInitial.initiateAuthentication

InitAuthentication

entry/ find auth. mechanism

selectAuthMethod

WaitForApplicationResult

entry/ ^IpAppAuthentication.Authenticate

Application Authenticated

ALL

STATES

authenticate ^result Authenticate(response)

authenticate ^result Authenticate(response)

"no mechanism found" ^result selectAuthMethod(P_INVALID_AUTH_CAPABILITY)

"mechanism found"[[two way authentication] ^result selectAuthenticationMethod(prescribedMethod)

"mechanism found"[one way authentication] / inform IpInitial that application authenticated

abortAuthentication / inform IpInitial that application aborted authentication

result Authenticate[response valid] / inform IpInitial that application authenticated

result Authenticate[response invalid]

IpAccess.endAccess

Figure 7-1: State Transition Diagram for Authentication
7.1.1.1
Idle state

When the application has requested the IpInitial interface for initiateAuthentication, an object implementing the IpAuthentication interface is created. The application now has to provide it’s authentication capabilities by invoking the SelectAuthMethod method.

7.1.1.2
Init Authentication state

In this state the Framework selects the preferred authentication mechanism within the capability of the application. When a proper mechanism is found, the Framework can decide that the application doesn’t have to be authenticated (one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error code P_INVALID_AUTH_CAPABILITY) is returned and the Authentication object is destroyed. This implies that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.

7.1.1.3
Wait For Application Result state

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate method on the application. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application. When the Framework responds to the Authenticate request, the response is analysed and in case the response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.

7.1.1.4
Application Authenticated state

In this state the application is considered authenticated and is now allowed to request access to the IpAccess interface. In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the application.

7.1.2
IpAccess

[image: image24.emf]Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ^signServiceAgreement

signServiceAgreement[correct service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure 7-2: State Transition Diagram for Access
7.1.2.1
Active state

When the application requestes access to the Framework on the IpInitial interface, an object implementing the IpAccess interface is created. The application can now request other Framework interfaces, including Service Discovery. When the application is no longer interested in using the interfaces it calls the endAccess method. This results in the destruction of all interface objects used by the application. In case the network operator decides that the application has no longer access to the interfaces the same will happen.

7.1.3
IpServiceDiscovery

[image: image25.emf]Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure 7-3: State Transition Diagram for Service Discovery
7.1.3.1
Active state

When the application requests for the Service Discovery SCF by invoking the obtainInterface or the obtainInterfaceWithCallback methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.1.4
IpLoadManager

[image: image26.wmf]IDLE

Notifying

do/ obtain load statistics and report them at specified interval with queryLoadRes

Suspending

Notification

reportLoad

Registered

IpAccess.obtainInterface

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

unregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]

queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

All States

IpAccess.endAccess

Figure 7-4: State Transition Diagram for LoadManager

7.1.4.1
Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.1.4.2
Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The LoadManager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking enableLoadControl() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().

When entering this state, an object called LoadManagerInternal is created that has an internal state machine encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is shown in Figure .

7.1.4.3
Notifying

In the Notifying state the application has requested for load statistics. The Loadmanager gathers the requested information and (periodically) reports them to the application.

7.1.4.4
Suspending Notification

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load statistics information.

[image: image27.wmf]Normal load

Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

ALL

STATES

unregisterLoadController

registerLoadController

Figure 7-5: State Transition Diagram for the LoadManagerInternal

7.1.4.5
Normal Load state

In this state the none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.

7.1.4.6
Application overload state

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.4.7
Internal overload

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.4.8
Internal and application overload

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.5
IPFaultManager
[image: image28.wmf]FW

ACTIVE

FWFAULTY

entry/ ^

fwFaultReportInd to all applications with callback

exit/ ^

fwFaultRecoveryInd to all applications with callback

FW ACTIVITY TEST

entry/ test activity of framework

exit/ ^

app,activityTestRes

SVC ACTIVITY TEST

entry/ test activity of services

exit/ ^

app,activityTestRes

genFaultStatsRecordReq ^

app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'

service fault' / ^

serviceUnavailableInd to all application using the service

IpAccess.obtainFrameworkInterfaceWithCallback

("

FaultManagement") / add application to fault management

fault detected in

fw

fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq [null]

fault detected in

fw

no fault detected

service fault ^

srvUnavailableInd to all applications using the service

no fault detected

activityTestReq [

scfID]

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess/

Abort pending test request

IpAccess.endAccess

Figure 7-6: State Transition Diagram for Fault Manager
7.1.5.1
Framework Active state

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.

7.1.5.2
Framework Faulty state

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belongs to any SCFs of the framework returns an error. If the framework ever recover, application with fault management callbacks will be notified via a fwFaultRecoveryInd message.

7.1.5.3
The Service Activity Test state

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcUnavailableInd message.

7.1.5.4
The Framework Activity Test state

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwFaultReportInd message.

7.1.6
IpHeartbeatmgmt

[image: image29.wmf]Application not

Application supervised

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess

changeTimePeriod

Figure 7-7: State Transition Diagram for the Heartbeat manager

7.1.6.1
Application not supervised

In this state the application has not registered for heartbeat supervision by the Framework.

7.1.6.2
Application supervised

In this state the application has registered for heartbeat supervision by the Framework. Periodically the Framework will request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

7.1.7
IpHeartBeat

[image: image30.emf]FW supervised by

Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure 7-8: State Transition Diagram for HeartBeat
7.1.7.1
FW Supervised by Application state

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application calls the send() method and the Framework returns it’s heartbeat result.

7.1.8
IpOAM

[image: image31.emf]Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure 7-9: State Transition Diagram for OAM
7.1.8.1
Active state

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.

7.1.9.
IpServiceRegistration

[image: image32.wmf]registering SCF

SCF registered

registerService

announceServiceAvailability

unregisterService

describeService

Figure 7-10: State Transition Diagram for Service Registration
7.1.9.1
Registering SCF

This is the state entered when a Service Capability Server (SCS) starts the registration of its SCF in the Framework, by informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this SCF, that will be used to identify it by both sides. When receiving this ID, the SCS instantiates a manager interface for this SCF, which will be the entry point for applications that want to use it.

7.1.9.2
SCF Registered

This is the state entered when, the service manager interface having been instantiated, the SCS informs the Framework of the availability of the SCF, and makes it actually available by providing the Framework with the manager interfaces to be used by applications. Anytime the SCF availability may be withdrawn by un-registering it.

7.2
Generic Call Control

7.2.1
Call Control Manager

[image: image33.wmf]Active

Creation of

CallControlManager

by Service Factory

Notification terminated

"new"

enableCallNotification

disableCallNotification

"a call object has terminated abnormally" ^IpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] / create a Call object ^IpAppCallControlManager.callEventNotify

disableCallNotification

"a call object has terminated abnormally" ^IpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

^IpAppCallControlManager.callNotificationInterrupted

Figure 7-11: State Transition Diagram for the CallControlManager

7.2.1.1
Active state

In this state a relation between the Application and the Generic Call Control Service Capability Feature has been established. It allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control Manager will create a Call object and inform the application by invoking the method callEventNotify() on the IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related events by calling disableCallNotification().

7.2.1.2
Notification terminated state

When the Call Control manager is in the Notification terminated state, events requested with enableCallNotification() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

7.2.2
Call

[image: image34.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

setAdviceOfCharge

superviseCallReq

getCallInfoReq

setCallChargePlan

IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"network event received for which was monitored[routeRes]

"call supervision event" ^superviseCallRes

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^callFaultDetected

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^callFaultDetected

Figure 7-12: State Transition Diagram for Call

7.2.2.1
Active state

In this state a call between two parties is being setup or present. Refer to the substates for more details

The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice Of Charge information by calling setAdviceOfCharge().

7.2.2.1.1
1 Party in Call state

When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().

When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

7.2.2.1.2
2 Parties in Call state

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.

2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.

7.2.2.3
Network released state

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Idle.

7.2.2.4
Finished state

In this state the call has ended and no call related information is to be send to the application. The application can only release the Call object. Calling the deassingCall() method has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

7.2.2.5
Application released state.

In this state the application has requested to release the Call object and the Gateway collects the possible call information requested with getCallInfoReq(). In case the application has not requested additional call related information immediately the Call object is destroyed.

7.3
User Interaction

7.3.1
UI Manager

[image: image35.wmf]Active

exit/ release UI objects

Creation of UIManager

by Service Factory

"new"

createUI / create UI object

createUICall / create UICall object

enableUINotification

disableUINotification

"arrival of user initiated request for user interaction"[notification active for this ui

event] / create a UI object ^IpAppUIlManager.userInteractionEventNotify

Notification

Terminated

IpAccess.terminateServiceAgreement

"notifications not possible" ^userInteractionNotificationInterrupted

"notifications possible again" ^userInteractionNotificationContinued

IpAccess.terminateServiceAgreement

disableUINotification

Figure 7-13: State Transition Diagram for the UIManager

7.3.1.1
Active state

In this state a relation between the Application and a User Interaction Service Capability Feature (Generic User Interaction or Call User Interaction) has been established. The application is now able to request creation of UI and/orUICall objects.

7.3.1.2.
Notification Terminated state

When the UI manager is in the Notification terminated state, events requested with enableUINotification() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

7.3.2
UI

[image: image36.wmf]Active

IpUIManager.createUI

IpAppUIManager.userInteractionEventNotify

sendInfoReq

sendInfoAndCollectReq

Release

Pending

Finished

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

release

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final request]

^sendInfoAndCollectErr

"fault detected in the user interaction" /

report error on outstanding user

interaction ^userInteractionFaultDetected

release

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectReq

"request to send message unsuccessful"[final

request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request]

^sendInfoAndCollectErr

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectReq

"request to send message unsuccessful" ^sendInfoErr

"request to send info and collect a response unsuccessful"

^sendInfoAndCollectErr

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" /

report error on outstanding user interaction

^userInteractionFaultDetected

release

Figure 7-14: State Transition Diagram for UI

7.3.2.1
Active state

In this state the UI object is available for requesting messages to be send to the network.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.

7.3.2.2
Release Pending state

A transition to this state is made when the Application has indicated that after a certain message no further messages need to be sent to the end-user. There are, however, still a number of messages that are not yet completed. When the last message is sent or when the last user interaction has been obtained, the UI object is destroyed.

In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.

7.3.2.3
Finished

In this state the user interaction has ended. The application can only release the UI object. Note that the application has to release the object itself as good OO practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed

7.3.3
UI Call

[image: image37.wmf]Active

Release

Pending

Finished

IpUIManager.createUICall

release

abortActionReq / cancel the user interaction

abortActionReq[not the final request] / cancel the

user interaction

Already requested announcements

will continue, even when

application releases the object.

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final request]

^sendInfoAndCollectErr

"fault detected in the user interaction" / report error on outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectReq

"request to send message unsuccessful"[

final request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request] ^sendInfoAndCollectErr

abortActionReq[final request is cancelled]

/ cancel the user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectReq

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error on all outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"request to send message unsuccessful" ^sendInfoErr

"request to send info and collect response unsuccessful" ^sendInfoAndCollectErr

Figure 7-15: State Transition Diagram for UICall

7.3.3.1
Active state

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from the end-user.

When the application de-assigns the related Call object, a transition is made to the Finished state. However, all requested announcements will continue, even when the application releases the UICall object.

When the related call is due to some reason terminated, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.

7.3.3.2
Release Pending state

A transition to this state is made when the Application has indicated that after a certain announcement no further announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object is destroyed. In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.

When the application de-assigns the related Call object, a transition is made to the Finished state. However, all requested announcements will continue, even when the application releases the UICall object.

When the related call is due to some reason terminated, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.

7.3.3.3
Finished

In this state the user interaction has ended. The application can only release the UICall object. Note that the application has to release the object itself as good OO practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

7.4
Data Session
[image: image38.wmf]Network Released

Finished

Application

Released

release

timeout ^dataSessionFaultDetected(P_DATA_SESSION_TIMEOUT_ON_RELEASE)

Active

Setup

Established

Setup

IpAppDataSessionControlManager.dataSess

ionEventNotify(P_EVENT_DSCS_SETUP)

Established

setDataSessionChargePlan

superviseDataSessionReq

setAdviceOfCharge

connectReq

[no reports requested with

superviseDataSessionReq]

"requested information ready"

^superviseDataSessionRes

release

"requested information ready"

^superviseDataSessionRes

[no reports requested with

superviseDataSessionReq]

In state Finished a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

dataSessionFaultDetected should be

reported to the application.

IpAppDataSessionControlManager.dataSessionEventNotify(

P_EVENT_DSCS_ESTABLISHED)

"data session supervision event" ^superviseDataSessionRes

release

"data session ends : party disconnects"[monitor for this event] ^ConnectRes(P_DATA_SESSION_REPORT_DISCONNECT)

"fault detected"[fault cannot be communicated with network event] ^dataSessionFaultDetected

"data session ends: party disconnects"[no monitor for this event]

"connection establishedr" ^connectRes(P_DATA_SESSION_REPORT_CONNECTED)

Figure 7-16: State Transition Diagram for Data Session

7.4.1
Active state

In this state a data connection between two parties is being setup or established (refer to the substates for more details). The application can request the gateway for a certain type of charging by calling setDataSessionChargePlan(), send advice of charge information by calling setAdviceOfCharge(), and request supervision of the data session by calling superviseDataSessionReq().

7.4.1.1
Setup state

The Setup state is reached after a dataSessionEvebtNotify() indicates to the application that a data session is interested in being connected. If the application is going to connect the two parties by invoking connectReq() it may call the charging or supervision methods before.

7.4.1.2
Established state

In this state the data connection is established. If supervision has been requested the application expects the corresponding superviseDataSessionRes().

7.4.2
Network Released state

In this state the data session has ended. In the case on a normal user disconnection the transition to this state is indicated to the application by the disconnect report of connectRes(). But this will only happen if the application requested monitoring of the disconnect event before. An abnormal disconnection is indicated by dataSessionFaultDetected(). The application may wait for outstanding superviseDataSessionRes().

7.4.3
Finished state

In this state the data session has ended and no further data session related information is to be send to the application. The application can only release the data session object. If the application fails to invoke release() within a certain period of time the gateway should automatically release the object and send a timeout indication to the application.

7.4.4
Application released state.

In this state the application has released the data session object. If supervision has been requested the gateway will collect the information and send superviseDataRes() to the application.

7.5
Network User Location
[image: image39.wmf]Active

"

new"

terminateServiceAgreement

locationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location

Camel by Service Factory

Figure 7-17: State Transition Diagram for Network User Location

During the signServiceAgreement a new user location interface reference is created, which is user as the initial point of contact for the application.

7.5.1
Active state

In this state, a relation between the Application and the Network User Location Service Capability Feature has been established. It allows the application to request a specific user location reports, subscribe to periodic user location reports or subscribe to triggers that generate location report when a location update occurs inside the current VLR area or when the user moves to another VLR area or both.

7.6
User Status

[image: image40.wmf]Active

"

new"

terminateServiceAgreement

statusReportReq

triggeredStatusReportingStartReq

triggeredStatusReportingStop

Creation of User Status by

Service Factory

Figure 7-18: State Transition Diagram for User Status.

7.6.1
Active State

In this state, a relation between the Application and the User Status Service Capability Feature has been established. It allows the application to request a specific user status report or subscribe to triggers that generate status reports when the status of one of the monitored user changes.

8
Data Definitions

8.1
Common Data definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa package.

8.1.1
Primitive Data Types

	Type Name
	Description

	TpBoolean
	Defines a Boolean data type.

	TpInt32
	Defines a signed 32 bit integer.

	TpFloat
	Defines a single precision float

	TpString
	Defines a string, comprising length and data.

8.1.2
Structured data types classification

Many different structured data types are used in OSA and a classification/clarification is required.

8.1.2.1
Structures made of data elements

This describes data types that can be considered as classes (in Java or C++) or structures (C++, IDL). The goal of these data types is to group pieces of information into a logical unit. Example: an TAddress data type may be defined in IDL as:

struct TpAddress {

 TpAddressPlan Plan;

 TpString AddrString;

 TpString Name;

 TpAddressPresentation Presentation;

 TpAddressScreening Screening;

 TpString SubAddressString;

 };

8.1.2.2
Tagged choice of data elements (i.e.: Free unions)

This describes a data type, which actually evaluates to one of a choice of a number of data elements. This data element contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type itself (the union part). This form of data type is also referred to as a tagged union.

This data type can be implemented in IDL as a union with a switch statement for the tag part, and a set or case statements for the union part.

Example: The TCallError data type may be defined in IDL as:

union TpCallError switch (TCallErrorType) {

 case CALL_ERROR_UNDEFINED:

 TpCallErrorInfoDefault
CallErrorUndefined;

 case CALL_ERROR_ROUTING_ABORTED:

 TpCallErrorInfoRoutingAborted
CallErrorRoutingAborted;

 case CALL_ERROR_CALL_ABANDONED:

 TpCallErrorInfoCallAbandoned
CallErrorCallAbandoned;

 case CALL_ERROR_INVALID_ADDRESS:

 TpCallErrorInfoInvalidAddress
CallErrorInvalidAddress;

 case CALL_ERROR_INVALID_STATE:

 TpCallErrorInfoDefault
CallErrorInvalidState;

 case CALL_ERROR_INVALID_CRITERIA:

 TpCallErrorInfoDefault
CallErrorInvalidCriteria;

};

8.1.2.3
Collection of data elements

This describes a data type, which comprises an ordered or unordered collection of data elements of the same type. The number of data elements in the collection is always know and can be implicit (IDL) or may appear as an integer inside a structure depending on the language used. This data type can be implemented in IDL as a sequence.

Example:

typedef sequence<SessionID> SessionIDSet;
8.1.2.4
References

This describes a reference (or pointer) to a data type. This is primarily used to describe 'out' method parameters.

This data type may be implemented (for example, in C++) as a pointer. However, in some languages it may not be necessary for 'out' parameters to be implemented as pointers.

Example: The TAddressRef data type may be defined in C++ as:

typedef TAddress *TAddressRef;
8.1.3
Interface Definitions

8.1.3.1
IpOsa

Defines the address of an IpOsa Interface.

8.1.3.2
IpOsaRef

Defines a Reference to type IpOsa

8.1.3.3
IpOsaRefRef

Defines a Reference to type IpOsaRef

8.1.3.4
IpService

Defines the address of an IpService Interface.

8.1.3.5
IpServiceRef

Defines a Reference to type IpService

8.1.3.6
IpServiceRefRef

Defines a Reference to type IpServiceRef

8.1.4
Non primitive and structured type types definition

8.1.4.1
TpAssignmentID

This data type is identical to a TpInt32. It specifies a number which identifies an individual event notification enabled by the application or OSA service capability feature.

8.1.4.2
TpSessionID

Defines a network unique session ID. OSA uses this ID to identify sessions within an object implementing an interface capable of handling multiple sessions. For the different OSA service capability features, the sessionIDs are unique only in the context of a manager instantiation (e.g., within the context of one generic call control manager). As such if an application creates two instances of the same SCF manager it shall use different instantiations of the callback objects which implement the callback interfaces.

The session ID is identical to a TpInt32 type.

8.1.4.3
TpSessionIDSet

Defines a collection of data elements of TpSessionID.

8.1.4.4
TpDuration

This data type is a TpInt32 representing a time interval in milliseconds. A value of "-1" defines infinite duration and value of "-2" represents default duration.

8.1.4.5
TpResult

Defines the structure of data elements that specifies the result of a method call.

	Structure Member Name
	Structure Member Type

	ResultType
	TpResultType

	ResultFacility
	TpResultFacility

	ResultInfo
	TpResultInfo

8.1.4.6
TpResultType

Defines whether the method was successful or not.

	Name
	Value
	Description

	P_RESULT_FAILURE
	0
	Method failed

	P_RESULT_SUCCESS
	1
	Method was successful

8.1.4.7
TpResultFacility

Defines the facility code of a result. In Release 99 of the OSA API, only P_RESULT_FACILITY_UNDEFINED must be used.

	Name
	Value
	Description

	P_RESULT_FACILITY_UNDEFINED
	0
	Undefined

8.1.4.8
TpResultInfo

Defines further information relating to the result of the method, such as error codes.

	Name
	Value
	Description

	P_RESULT_INFO_UNDEFINED
	0000h
	No further information present

	 P_INVALID_DOMAIN_ID
	0001h
	Invalid client ID

	 P_INVALID_AUTH_CAPABILITY
	0002h
	Invalid authentication capability

	P_INVALID_AGREEMENT_TEXT
	0003h
	Invalid agreement text

	P_INVALID_SIGNING_ALGORITHM
	0004h
	Invalid signing algorithm

	 P_INVALID_INTERFACE_NAME
	0005h
	Invalid interface name

	P_INVALID_SERVICE_ID
	0006h
	Invalid service capability feature ID

	P_INVALID_EVENT_TYPE
	0007h
	Invalid event type

	P_SERVICE_NOT_ENABLED
	0008h
	The service capability feature ID does not correspond to a SCF that has been enabled

	P_INVALID_ASSIGNMENT_ID
	0009h
	The assignment ID is invalid

	P_INVALID_PARAMETER
	000Ah
	The method has been called with an invalid parameter

	P_INVALID_PARAMETER_VALUE
	000Bh
	A method parameter has an invalid value

	P_PARAMETER_MISSING
	000Ch
	A required parameter has not been specified in the method call

	P_RESOURCES_UNAVAILABLE
	000Dh
	The required resources in the network are not available

	P_TASK_REFUSED
	000Eh
	The requested method has been refused

	P_TASK_CANCELLED
	000Fh
	The requested method has been cancelled

	P_INVALID_DATE_TIME_FORMAT
	0010h
	Invalid date and time format provided

	P_NO_CALLBACK_ADDRESS_SET
	0011h
	The requested method has been refused because no callback address is set

	P_INVALID_SIGNATURE
	0012h
	Invalid digital signature

	P_INVALID_SERVICE_TOKEN
	0013h
	The service capability feature token does not correspond to a token that had been issued, or the issued token has expired

	P_ACCESS_DENIED
	0014h
	The client is not currently authenticated with the framework

	P_INVALID_PROPERTY
	0015h
	The framework does not recognise the property supplied by the client

	P_METHOD_NOT_SUPPORTED
	0016h
	The method is not allowed or supported within the context of the current service agreement.

	P_NO_ACCEPTABLE_AUTH_CAPABILITY
	0017h
	An authentication mechanism, which is acceptable to the framework, is not supported by the client.

	P_INVALID_INTERFACE_TYPE
	0018h
	The interface reference supplied by the client is the wrong type.

	P_INVALID_ACCESS_TYPE
	0019h
	The framework does not support the type of access interface requested by the client.

	P_SERVICE_ACCESS_DENIED
	001Ah
	The client application is not allowed to access this service.

	General security errors

	P_USER_NOT_SUBSCRIBED

	0030h
	A service (or application) is unauthorised to access information and request SCFs with regards to users that are not subscribed to it.

	P_APPLICATION_NOT_ACTIVATED
	0031h
	A service (or application) is unauthorised to access information and request SCFs with regards to its subscribed users that have deactivated that particular service (or application).

	P_USER_PRIVACY
	0032h
	A service (or application) is unauthorised to access information and request an SCF with regards to its subscribed users that have set their privacy flag regarding that particular SCF.

	
	
	

	P_GCCS_SERVICE_INFORMATION_MISSING
	0100h
	Information relating to the Call Control SCF could not be found

	P_GCCS_SERVICE_FAULT_ENCOUNTERED
	0101h
	Fault detected in the Call Control SCF

	P_GCCS_UNEXPECTED_SEQUENCE
	0102h
	Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the call or the call leg.

	P_GCCS_INVALID_ADDDRESS
	0103h
	Invalid address specified

	P_GCCS_INVALID_CRITERIA
	0104h
	Invalid criteria specified

	P_GCCS_INVALID_NETWORK_STATE
	0105h
	Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

	
	
	

	P_GUIS_INVALID_CRITERIA
	0300h
	Invalid criteria specified

	P_GUIS_ILLEGAL_ID
	0301h
	Information id specified is invalid

	P_GUIS_ID_NOT_FOUND
	0302h
	A legal information id is not known to the User Interaction SCF

	P_GUIS_ILLEGAL_RANGE
	0303h
	The values for minimum and maximum collection length are out of range.

	P_GUIS_INVALID_COLLECTION_CRITERIA
	0304h
	Invalid collection criteria specified

	P_GUIS_INVALID_NETWORK_STATE
	0305h
	Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

	P_GUIS_UNEXPECTED_SEQUENCE
	0306h
	Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams.

	
	
	

	P_DSCS_SERVICE_INFORMATION_MISSING
	0400h
	Information relating to the Data Session Control SCF could not be found

	P_DSCS_SERVICE_FAULT_ENCOUNTERED
	0401h
	Fault detected in the Data Session Control SCF

	P_DSCS_UNEXPECTED_SEQUENCE
	0402h
	Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the data session.

	P_DSCS_INVALID_ADDDRESS
	0403h
	Invalid address specified

	P_DSCS_INVALID_STATE
	0404h
	Invalid state specified

	P_DSCS_INVALID_CRITERIA
	0405h
	Invalid criteria specified

	P_DSCS_INVALID_NETWORK_STATE
	0406h
	Although the sequence of method calls is allowed by the OSA gateway, the underlying protocol can not support it.

8.1.4.9
TpDate

This data type is identical to a TpString. It specifies the data in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

YYYY-MM-DD
where the date is specified as:

YYYY
four digits year

MM
two digits month

DD
two digits day

The date elements are separated by a hyphen character (-).

Example:

The 4 December 1998, is encoded as the string:

1998-12-04

8.1.4.10
TpTime

This data type is identical to a TpString. It specifies the time in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

HH:MM:SS.mmm
or

HH:MM:SS.mmmZ
where the time is specified as:

HH
two digits hours (24h notation)

MM
two digits minutes

SS
two digits seconds

mmm
three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

Example

For local time, 10:30 and 15 seconds is encoded as the string:

10:30:15.000

or in UTC it would be:

10:30:15.000Z

8.1.4.11
TpDateAndTime

This data type is identical to a TpString. It specifies the data and time in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

HH:MM:SS.mmm
or

YYYY-MM-DD HH:MM:SS.mmmZ
where the date is specified as:

YYYY
four digits year

MM
two digits month

DD
two digits day

The date elements are separated by a hyphen character (-).

The time is specified as:

HH
two digits hours (24h notation)

MM
two digits minutes

SS
two digits seconds

mmm
three digits fractions of a second (i.e. milliseconds)

A colon character separates the time elements (:). The date and time are separated by a space. Optionally, a capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

Example

The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

1998-12-04 10:30:15.000

for local time, or in UTC it would be:

1998-12-04 10:30:15.000Z

8.1.4.12
TpAddress

Defines the structure of data elements that specifies an address.

	Structure Member Name
	Structure Member Type

	Plan
	TpAddressPlan

	AddrString
	TpString

	Name
	TpString

	Presentation
	TpAddressPresentation

	Screening
	TpAddressScreening

	SubAddressString
	TpString

The AddrString defines the actual address information and the structure of the string depends on the Plan. The following table gives an overview of the format of the AddrString for the different address plans.

	Address Plan
	AddrString Format Description
	Example

	P_ADDRESS_PLAN_NOT_PRESENT
	Not applicable
	

	P_ADDRESS_PLAN_UNDEFINED
	Not applicable
	

	P_ADDRESS_PLAN_IP
	For Ipv4 the dotted quad notation is used. Also for IPv6 the dotted notation is used. The address can optionally be followed by a port number separated by a colon.
	“127.0.0.1:42”

	P_ADDRESS_PLAN_MULTICAST
	An Ipv4 class D address or Ipv6 equivalent in dotted notation.
	“224.0.0.0”

	P_ADDRESS_PLAN_UNICAST
	A non multicast or broadcast IP address in dotted notation.
	“127.0.0.1”

	P_ADDRESS_PLAN_E164
	An international number without the international access code, including the country code and excluding the leading zero of the area code.
	“31161249111”

	P_ADDRESS_PLAN_AESA
	The ATM End System Address in binary format (40 bytes)
	01234567890ABCDEF01234567890ABCDEF01234567

	P_ADDRESS_PLAN_URL
	A uniform resource locator as defined in IETF RFC 1738
	“http://www.parlay.org”

	P_ADDRESS_PLAN_NSAP
	The binary representation of the Network Service Access Point
	490001AA000400010420

	P_ADDRESS_PLAN_SMTP
	An e-mail address as specified in IETF RFC822
	“webmaster@parlay.org”

	
	
	

	P_ADDRESS_PLAN_X400
	The X400 address structured as a set of attibute value pairs separated by semicolons.
	“C=nl;ADMD= ;PRMD=uninet;O=parlay;S=Doe;I=S;G=John’

8.1.4.13
TpAddressSet

Defines a collection of TpAddress elements.

8.1.4.14
TpAddressPlan

Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a Address data element.

	Name
	Value
	Description

	P_ADDRESS_PLAN_NOT_PRESENT
	-1
	No Address Present

	P_ADDRESS_PLAN_UNDEFINED
	0
	Undefined

	P_ADDRESS_PLAN_IP
	1
	IP

	P_ADDRESS_PLAN_MULTICAST
	2
	Multicast

	P_ADDRESS_PLAN_UNICAST
	3
	Unicast

	P_ADDRESS_PLAN_E164
	4
	E.164

	P_ADDRESS_PLAN_AESA
	5
	AESA

	P_ADDRESS_PLAN_URL
	6
	URL

	P_ADDRESS_PLAN_NSAP
	7
	NSAP

	P_ADDRESS_PLAN_SMTP
	8
	SMTP

	
	
	

	P_ADDRESS_PLAN_X400
	10
	X.400

8.1.4.15
TpAddressPresentation

Defines whether an address can be presented to an end user.
	Name
	Value
	Description

	P_ADDRESS_PRESENTATION_UNDEFINED
	0
	Undefined

	P_ADDRESS_PRESENTATION_ALLOWED
	1
	Presentation Allowed

	P_ADDRESS_PRESENTATION_RESTRICTED
	2
	Presentation Restricted

	P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE
	3
	Address not available for presentation

8.1.4.16
TpAddressRange

This type is identical to TpAddress with the difference that the AddrString can contain wildcarts.

Two wildcards are allowed: * which matches zero or more characters and ? which matches exactly one character. The wildcards are only allowed at the end or at the beginning of the addrString.

Some examples for E164 addresses:

“123”
matches specified number.

“123*”
matches all numbers starting with 123 (including 123 itself).

“123??*”
matches all numbers starting with 123 and at least 5 digits long.

“123???”
matches all numbers starting with 123 and exactly 6 digits long

For e-mail style addresses, the wildcards can be used at the beginning of the addrString:


*@3gpp.org
matches all email addresses in the 3gpp.org domain.

The following address ranges are illegal:

-
1?3

-
1*3

-
?123*

8.1.4.17
TpAddressScreening

Defines whether an address has been screened by the application.
	Name
	Value
	Description

	P_ADDRESS_SCREENING_UNDEFINED
	0
	Undefined

	P_ADDRESS_SCREENING_USER_VERIFIED_PASSED
	1
	user provided address
verified and passed

	P_ADDRESS_SCREENING_USER_NOT_VERIFIED
	2
	user provided address
not verified

	P_ADDRESS_SCREENING_USER_VERIFIED_FAILED
	3
	user provided address
verified and failed

	P_ADDRESS_SCREENING_NETWORK
	4
	Network provided address (Note that even though the application may provide the address to the gateway, from the end-user point of view it is still regarded as a network provided address)

8.1.4.18
TpAddressError

Defines the reasons why an address is invalid.
	Name
	Value
	Description

	P_ADDRESS_INVALID_UNDEFINED
	0
	Undefined error

	P_ADDRESS_INVALID_MISSING
	1
	Mandatory address not present

	P_ADDRESS_INVALID_MISSING_ELEMENT
	2
	Mandatory address element not present

	P_ADDRESS_INVALID_OUT_OF_RANGE
	3
	Address is outside of the valid range

	P_ADDRESS_INVALID_INCOMPLETE
	4
	Address is incomplete

	P_ADDRESS_INVALID_CANNOT_DECODE
	5
	Address cannot be decoded

8.1.4.19
TpURL

This data type is identical to a TpString and contains a URL address. The usage of this type is distinct of TpAddress, which can also hold an URL. The latter contains a user address which can be specified in many ways: IP, mail, URL, X.300, E164. On the other hand, the TpURL type does not hold the address of a user and always represents a URL. This type is used in user interaction and defines the URL of the text or stream to be sent to an end-user. It is therefore inappropriate to use a general address here.

8.1.4.20
TpPrice

This data type is identical to a TpString. It specifies price information, which is used in user interaction when an announcement is being played and additional information is given to the user. This is defined as the string of characters (digits) in the following format:

DDDDDD.DD

8.1.4.21
TpAoCInfo

Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal.

	Sequence Element Name
	Sequence Element Type
	Description

	ChargeOrder
	TpAoCOrder
	Charge order

	Currency
	TpString

	Currency unit according to ISO-4217:1995

8.1.4.22
TpAoCOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

	
	Tag Element Type
	

	
	TpAoCOrderCategory
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CHARGE_ADVICE_INFO
	TpChargeAdviceInfo
	ChargeAdviceInfo

	P_CHARGE_PER_TIME
	TpChargePerTime
	ChargePerTime

	P_CHARGE_NETWORK
	TpString
	NetworkCharge

8.1.4.23
TpCallAoCOrderCategory

	Name
	Value
	Description

	P_CHARGE_ADVICE_INFO
	0
	Set of GSM Charge Advice Information elements according to 3GPP TS 22.024

	P_CHARGE_PER_TIME
	1
	Charge per time

	P_CHARGE_NETWORK
	2
	Operator specific charge plan specification, e.g. charging table name / charging table entry

8.1.4.24
TpChargeAdviceInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network.

	Sequence Element Name
	Sequence Element Type
	Description

	CurrentCAI
	TpCAIElements
	Current tariff

	NextCAI
	TpCAIElements
	Next tariff after tariff switch

8.1.4.25
TpCAIElements

Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3GPP TS 22.024.

	Sequence Element Name
	Sequence Element Type
	Description

	UnitsPerInterval
	TpInt32
	Units per interval

	SecondsPerTimeInterval
	TpInt32
	Seconds per time interval

	ScalingFactor
	TpInt32
	Scaling factor

	UnitIncrement
	TpInt32
	Unit increment

	UnitsPerDataInterval
	TpInt32
	Units per data interval

	SegmentsPerDataInteral
	TpInt32
	Segments per data interal

	InitialSecsPerTimeInterval
	TpInt32
	Initial secs per time interval

8.1.4.26
TpChargePerTime

Defines the Sequence of Data Elements that specify the time based charging information.
	Sequence Element Name
	Sequence Element Type
	Description

	InitialCharge
	TpInt32
	Initial charge amount (in currency units * 0.0001)

	CurrentChargePerMinute
	TpInt32
	Current tariff (in currency units * 0.0001)

	NextChargePerMinute
	TpInt32
	Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge()

8.2
Framework Data Definitions

This section provides the framework specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is the following:


Data type, that shows the name of the data type.


Description, that describes the data type.


Tabular specification, that specifies the data types and values of the data type.


Example, if relevant, shown to illustrate the data type.

8.2.1
Common Framework Data Definitions

8.2.1.1
TpClientAppID

This is an identifier for the client application. It is used to identify the client to the framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

8.2.1.2
TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

8.2.1.3
TpDomainID

Defines the Tagged Choice of Data Elements that specify either the framework or the type of entity attempting to access the framework.

	
	Tag Element Type
	

	
	TpDomainIDType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_FW
	TpFwID
	FwID

	P_CLIENT_APPLICATION
	TpClientAppID
	ClientAppID

	P_ENT_OP
	TpEntOpID
	EntOpID

	P_REGISTERED_SERVICE
	TpServiceID
	ServiceID

	P_SERVICE_SUPPLIER
	TpServiceSupplierID
	ServiceSupplierID

8.2.1.4
TpDomainIDType

Defines either the framework or the type of entity attempting to access the framework

	Name
	Value
	Description

	P_FW
	0
	The framework

	P_CLIENT_APPLICATION
	1
	A client application

	P_ENT_OP
	2
	An enterprise operator

	P_REGISTERED_SERVICE
	3
	A registered service

	P_SERVICE_SUPPLIER
	4
	A service supplier

8.2.1.5
TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator. In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service Capability Feature.

8.2.1.6
TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

8.2.1.7
TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

8.2.1.8
TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data type consisting of the following {name,value} pair:

	Sequence Element

Name
	Sequence Element

Type

	PropertyName
	TpPropertyName

	PropertyValue
	TpPropertyValue

8.2.1.9
TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

8.2.1.10
TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

8.2.1.11
TpFwID

This data type is identical to TpString and identifies the Framework to a client application (or Service Capability Feature)

8.2.1.12
TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceID
	TpServiceID
	

	ServicePropertyList
	TpServicePropertyList
	

8.2.1.13
TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

8.2.1.14
TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceTypeName
	TpServiceTypeName
	

	ServicePropertyList
	TpServicePropertyList
	

8.2.1.15
TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber, TpServiceNameString, and a number of relevant TpServiceSpecString, which are concatenated using a forward separator (/) as the separation character.

8.2.1.16
TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

8.2.1.17
TpServiceIDRef

Defines a Reference to type TpServiceId.

8.2.1.18
TpServiceNameString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF name

	P_CALL_CONTROL
	The name of the Call Control SCF

	P_USER_INTERACTION
	The name of the User Interaction SCFs

	P_TERMINAL_CAPABILITIES
	The name of the Terminal Capabilities SCF

	P_USER_LOCATION_CAMEL
	The name of the Network User Location SCF

	P_USER_STATUS
	The name of the User Status SCF

	P_DATA_SESSION_CONTROL
	The name of the Data Session Control SCF

8.2.1.19
TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no SCF specialization

	P_CALL
	The Call specialization of the of the User Interaction SCF

8.2.1.20
TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number that is used to build the service ID (refer to TpServiceID).

8.2.1.21
TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service type. It defines the name and mode of the service property, and also the service property type: e.g. boolean, integer. It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service property’s name and mode, but also defines the list of values assigned to it.

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServicePropertyName
	

	ServicePropertyMode
	TpServicePropertyMode
	

	ServicePropertyTypeName
	TpServicePropertyTypeName
	

8.2.1.22
TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

8.2.1.23
TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.This defines SCF property modes.

	Name
	Value
	Documentation

	NORMAL
	0
	The value of the corresponding SCF property type may optionally be provided

	MANDATORY
	1
	The value of the corresponding SCF property type must be provided at service registration time

	READONLY
	2
	The value of the corresponding SCF property type is optional, but once given a value it may not be modified

	MANDATORY_READONLY
	3
	The value of the corresponding SCF property type must be provided and subsequently it may not be modified.

8.2.1.24
TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are listed in the SCF data definition.

8.2.1.25
TpServicePropertyName

This data type is identical to TpString. It defines a valid SFC property name. Valid SCF property names are listed in the SCF data definition.

8.2.1.26
TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

8.2.1.27
TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property. The valid SCF property values are given in the SCF data definition.

8.2.1.28
TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

8.2.1.29
TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServicePropertyName
	TpServicePropertyName
	

	ServicePropertyValueList
	TpServicePropertyValueList
	

	ServicePropertyMode
	TpServicePropertyMode
	

8.2.1.30
TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

8.2.1.31
TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the framework. This data type is identical to TpString.

8.2.1.32
TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	ServiceTypePropertyList
	TpServiceTypePropertyList
	a sequence of property name and property mode tuples associated with the SCF type

	ServiceTypeNameList
	TpServiceTypeNameList
	the names of the super types of the associated SCF type

	EnabledOrDisabled
	TpBoolean
	an indication whether the SCF type is enabled (true) or disabled (false)

8.2.1.33
TpServiceTypeName

This data type is identical to TpString and describes a valid SCF type name.
8.2.1.34
TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

8.2.2
Trust and Security Management Data Definitions

8.2.2.1
TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following value is defined for OSA release 99:

	String Value
	Description

	P_ACCESS
	Access using the OSA Access Interfaces: IpAccess and IpAppAccess

8.2.2.2
TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and client's with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following value is defined for OSA release 99:

	String Value
	Description

	P_AUTHENTICATION
	Indicates the default authentication method, i.e. the IpAuthentication and IpAppAuthentication interfaces.

8.2.2.3
TpAuthCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the authentication capabilities that could be supported by the OSA. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined for OSA release 99.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no client capabilities.

	P_DES_56
	A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

	P_DES_128P_DES_1P_DES_128
	A simple transfer of secret information that is shared between the client entity and the framework with protection against interception on the link provided by the DES algorithm with a 128bit shared secret key

	P_RSA_512
	A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

	P_RSA_1024
	A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

8.2.2.4
TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma (,)as the separation character.

8.2.2.5
TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the framework should perform when an application or service capability feature entity ends its access session (e.g. existing service capability or application sessions may be stopped, or left running).

8.2.2.6
TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a reference to the authentication interface of the domain

	Sequence Element Name
	Sequence Element Type
	Description

	DomainID
	TpDomainID
	Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

	AuthInterface
	IpOSARef
	Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intents to access another.

8.2.2.7
TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

	Character String Value
	Description

	P_DISCOVERY
	The name for the Discovery interface.

	P_OAM
	The name for the OA&M interface.

	P_LOAD_MANAGER
	The name for the Load Manager interface.

	P_FAULT_MANAGER
	The name for the Fault Manager interface.

	P_HEARTBEAT_MANAGEMENT
	The name for the Heartbeat Management interface.

	P_REGISTRATION
	The name for the Service Registration interface.

8.2.2.8
TpServiceAccessControl

This is Sequence of Data Elements containing the access control policy information controlling access to the service capability feature, and the trustLevel that the Network operator has assigned to the client application.

	Sequence Element Name
	Sequence Element Type

	Policy
	TpString

	TrustLevel
	TpString

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

The trustLevel parameter indicates the trust level that the Network operator has assigned to the client application.

8.2.2.9
TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

8.2.2.10
TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element Name
	Sequence Element Type

	DigitalSignature
	TpString

	ServiceMgrInterface
	IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

8.2.2.11
TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that must be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined for OSA release 99.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512 bit key.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024 bit key

8.2.3
Integrity Management Data Definitions

8.2.3.1
TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available” or “Unavailable”.

8.2.3.2
TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

	Sequence Element Name
	Sequence Element Type

	Period
	TpTimeInterval

	FaultRecords
	TpFaultStatsSet

8.2.3.3
TpFaultStats
This defines the sequence of data elements which provide the statistics on a per fault type basis.

	Sequence Element Name
	Sequence Element Type
	Description

	Fault
	TpInterfaceFault
	

	Occurrences
	TpInt32
	The number of separate instances of this fault

	MaxDuration
	TpInt32
	The number of seconds duration of the longest fault

	TotalDuration
	TpInt32
	The cumulative duration (all occurrences)

	NumberOfClientsAffected
	TpInt32
	The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.

8.2.3.4
TpFaultStatsSet
This data type defines a Numbered Set of Data Elements of type TpFaultStats
8.2.3.5
TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

8.2.3.6
TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected

8.2.3.7
TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

	Name
	Value
	Description

	SERVICE_UNAVAILABLE_UNDEFINED
	0
	Undefined

	SERVICE_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	SERVICE_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	SERVICE_UNAVAILABLE_OVERLOADED
	3
	The SCF is fully overloaded

	SERVICE_UNAVAILABLE_CLOSED
	4
	The SCF has closed itself (e.g. to protect from fraud or malicious attack)

8.2.3.8
TpFWUnavailReason

Defines the reason why the Framework is unavailable.

	Name
	Value
	Description

	FW_UNAVAILABLE_UNDEFINED
	0
	Undefined

	FW_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	FW_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	FW_UNAVAILABLE_OVERLOADED
	3
	The framework is fully overloaded

	FW_UNAVAILABLE_CLOSED
	4
	The framework has closed itself (e.g. to protect from fraud or malicious attack)

	FW_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed

8.2.3.9
TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

	Name
	Value
	Description

	LOAD_LEVEL_NORMAL
	0
	Normal load

	LOAD_LEVEL_OVERLOAD
	1
	Overload

	LOAD_LEVEL_SEVERE_OVERLOAD
	2
	Severe Overload

8.2.3.10
TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

	Sequence Element Name
	Sequence Element Type

	LoadThreshold
	TpFloat

8.2.3.11
TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

	Sequence Element Name
	Sequence Element Type

	LoadLevel
	TpLoadLevel

	LoadThreshold
	TpLoadThreshold

8.2.3.12
TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

	Sequence Element Name
	Sequence Element Type

	StartTime
	TpDateAndTime

	StopTime
	TpDateAndTime

8.2.3.13
TpLoadPolicy

Defines the load balancing policy.

	Sequence Element Name
	Sequence Element Type

	LoadPolicy
	TpString

8.2.3.14
TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. framework, service or application) at a specific date and time.

	Sequence Element Name
	Sequence Element Type

	LoadStatisticEntityID
	TpLoadStatisticEntityID

	TimeStamp
	TpDateAndTime

	LoadStatisticInfo
	TpLoadStatisticInfo

8.2.3.15
TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

8.2.3.16
TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information

	Sequence Element Name
	Sequence Element Type

	LoadValue
	TpFloat

	LoadLevel
	TpLoadLevel

Note: LoadValue is expressed as a percentage.

8.2.3.17
TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or framework) providing load statistics.

	
	Tag Element Type
	

	
	TpLoadStatisticEntityType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_LOAD_STATISTICS_FW_TYPE
	TpFwID
	FrameworkID

	P_LOAD_STATISTICS_SVC_TYPE
	TpServiceID
	ServiceID

	P_LOAD_STATISTICS_APP_TYPE
	TpClientAppID
	ClientAppID

8.2.3.18
TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or framework) supplying load statistics.

	Name
	Value
	Description

	P_LOAD_STATISTICS_FW_TYPE
	0
	Framework-type load statistics

	P_LOAD_STATISTICS_SVC_TYPE
	1
	Service-type load statistics

	P_LOAD_STATISTICS_APP_TYPE
	2
	Application-type load statistics

8.2.3.19
TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

	
	Tag Element Type
	

	
	TpLoadStatisticInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_LOAD_STATISTICS_VALID
	TpLoadStatisticData
	LoadStatisticData

	P_LOAD_STATISTICS_INVALID
	TpLoadStatisticError
	LoadStatisticError

8.2.3.20
TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

	Name
	Value
	Description

	P_LOAD_STATISTICS_VALID
	0
	Valid load statistics

	P_LOAD_STATISTICS_INVALID
	1
	Invalid load statistics

8.2.3.21
TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

	Name
	Value
	Description

	P_LOAD_INFO_ERROR_UNDEFINED
	0
	Undefined error

	P_LOAD_INFO_UNAVAILABLE
	1
	Load statistics unavailable

8.3
Generic Call Control Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.gccs package.

8.3.1
Interface definitions

8.3.1.1
IpAppCall

Defines the address of an IAppCall Interface.

8.3.1.2
IpAppCallRef

Defines a Reference to type IAppCall
8.3.1.3
IpAppCallRefRef

Defines a Reference to type IAppCallRef.

8.3.1.4
IpAppCallControlManager

Defines the address of an IAppCallControlManager Interface.

8.3.1.5
IpAppCallControlManagerRef

Defines a Reference to type IAppCallControlManager.

8.3.1.6
IpCall

Defines the address of an ICall Interface.

8.3.1.7
IpCallRef

Defines a Reference to type ICall.

8.3.1.8
IpCallRefRef

Defines a Reference to type ICallRef.

8.3.1.9
IpCallControlManager

Defines the address of an ICallControlManager Interface.’

8.3.1.10
IpCallControlManagerRef

Defines a Reference to type ICallControlManager.

8.3.2
Event Notification data definitions

8.3.2.1
TpCallEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpCallReportType data-type.

	Name
	Value
	Description

	P_EVENT_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_GCCS_OFFHOOK_EVENT
	1
	GCCS – Offhook event.

This can be used for hot-line features. In case this event is set in the TpCallEventCriteria, only the originating address(es) may be specified in the criteria.

	P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT
	2
	GCCS – Address information collected

The network has collected the information from the calling party, but not yet analysed the information. The number can still be incomplete. Applications might set notification for this event when part of the number analysis needs to be done in the application.

	P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT
	4
	GCCS – Address information is analysed.

The dialled number is a valid and complete number in the network.

	P_EVENT_GCCS_CALLED_PARTY_BUSY
	8
	GCCS – Called party is busy

	P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE
	16
	GCCS – Called party is unreachable

This can happen when the called party has a mobile phone that is switched off.

	P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY
	32
	GCCS – No answer from called party

	P_EVENT_GCCS_ROUTE_SELECT_FAILURE
	64
	GCCS – Failure in routing the call

	P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY
	128
	GCCS – Party answered call.

8.3.2.2
TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for an event notification.

	Sequence Element Name
	Sequence Element Type
	Description

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested

	OriginationAddress
	TpAddressRange
	Defines the origination address or address range for which the notification is requested

	CallEventName
	TpCallEventName
	Name of the event(s)

	CallNotificationType
	TpCallNotificationType
	Indicates whether it is related to the originating or the terminating user in the call.

	MonitorMode
	TpCallMonitorMode
	Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

8.3.2.3
TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	EventCriteria
	TpCallEventCriteria
	The event criteria that were specified by the application.

	AssignmentID
	TpInt32
	The associated assignementID. This can be used to disable the notification.

8.3.2.4
TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

8.3.2.5
TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating or the terminating user in the call.

	Name
	Value
	Description

	P_ORIGINATING
	1
	Indicates that the notification is related to the originating user in the call.

	P_TERMINATING
	2
	Indicates that the notification is related to the terminating user in the call.

8.3.2.6
TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Call event notification.

	Sequence Element Name
	Sequence Element Type

	DestinationAddress
	TpAddress

	OriginatingAddress
	TpAddress

	OriginalDestinationAddress
	TpAddress

	RedirectingAddress
	TpAddress

	CallAppInfo
	TpCallAppInfoSet

	CallEventName
	TpCallEventName

	CallNotificationType
	TpCallNotificationType

	MonitorMode
	TpCallMonitorMode

8.3.3
Generic Call Control Type definitions

8.3.3.1
TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a called party. The values of this data type are operator specific.

8.3.3.2
TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.
	
	Tag Element Type
	

	
	TpCallAppInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_APP_ALERTING_MECHANISM
	TpCallAlertingMechanism
	CallAppAlertingMechanism

	P_CALL_APP_NETWORK_ACCESS_TYPE
	TpCallNetworkAccessType
	CallAppNetworkAccessType

	P_CALL_APP_TELE_SERVICE
	TpCallTeleService
	CallAppTeleService

	P_CALL_APP_BEARER_SERVICE
	TpCallBearerService
	CallAppBearerService

	P_CALL_APP_PARTY_CATEGORY
	TpCallPartyCategory
	CallAppPartyCategory

	P_CALL_APP_PRESENTATION_ADDRESS
	TpAddress
	CallAppPresentationAddress

	P_CALL_APP_GENERIC_INFO
	TpString
	CallAppGenericInfo

	P_CALL_APP_ADDITIONAL_ADDRESS
	TpAddress
	CallAppAdditionalAddress

CallAppPresentationAddress contains presentation address.

CallAppGenericInfo contains operator specific information.

CallAppAdditionalAddress contains additional address.
8.3.3.3
TpCallAppInfoType

Defines the type of application related call information.

	Name
	Value
	Description

	P_CALL_APP_UNDEFINED
	0
	Undefined

	P_CALL_APP_ALERTING_MECHANISM
	1
	The alerting mechanism or pattern to use

	P_CALL_APP_NETWORK_ACCESS_TYPE
	2
	The network access type (e.g. ISDN)

	P_CALL_APP_TELE_SERVICE
	3
	Indicates the tele-service (e.g. speech) and related info such as clearing programme

	P_CALL_APP_BEARER_SERVICE
	4
	Indicates the bearer service (e.g. 64kb/s unrestricted data).

	P_CALL_APP_PARTY_CATEGORY
	5
	The category of the calling or called party

	P_CALL_APP_PRESENTATION_ADDRESS
	6
	The address to be presented to other call parties

	P_CALL_APP_GENERIC_INFO
	7
	Carries unspecified application-Service Capability Feature information

	P_CALL_APP_ADDITIONAL_ADDRESS
	8
	Indicates an additional address

8.3.3.4
TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

8.3.3.5
TpCallBearerService

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, and 3GPP TS 22.002)
	Name
	Value
	Description

	P_CALL_BEARER_SERVICE_UNKNOWN
	0
	Bearer capability information unknown at this time

	P_CALL_BEARER_SERVICE_SPEECH
	1
	Speech

	P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED
	2
	Unrestricted digital information

	P_CALL_BEARER_SERVICE_ DIGITALRESTRICTED
	3
	Restricted digital information

	P_CALL_BEARER_SERVICE_AUDIO
	4
	3.1 kHz audio

	P_CALL_BEARER_SERVICE_ DIGITALUNRESTRICTEDTONES
	5
	Unrestricted digital information with tones/announcements

	P_CALL_BEARER_SERVICE_VIDEO
	6
	Video

8.3.3.6
TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

	Sequence Element Name
	Sequence Element Type
	Description

	ChargeOrderType
	TpCallChargeOrder
	Charge order

	Currency
	TpString

	Currency unit according to ISO-4217:1995

	AdditionalInfo
	TpString
	Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

8.3.3.7
TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

	
	Tag Element Type
	

	
	TpCallChargeOrderCategory
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_CHARGE_PER_TIME
	TpChargePerTime
	ChargePerTime

	P_CALL_CHARGE_NETWORK
	TpString
	NetworkCharge

8.3.3.8
TpCallChargeOrderCategory

	Name
	Value
	Description

	P_CALL_CHARGE_PER_TIME
	0
	Charge per time

	P_CALL_CHARGE_NETWORK
	1
	Operator specific charge plan specification, e.g. charging table name / charging table entry

8.3.3.9
TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.
	Sequence Element Name
	Sequence Element Type
	

	CallLegSessionID
	TpSessionID
	The leg that initiated the release of the call.

If the call release was not initiated by the leg, then this value is set to –1.

	Cause
	TpCallReleaseCause
	The cause of the call ending.

8.3.3.10
TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error.

	Sequence Element Name
	Sequence Element Type

	ErrorTime
	TpDateAndTime

	ErrorType
	TpCallErrorType

	AdditionalErrorInfo
	TpCallAdditionalErrorInfo

8.3.3.11
TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors.

	
	Tag Element Type
	

	
	TpCallErrorType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_ERROR_UNDEFINED
	NULL
	Undefined

	P_CALL_ERROR_INVALID_ADDRESS
	TpAddressError
	CallErrorInvalidAddress

	P_CALL_ERROR_INVALID_STATE
	NULL
	Undefined

8.3.3.12
TpCallErrorType

Defines a specific call error.

	Name
	Value
	Description

	P_CALL_ERROR_UNDEFINED
	0
	Undefined; the method failed or was refused, but no specific reason can be given.

	P_CALL_ERROR_INVALID_ADDRESS
	1
	The operation failed because an invalid address was given

	P_CALL_ERROR_INVALID_STATE
	2
	The call was not in a valid state for the requested operation

8.3.3.13
TpCallFault

Defines the cause of the call fault detected.

	Name
	Value
	Description

	P_CALL_FAULT_UNDEFINED
	0
	Undefined

	P_TIMEOUT_ON_RELEASE
	1
	This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific.

	P_TIMEOUT_ON_INTERRUPT
	2
	This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

8.3.3.14
TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	CallReference
	IpCallRef
	This element specifies the interface reference for the call object.

	CallSessionID
	TpSessionID
	This element specifies the call session ID of the call.

8.3.3.15
TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

8.3.3.16
TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.

	Sequence Element Name
	Sequence Element Type
	Description

	CallInfoType
	TpCallInfoType
	The type of call report.

	CallInitiationStartTime
	TpDateAndTime
	The time and date when the call, or follow-on call, was started.

	CallConnectedToResourceTime
	TpDateAndTime
	The date and time when the call was connected to the resource. This data element is only valid where information on user interaction is reported.

	CallConnectedToDestinationTime
	TpDateAndTime
	The date and time when the call was connected to the destination (i.e. when the destination answered the call). If the destination did not answer the time is set to an empty string.

This data element is invalid where information on user interaction is reported with an intermediate report.

	CallEndTime
	TpDateAndTime
	The date and time when the call, follow-on call or user-interaction was terminated.

	Cause
	TpCallReleaseCause
	The cause of call termination.

8.3.3.17
TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_INFO_UNDEFINED
	00h
	Undefined

	P_CALL_INFO_TIMES
	01h
	Relevant call times

	P_CALL_INFO_RELEASE_CAUSE
	02h
	Call release cause

	P_CALL_INFO_INTERMEDIATE
	04h
	Send only intermediate reports. When this is not specified the information report will only be sent when the call has ended. When intermediate reports are requested a report will be generated between follow-on calls, i.e. when a party leaves the call.

8.3.3.18
TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

	Name
	Value
	Description

	P_CALL_MONITOR_MODE_INTERRUPT
	0
	The call event is intercepted by the call control SCF and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

	P_CALL_MONITOR_MODE_NOTIFY
	1
	The call event is detected by the call control SCF but not intercepted. The application is notified of the event and call processing continues

	P_CALL_MONITOR_MODE_DO_NOT_MONITOR
	2
	Do not monitor for the event

8.3.3.19
TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3GPP TS 24.002) This information is network operator specific and may not always be available because there is no standard protocol to retrieve the information.
	Name
	Value
	Description

	P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN
	0
	Network type information unknown at this time

	P_CALL_NETWORK_ACCESS_TYPE_POT
	1
	POTS

	P_CALL_NETWORK_ACCESS_TYPE_ISDN
	2
	ISDN

	P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET
	3
	Dial-up Internet

	P_CALL_NETWORK_ACCESS_TYPE_XDSL
	4
	xDSL

	P_CALL_NETWORK_ACCESS_TYPE_WIRELESS
	5
	Wireless

8.3.3.20
TpCallOverloadType

Defines the type of call overload that has been detected (and possibly acted upon) by the network.
	Name
	Value
	Description

	P_CALL_OVERLOAD_TYPE_UNDEFINED
	0
	Infinite interval

(do not admit any calls)

	P_CALL_OVERLOAD_TYPE_NEW_CALLS
	1
	New calls to the application are causing overload (i.e. inbound overload)

	P_CALL_OVERLOAD_TYPE_ROUTED_CALLS
	2
	Calls being routed to destination or origination addresses by the application are causing overload (i.e. outbound overload)

8.3.3.21
TpCallServiceCode

Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted.

	Sequence Element Name
	Sequence Element Type

	CallServiceCodeType
	TpCallServiceCodeType

	ServiceCodeValue
	TpString

8.3.3.22
TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

	Name
	Value
	Description

	P_CALL_SERVICE_CODE_UNDEFINED
	0
	The type of service code is unknown. The corresponding string is operator specific.

	P_CALL_SERVICE_CODE_DIGITS
	1
	The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits.

	P_CALL_SERVICE_CODE_FACILITY
	2
	A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932

	P_CALL_SERVICE_CODE_U2U
	3
	A user-to-user message was received. The associated string contains the content of the user-to-user information element.

	P_CALL_SERVICE_CODE_HOOKFLASH
	4
	The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

	P_CALL_SERVICE_CODE_RECALL
	5
	The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

8.3.3.23
TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

	Name
	Value
	Description

	P_CALL_PARTY_CATEGORY_UNKNOWN
	0
	calling party's category unknown at this time

	P_CALL_PARTY_CATEGORY_OPERATOR_F
	1
	operator, language French

	P_CALL_PARTY_CATEGORY_OPERATOR_E
	2
	operator, language English

	P_CALL_PARTY_CATEGORY_OPERATOR_G
	3
	operator, language German

	P_CALL_PARTY_CATEGORY_OPERATOR_R
	4
	operator, language Russian

	P_CALL_PARTY_CATEGORY_OPERATOR_S
	5
	operator, language Spanish

	P_CALL_PARTY_CATEGORY_ORDINARY_SUB
	6
	ordinary calling subscriber

	P_CALL_PARTY_CATEGORY_PRIORITY_SUB
	7
	calling subscriber with priority

	P_CALL_PARTY_CATEGORY_DATA_CALL
	8
	data call (voice band data)

	P_CALL_PARTY_CATEGORY_TEST_CALL
	9
	test call

	P_CALL_PARTY_CATEGORY_PAYPHONE
	10
	payphone

8.3.3.24
TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

	Sequence Element Name
	Sequence Element Type

	Value
	TpInt32

	Location
	TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

8.3.3.25
TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.
	Sequence Element Name
	Sequence Element Type

	MonitorMode
	TpCallMonitorMode

	CallEventTime
	TpDateAndTime

	CallReportType
	TpCallReportType

	AdditionalReportInfo
	TpCallAdditionalReportInfo

8.3.3.26
TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types of reports.
	
	Tag Element Type
	

	
	TpCallReportType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_REPORT_UNDEFINED
	NULL
	Undefined

	P_CALL_REPORT_PROGRESS
	NULL
	Undefined

	P_CALL_REPORT_ALERTING
	NULL
	Undefined

	P_CALL_REPORT_ANSWER
	NULL
	Undefined

	P_CALL_REPORT_BUSY
	TpCallReleaseCause
	Busy

	P_CALL_REPORT_NO_ANSWER
	NULL
	Undefined

	P_CALL_REPORT_DISCONNECT
	TpCallReleaseCause
	CallDisconnect

	P_CALL_REPORT_REDIRECTED
	TpAddress
	ForwardAddress

	P_CALL_REPORT_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	P_CALL_REPORT_ROUTING_FAILURE
	TpCallReleaseCause
	RoutingFailure

8.3.3.27
TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

	Sequence Element Name
	Sequence Element Type

	MonitorMode
	TpCallMonitorMode

	CallReportType
	TpCallReportType

	AdditionalReportcriteria
	TpCallAdditionalReportCriteria

8.3.3.28
TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.
	
	Tag Element Type
	

	
	TpCallReportType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_REPORT_UNDEFINED
	NULL
	Undefined

	P_CALL_REPORT_PROGRESS
	NULL
	Undefined

	P_CALL_REPORT_ALERTING
	NULL
	Undefined

	P_CALL_REPORT_ANSWER
	NULL
	Undefined

	P_CALL_REPORT_BUSY
	NULL
	Undefined

	P_CALL_REPORT_NO_ANSWER
	TpDuration
	NoAnswerDuration

	P_CALL_REPORT_DISCONNECT
	NULL
	Undefined

	P_CALL_REPORT_REDIRECTED
	NULL
	Undefined

	P_CALL_REPORT_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	P_CALL_REPORT_ROUTING_FAILURE
	NULL
	Undefined

8.3.3.29
TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

8.3.3.30
TpCallReportType

Defines a specific call event report type.

	Name
	Value
	Description

	P_CALL_REPORT_UNDEFINED
	0
	Undefined

	P_CALL_REPORT_PROGRESS
	1
	Call routing progress event: an indication from the network that progress has been made in routing the call to the requested called party.

	P_CALL_REPORT_ALERTING
	2
	Call is alerting at the called party.

	P_CALL_REPORT_ANSWER
	3
	Call answered at address

	P_CALL_REPORT_BUSY
	4
	Called address refused call due to busy

	P_CALL_REPORT_NO_ANSWER
	5
	No answer at called address

	P_CALL_REPORT_DISCONNECT
	6
	The called party has disconnected.

	P_CALL_REPORT_REDIRECTED
	7
	Call redirected to new address: an indication from the network that the call has been redirected to a new address.

	P_CALL_REPORT_SERVICE_CODE
	8
	Mid-call service code received

	P_CALL_REPORT_ROUTING_FAILURE
	9
	Call routing failed - re-routing is possible

8.3.3.31
TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3GPP TS 22.003)

	Name
	Value
	Description

	P_CALL_TELE_SERVICE_UNKNOWN
	0
	Teleservice information unknown at this time

	P_CALL_TELE_SERVICE_TELEPHONY
	1
	Telephony

	P_CALL_TELE_SERVICE_FAX_2_3
	2
	Facsimile Group 2/3

	P_CALL_TELE_SERVICE_FAX_4_I
	3
	Facsimile Group 4, Class I

	P_CALL_TELE_SERVICE_FAX_4_II_III
	4
	Facsimile Group 4, Classes II and III

	P_CALL_TELE_SERVICE_VIDEOTEX_SYN
	5
	Syntax based Videotex

	P_CALL_TELE_SERVICE_VIDEOTEX_INT
	6
	International Videotex interworking via gateways or interworking units

	P_CALL_TELE_SERVICE_TELEX
	7
	Telex service

	P_CALL_TELE_SERVICE_MHS
	8
	Message Handling Systems

	P_CALL_TELE_SERVICE_OSI
	9
	OSI application

	P_CALL_TELE_SERVICE_FTAM
	10
	FTAM application

	P_CALL_TELE_SERVICE_VIDEO
	11
	Videotelephony

	P_CALL_TELE_SERVICE_VIDEO_CONF
	12
	Videoconferencing

	P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF
	13
	Audiographic conferencing

	P_CALL_TELE_SERVICE_MULTIMEDIA
	14
	Multimedia services

	P_CALL_TELE_SERVICE_CS_INI_H221
	15
	Capability set of initial channel of H.221

	P_CALL_TELE_SERVICE_CS_SUB_H221
	16
	Capability set of subsequent channel of H.221

	P_CALL_TELE_SERVICE_CS_INI_CALL
	17
	Capability set of initial channel associated with an active 3.1 kHz audio or speech call.

	P_CALL_TELE_SERVICE_DATATRAFFIC
	18
	Data traffic.

	P_CALL_TELE_SERVICE_EMERGENCY_CALLS
	19
	Emergency Calls

	P_CALL_TELE_SERVICE_SMS_MT_PP
	20
	Short message MT/PP

	P_CALL_TELE_SERVICE_SMS_MO_PP
	21
	Short message MO/PP

	P_CALL_TELE_SERVICE_CELL_BROADCAST
	22
	Cell Broadcast Service

	P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3
	23
	Alternate speech and facsimile group 3

	P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3
	24
	Automatic Facsimile group 3

	P_CALL_TELE_SERVICE_VOICE_GROUP_CALL
	25
	Voice Group Call Service

	P_CALL_TELE_SERVICE_VOICE_BROADCAST
	26
	Voice Broadcast Service

8.3.3.32
TpCallSuperviseReport

Defines the responses from the call control SCF for calls that are supervised. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_SUPERVISE_TIMEOUT
	01h
	The call supervision timer has expired

	P_CALL_SUPERVISE_CALL_ENDED
	02h
	The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.

	P_CALL_SUPERVISE_TONE_APPLIED
	04h
	A warning tone has been applied This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT.

	P_CALL_SUPERVISE_UI_FINISHED
	08h
	The user interaction has finished.

8.3.3.33
TpCallSuperviseTreatment

Defines the treatment of the call by the call control SCF when the call supervision timer expires. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_SUPERVISE_RELEASE
	01h
	Release the call when the call supervision timer expires

	P_CALL_SUPERVISE_RESPOND
	02h
	Notify the application when the call supervision timer expires

	P_CALL_SUPERVISE_APPLY_TONE
	04h
	Send a warning tone to the controlling party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period.

8.4
User Interaction Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.guis package.

8.4.1
Interface definitions

8.4.1.1
IpUI

Defines the address of an IUI Interface.

8.4.1.2
IpUIRef

Defines a Reference to type IUI.

8.4.1.3
IpUIRefRef

Defines a Reference to type IUIRef.

8.4.1.4
IpUIManager

Defines the address of an IUIManager Interface.

8.4.1.5
IpUIManagerRef

Defines a Reference to type IUIManager.

8.4.1.6
IpAppUI

Defines the address of an IAppUI Interface.

8.4.1.7
IpAppUIRef

Defines a Reference to type IAppUI.

8.4.1.8
IpAppUIRefRef

Defines a Reference to type IAppUIRef.

8.4.1.9
IpAppUIManager

Defines the address of an IAppUIManager Interface.

8.4.1.10
IpAppUIManagerRef

Defines a Reference to type IAppUIManager.

8.4.2
Type definitions

8.4.2.1
TpUICallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UICall object

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UICallRef
	IpUICallRef
	This element specifies the interface reference for the UICall object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the user interaction session ID.

8.4.2.2
TpUICallIdentifierRef

Defines a reference to type TpUICallIdentifier.

8.4.2.3
TpUICollectCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information, such as the end character, first character timeout, inter-character timeout, and maximum interaction time.

	Structure Element Name
	Structure Element Type

	MinLength
	TpInt32

	MaxLength
	TpInt32

	EndSequence
	TpString

	StartTimeout
	TpDuration

	InterCharTimeout
	TpDuration

The structure elements specify the following criteria:

MinLength:
Defines the minimum number of characters (e.g. digits) to collect.

MaxLength:
Defines the maxmum number of characters (e.g. digits) to collect.

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phonenumbers.

StartTimeout:
specifies the value for the first character time-out timer. The timer is started when the announcement has been completed or has been interrupted. The user should enter the start of the response (e.g. first digit) before the timer expires. If the start of the response is not entered before the timer expires, the input is regarded to be erroneous. After receipt of the start of the response, which may be valid or invalid, the timer is stopped.

InterCharTimeOut:
specifies the value for the inter-character time-out timer.The timer is started when a response (e.g. digit) is received, and is reset and restarted when a subsequent response is received. The responses may be valid or invalid. the announcement has been completed or has been interrupted.

 Input is considered successful if the following applies:

If the EndSequence is not present (i.e. NULL):

-
when the InterCharTimeOut timer expires; or

-
when the number of valid digits received equals the MaxLength.

If the EndSequence is present:

-
when the InterCharTimeOut timer expires; or

-
when the EndSequence is received; or

-
when the number of valid digits received equals the MaxLength.

In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer expires or when the EndSequence is received, the input is considered erroneous.

The collected characters (including the EndSequence) are sent to the client application when input hs been successful.

8.4.2.4
TpUIError

Defines the UI call error codes.
	Name
	Value
	Description

	P_UI_ERROR_UNDEFINED
	0
	Undefined error

	P_UI_ERROR_ILLEGAL_ID
	1
	The information id specified is invalid

	P_UI_ERROR_ID_NOT_FOUND
	2
	A legal information id is not known to the the User Interaction SCF

	P_UI_ERROR_RESOURCE_UNAVAILABLE
	3
	The information resources used by the User Interaction SCF are unavailable, e.g. due to an overload situation.

	P_UI_ERROR_ILLEGAL_RANGE
	4
	The values for minimum and maximum collection length are out of range

	P_UI_ERROR_IMPROPER_CALLER_RESPONSE
	5
	Improper user response

	P_UI_ERROR_ABANDON
	6
	The specified leg is disconnected before the send information completed

	P_UI_ERROR_NO_OPERATION_ACTIVE
	7
	There is no active user interaction for the specified leg. Either the application did not start any user interaction or the user interaction was already finished when the abortAction_Req() was called.

	P_UI_ERROR_NO_SPACE_AVAILABLE
	8
	There is no more storage capacity to record the message when the recordMessage() operation was called

The call user interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as a corresponding call or call leg object no longer exists.

8.4.2.5
TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

	Structure Element Name
	Structure Element Type
	Description

	OriginatingAddress
	TpAddressRange
	Defines the originating address for which the notification is requested.

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	ServiceCode
	TpString
	Defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

8.4.2.6
TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification

	Structure Element Name
	Structure Element Type
	

	OriginatingAddress
	TpAddress
	Defines the originating address.

	DestinationAddress
	TpAddress
	Defines the destination address.

	ServiceCode
	TpString
	Defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

	DataTypeIndication
	TpUIEventInfoDataType
	Identifies the type of contents in the dataString.

	DataString
	TpString
	Freely defined data string with a limited length e.g. 160 bytes according to the network policy.

8.4.2.7
TpUIEventInfoDataType

Defines the type of the dataString parameter in the method userInteractionEventNotify.

	Name
	Value
	Description

	P_UI_EVENT_DATA_TYPE_UNDEFINED
	0
	Undefined (e.g. binary data)

	P_UI_EVENT_DATA_TYPE_UNSPECIFIED
	1
	Unspecified data

	P_UI_EVENT_DATA_TYPE_TEXT
	2
	Text

	P_UI_EVENT_DATA_TYPE_USSD_DATA
	3
	USSD data starting with coding scheme

8.4.2.8
TpUIFault

Defines the cause of the UI fault detected.

	Name
	Value
	Description

	P_UI_FAULT_UNDEFINED
	0
	Undefined

	P_UI_CALL_DEASSIGNED
	1
	The related Call object has been deassigned. No further interaction is possible. Already requested announcements will continue but no requested reports will be send to the application.

8.4.2.9
TpUIIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UI object

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UIRef
	IpUIRef
	This element specifies the interface reference for the UI object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the user interaction session ID.

8.4.2.10
TpUIIdentifierRef

Defines a reference to type TpUIIdentifier.

8.4.2.11
TpUIInfo

Defines the Tagged Choice of Data Elements that specify the information to send to the user.

	
	Tag Element Type
	

	
	TpUIInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_INFO_ID
	TpInt32
	InfoId

	P_UI_INFO_DATA
	TpString
	InfoData

	P_UI_INFO_ADDRESS
	TpURL
	InfoAddress

The choice elements represents the following:

InfoID:
defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.

InfoData:
defines the data to be sent to an end-user’s terminal. The data is free-format and the encoding is depending on the resources being used..

InfoAddress:
defines the URL of the text or stream to be sent to an end-user’s terminal.

8.4.2.12
TpUIInfoType

Defines the type of the information to be sent to the user.
	Name
	Value
	Description

	P_UI_INFO_ID
	1
	The information to be send to an end-user consists of an ID

	P_UI_INFO_DATA
	2
	The information to be send to an end-user consists of a data string

	P_UI_INFO_ADDRESS
	3
	The information to be send to an end-user consists of a URL.

8.4.2.13
TpUIReport

Defines the UI call reports if a response was requested.
	Name
	Value
	Description

	P_UI_REPORT_UNDEFINED
	0
	Undefined report

	P_UI_REPORT_ANNOUNCEMENT_ENDED
	1
	Confirmation that the announcement has ended

	P_UI_REPORT_LEGAL_INPUT
	2
	Information collected., meeting the specified criteria.

	P_UI_REPORT_NO_INPUT
	3
	No information collected. The user immediately entered the delimiter character. No valid information has been returned

	P_UI_REPORT_TIMEOUT

	4
	No information collected. The user did not input any response before the input timeout expired

	P_UI_REPORT_MESSAGE_STORED
	5
	A message has been stored successfully

	P_UI_REPORT_MESSAGE_NOT_STORED
	6
	The message has not been stored successfully

8.4.2.14
TpUIResponseRequest

Defines the situations for which a response is expected following the user interaction.
	Name
	Value
	Description

	
	
	

	P_UI_RESPONSE_REQUIRED
	1
	The User Interaction Call must send a response when the request has completed.

	P_UI_LAST_ANNOUNCEMENT_IN_A_ROW
	2
	This is the final announcement within a sequence. It might, however, be that additional announcements will be requested at a later moment. The Call User Interaction Call SCF may release any used resources in the network. The UI object will not be released.

	P_UI_FINAL_REQUEST
	4
	This is the final request. The UI object will be released after the information has been presented to the user.

This parameter represent a bitmask, i.e. the values can be added to derived the final meaning.

8.4.2.15
TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

	
	Tag Element Type
	

	
	TpUIVariablePartType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_VARIABLE_PART_INT
	TpInt32
	VariablePartInteger

	P_UI_VARIABLE_PART_ADDRESS
	TpString
	VariablePartAddress

	P_UI_VARIABLE_PART_TIME
	TpTime
	VariablePartTime

	P_UI_VARIABLE_PART_DATE
	TpDate
	VariablePartDate

	P_UI_VARIABLE_PART_PRICE
	TpPrice
	VariablePartPrice

8.4.2.16
TpUIVariableInfoSet

Defines a Numbered Set of Data Elements of TpUIVariableInfo.

8.4.2.17
TpUIVariablePartType

Defines the type of the variable parts in the information to send to the user.

	Name
	Value
	Description

	P_UI_VARIABLE_PART_INT
	0
	Variable part is of type integer

	P_UI_VARIABLE_PART_ADDRESS
	1
	Variable part is of type address

	P_UI_VARIALBE_PART_TIME
	2
	Variable part is of type time

	P_UI_VARIABLE_PART_DATE
	3
	Variable part is of type date

	P_UI_VARIABLE_PART_PRICE
	4
	Variable part is of type price

8.5
Data Session Control Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.dscs package.

8.5.1
Interface definitions

8.5.1.1
IpAppDataSession

Defines the address of an IpAppDataSession Interface.

8.5.1.2
IpAppDataSessionRef

Defines a Reference to type IpAppDataSession
8.5.1.3
IpAppDataSessionRefRef

Defines a Reference to type IpAppDataSessionRef.

8.5.1.4
IpAppDataSessionControlManager

Defines the address of an IpAppDataSessionControlManager Interface.

8.5.1.5
IpAppDataSessionControlManagerRef

Defines a Reference to type IpAppDataSessionControlManager.

8.5.1.6
IpDataSession

Defines the address of an IpDataSession Interface.

8.5.1.7
IpDataSessionRef

Defines a Reference to type IpDataSession.

8.5.1.8
IpDataSessionRefRef

Defines a Reference to type IpDataSessionRef.

8.5.1.9
IpDataSessionControlManager

Defines the address of an IpDataSessionManager Interface.

8.5.1.10
IpDataSessionManagerRef

Defines a Reference to type IpDataSessionControlManager.

8.5.2
Event Notification data definitions

8.5.2.1
TpDataSessionEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpDataSessionReportType data-type.

	Name
	Value
	Description

	P_EVENT_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_DSCS_SETUP
	1
	The data session is going to be setup.

	P_EVENT_DSCS_ESTABLISHED
	2
	The data session is established by the network.

8.5.2.2
TpDataSessionMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

	Name
	Value
	Description

	P_DATA_SESSION_MONITOR_MODE_INTERRUPT
	0
	The data session event is intercepted by the data session control service and data session establishment is interrupted. The application is notified of the event and data session establishement resumes following an appropriate API call or network event (such as a data session release)

	P_DATA_SESSION_MONITOR_MODE_NOTIFY
	1
	The data session event is detected by the data session control service but not intercepted. The application is notified of the event and data session establishment continues

	P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR
	2
	Do not monitor for the event

8.5.2.3
TpDataSessionEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

	Sequence Element Name
	Sequence Element Type
	Description

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	OriginatingAddress
	TpAddressRange
	Defines the origination address or a address range for which the notification is requested.

	DataSessionEventName
	TpDataSessionEventName
	Name of the event(s)

	MonitorMode
	TpDataSessionMonitorMode
	Defines the mode that the Data Session is in following the notification.
Monitor mode P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

8.5.2.4
TpDataSessionEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Data Session event notification.

	Sequence Element Name
	Sequence Element Type

	DestinationAddress
	TpAddress

	OriginatingAddress
	TpAddress

	DataSessionEventName
	TpDataSessionEventName

	MonitorMode
	TpDataSessionMonitorMode

8.5.2.5
TpDataSessionChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

	Sequence Element Name
	Sequence Element Type
	Description

	ChargeOrderType
	TpDataSessionChargeOrder
	Charge order

	Currency
	TpString

	Currency unit according to ISO-4217:1995

	AdditionalInfo
	TpString
	Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

8.5.2.6
TpDataSessionChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

	
	Tag Element Type
	

	
	TpDataSessionChargeOrderCategory
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_DATA_SESSION_CHARGE_PER_VOLUME
	TpChargePerVolume
	ChargePerVolume

	P_DATA_SESSION_CHARGE_NETWORK
	TpString
	NetworkCharge

8.5.2.7
TpDataSessionChargeOrderCategory

	Name
	Value
	Description

	P_DATA_SESSION_CHARGE_PER_VOLUME
	0
	Charge per volume

	P_DATA_SESSION_CHARGE_NETWORK
	1
	Operator specific charge plan specification, e.g. charging table name / charging table entry

8.5.2.8
TpChargePerVolume

Defines the Sequence of Data Elements that specify the time based charging information. The volume is the sum of uplink and downlink transfer data volumes.
	Sequence Element Name
	Sequence Element Type
	Description

	InitialCharge
	TpInt32
	Initial charge amount (in currency units * 0.0001)

	CurrentChargePerKilobyte
	TpInt32
	Current tariff (in currency units * 0.0001)

	NextChargePerKilobyte
	TpInt32
	Next tariff (in currency units * 0.0001) after tariff switch.

Only used in setAdviceOfCharge()

8.5.2.9
TpDataSessionIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Data Session object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	DataSessionReference
	IpDataSessionRef
	This element specifies the interface reference for the Data Session object.

	DataSessionSessionID
	TpSessionID
	This element specifies the data session ID of the Data Session.

8.5.2.10
TpDataSessionError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

	Sequence Element Name
	Sequence Element Type

	ErrorTime
	TpDateAndTime

	ErrorType
	TpDataSessionErrorType

	AdditionalErrorInfo
	TpDataSessionAdditionalErrorInfo

8.5.2.11
TpDataSessionAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional Data Session error and Data Session error specific information.

	
	Tag Element Type
	

	
	TpDataSessionErrorType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_DATA_SESSION_ERROR_UNDEFINED
	NULL
	Undefined

	P_DATA_SESSION_ERROR_INVALID_ADDRESS
	TpAddressError
	DataSessionErrorInvalidAddress

	P_DATA_SESSION_ERROR_INVALID_STATE
	NULL
	Undefined

8.5.2.12
TpDataSessionErrorType

Defines a specific Data Session error.

	Name
	Value
	Description

	P_DATA_SESSION_ERROR_UNDEFINED
	0
	Undefined; the method failed or was refused, but no specific reason can be given.

	P_DATA_SESSION_ERROR_INVALID_ADDRESS
	1
	The operation failed because an invalid address was given

	P_DATA_SESSION_ERROR_INVALID_STATE
	2
	The data session was not in a valid state for the requested operation

8.5.2.13
TpDataSessionFault

Defines the cause of the data session fault detected.

	Name
	Value
	Description

	P_DATA_SESSION_FAULT_UNDEFINED
	0
	Undefined

	P_DATA_SESION_USER_ABORTED
	1
	User has finalised the data session before any message could be sent by the application

	P_DATA_SESSION_TIMEOUT_ON_RELEASE
	2
	This fault occurs when the final report has been sent to the application, but the application did not explicitly release data session object, within a specified time.

The timer value is operator specific.

	P_DATA_SESSION_TIMEOUT_ON_INTERRUPT
	3
	This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

8.5.2.14
TpDataSessionReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a data session.
	Sequence Element Name
	Sequence Element Type

	Value
	TpInt32

	Location
	TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

8.5.2.15
TpDataSessionSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	VolumeQuantity
	TpInt32
	This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection. The volume specifies the sum of uplink and downlink transfer data volumes.

	VolumeUnit

	TpInt32
	In Order to enlarge the range of the volume quantity value the exponent of a scaling factor (10^VolumeUnit) is provided.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

8.5.2.16
TpDataSessionSuperviseReport

Defines the responses from the data session control service for calls that are supervised. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_DATA_SESSION_SUPERVISE_VOLUME_REACHED
	01h
	The maximum volume has been reached.

	P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED
	02h
	The data session has ended, either due to data session party to reach of maximum volume or calling or called release.

	P_DATA_SESSION_SUPERVISE_MESSAGE_SENT
	04h
	A warning message has been sent.

8.5.2.17
TpDataSessionSuperviseTreatment

Defines the treatment of the call by the data session control service when the supervised volume is reached. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_DATA_SESSION_SUPERVISE_RELEASE
	01h
	Release the data session when the data session supervision volume is reached.

	P_DATA_SESSION_SUPERVISE_RESPOND
	02h
	Notify the application when the call supervision volume is reached.

	P_DATA_SESSION_SUPERVISE_INFORM
	04h
	Send a warning message to the originating party when the maximum volume is reached. If data session release is requested, then the data session will be released following the message after an administered time period

8.5.2.18
TpDataSessionReport

Defines the Sequence of Data Elements that specify the data session report specific information.
	Sequence Element Name
	Sequence Element Type

	MonitorMode
	TpDataSessionMonitorMode

	DataSessionEventTime
	TpDateAndTime

	DataSessionReportType
	TpDataSessionReportType

	AdditionalReportInfo
	TpDataSessionAdditionalReportInfo

8.5.2.19
TpDataSessionAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional data session report information for certain types of reports.

	
	Tag Element Type
	

	
	TpDataSessionReportType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_DATA_SESSION_REPORT_UNDEFINED
	NULL
	Undefined

	P_DATA_SESSION_REPORT_CONNECTED
	NULL
	Undefined

	P_DATA_SESSION_REPORT_DISCONNECT
	TpDataSessionReleaseCause
	DataSessionDisconnect

8.5.2.20
TpDataSessionReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to data session report requests.

	Sequence Element Name
	Sequence Element Type

	MonitorMode
	TpDataSessionMonitorMode

	DataSessionReportType
	TpDataSessionReportType

8.5.2.21
TpDataSessionReportRequestSet

Defines a Numbered Set of Data Elements of TpDataSessionReportRequest.

8.5.2.22
TpDataSessionReportType

Defines a specific data session event report type.

	Name
	Value
	Description

	P_DATA_SESSION_REPORT_UNDEFINED
	0
	Undefined

	P_DATA_SESSION_REPORT_CONNECTED
	1
	Data session established.

	P_DATA_SESSION_REPORT_DISCONNECT
	2
	Data session disconnect requested by data session party

8.5.2.23
TpDataSessionEventCriteriaResultSetRef

Defines a refernce to TpDataSessionEventCriteriaResultSet.

8.5.2.24
TpDataSessionEventCriteriaResultSet

Defines a set of TpDataSessionEventCriteriaResult.

8.5.2.25
TpDataSessionEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	EventCriteria
	TpDataSessionEventCriteria
	The event criteria that were specified by the application.

	AssignmentID
	TpInt32
	The associated assignementID. This can be used to disable the notification.

8.6
Network User Location and User Status Data definitions

8.6.1
Interface Definitions

8.6.1.1
IpAppUserStatus

Defines the address of an IpAppUserStatus Interface.

8.6.1.2
IpAppUserStatusRef

Defines a reference to type IpAppUserStatus.

8.6.1.3
IpUserStatus

Defines the address of an IpUserStatus Interface.

8.6.1.4
IpAppUserLocationCamel

Defines the address of an IpAppUserLocationCamel Interface.

8.6.1.5
IpAppUserLocationCamelRef

Defines a reference to type IpAppUserLocationCamelRef.

8.6.1.6
IpUserLocationCamel

Defines the address of an IpUserLocationCamel Interface.

8.6.2
Common Data Definitions for Network User Location and User Status

The constants and types defined in the following sections are defined in the org.threegpp.osa.mm package.

8.6.2.1
TpGeographicalPosition

Defines the structure of data elements that specify a geographical position.

An “ellipsoid point with uncertainty shape” defines the horizontal location. The reference system chosen for the coding of locations is the World Geodetic System 1984 (WGS 84).

TypeOfUncertaintyShape describes the type of the uncertainty shape and Longitude/Latitude defines the position of the uncertainty shape. The following table defines the meaning of the data elements that describe the uncertainty shape for each uncertainty shape type.

	Type of uncertainty shape
	Uncertainty
Outer
Semi
Major
	Uncertainty
Outer
Semi
Minor
	Uncertainty
Inner
Semi
Major
	Uncertainty
Inner
Semi
Minor
	Angle Of Semi Major
	Segment Start Angle
	Segment End Angle

	None
	-
	-
	-
	-
	-
	-
	-

	Circle
	radius of circle
	-
	-
	-
	-
	-
	-

	Circle Sector
	radius of circle
	-
	-
	-
	-
	start angle of circle segment
	end angle of circle segment

	Circle Arc Stripe
	radius of outer circle
	-
	radius of inner circle
	-
	-
	start angle of circle arc stripe
	end angle of circle arc stripe

	Ellipse
	length of semi-major axis
	length of semi-minor axis
	-
	-
	rotation of ellipse measured clockwise from north
	-
	-

	Ellipse Sector
	length of semi-major axis
	length of semi-minor axis
	-
	-
	rotation of ellipse measured clockwise from north
	start angle of ellipse segment
	end angle of ellipse segment

	Ellipse Arc Stripe
	length of semi-major axis, outer ellipse
	length of semi-minor axis, outer ellipse
	length of semi-major axis, inner ellipse
	length of semi-minor axis, inner ellipse
	rotation of ellipse measured clockwise from north
	start angle of ellipse arc stripe
	end angle of ellipse arc stripe

[image: image41.wmf]angle of

semi major

North

segment

end angle

segment

start angle

inner

semi-minor

axis

outer

semi-minor

axis

outer

semi-major

axis

inner semi-

major axis

Area

Figure 8-1: Description of an Ellipse Arc

	Structured Member Name
	Structured Member Type

	Longitude
	TpFloat

	Latitude
	TpFloat

	TypeOfUncertaintyShape
	TpLocationUncertaintyShape

	UncertaintyInnerSemiMajor
	TpFloat

	UncertaintyOuterSemiMajor
	TpFloat

	UncertaintyInnerSemiMinor
	TpFloat

	UncertaintyOuterSemiMinor
	TpFloat

	AngleOfSemiMajor
	TpInt32

	SegmentStartAngle
	TpInt32

	SegmentEndAngle
	TpInt32

8.6.2.2
TpLocationUncertaintyShape

Defines the type of uncertainty shape.

	Name
	Value
	Description

	P_M_SHAPE_NONE
	0
	No uncertainty shape present.

	P_M_SHAPE_CIRCLE
	1
	Uncertainty shape is a circle.

	P_M_SHAPE_CIRCLE_SECTOR
	2
	Uncertainty shape is a circle sector.

	P_M_SHAPE_CIRCLE_ARC_STRIPE
	3
	Uncertainty shape is a circle arc stripe.

	P_M_SHAPE_ELLIPSE
	4
	Uncertainty shape is an ellipse.

	P_M_SHAPE_ELLIPSE_SECTOR
	5
	Uncertainty shape is an ellipse sector.

	P_M_SHAPE_ELLIPSE_ARC_STRIPE
	6
	Uncertainty shape is an ellipse arc stripe.

8.6.2.3
TpMobilityDiagnostic

Defines a diagnostic value that is reported in addition to an error by the Network User Location or User Status service capability feature.

	Name
	Value
	Description

	P_M_NO_INFORMATION
	0
	No diagnostic information present. Valid for all type of errors.

	P_M_APPL_NOT_IN_PRIV_EXCEPT_LST
	1
	Application not in privacy exception list. Valid for ‘Unauthorised Application’ error.

	P_M_CALL_TO_USER_NOT_SETUP
	2
	Call to user not set-up. Valid for ‘Unauthorised Application’ error.

	P_M_PRIVACY_OVERRIDE_NOT_APPLIC
	3
	Privacy override not applicable. Valid for ‘Unauthorised Application’ error.

	P_M_DISALL_BY_LOCAL_REGULAT_REQ
	4
	Disallowed by local regulatory requirements. Valid for ‘Unauthorised Application’ error.

	P_M_CONGESTION
	5
	Congestion. Valid for ‘Position Method Failure’ error.

	P_M_INSUFFICIENT_RESOURCES
	6
	Insufficient resources. Valid for ‘Position Method Failure’ error.

	P_M_INSUFFICIENT_MEAS_DATA
	7
	Insufficient measurement data. Valid for ‘Position Method Failure’ error.

	P_M_INCONSISTENT_MEAS_DATA
	8
	Inconsistent measurement data. Valid for ‘Position Method Failure’ error.

	P_M_LOC_PROC_NOT_COMPLETED
	9
	Location procedure not completed. Valid for ‘Position Method Failure’ error.

	P_M_LOC_PROC_NOT_SUPBY_USER
	10
	Location procedure not supported by user. Valid for ‘Position Method Failure’ error.

	P_M_QOS_NOT_ATTAINABLE
	11
	Quality of service not attainable. Valid for ‘Position Method Failure’ error.

8.6.2.4
TpMobilityError

Defines an error that is reported by the Network User Location or User Status service capability feature. A fatal error occurring during the life of periodic or triggered user location/status requests (triggeredStatusReportErr, triggeredLocationReportErr or periodicLocationReportErr) will terminate the request such that any particular request is allowed to generate at most one fatal error but possibly several non fatal errors.

	Name
	Value
	Description
	Fatal

	P_M_OK
	0
	No error occurred while processing the request.
	N/A

	P_M_SYSTEM_FAILURE
	1
	System failure.
The request can not be handled because of a general problem in the Network User Location or User Status SCF or the underlying network.
	Yes

	P_M_UNAUTHORIZED_NETWORK
	2
	Unauthorised network,
The requesting network is not authorised to obtain the user’s location or status.
	No

	P_M_UNAUTHORIZED_APPLICATION
	3
	Unauthorised application.
The application is not authorised to obtain the user’s location or status.
	Yes

	P_M_UNKNOWN_SUBSCRIBER
	4
	Unknown subscriber.
The user is unknown, i.e. no such subscription exists.
	Yes

	P_M_ABSENT_SUBSCRIBER
	5
	Absent subscriber.
The user is currently not reachable.
	No

	P_M_POSITION_METHOD_FAILURE
	6
	Position method failure.
The Network User Location SCF failed to obtain the user’s position.
	No

8.6.2.5
TpMobilityStopAssignmentData

Defines the structure of data elements that specifies a request to stop whole or parts of an assignment. Assignments are used for periodic or triggered reporting of a user locations or statuses.

Observe that the parameter “users” is optional. If the parameter “stopScope” is set to P_M_ALL_IN_ASSIGNMENT, the parameter “stopScope” is undefined. If the parameter “stopScope” is set to P_M_SPECIFIED_USERS, then the assignment shall be stopped only for the users specified in the “users” collection.

	Structure Element Name
	Structure Element Type
	Description

	AssignmentId
	TpSessionID
	Identity of the session that shall be stopped.

	StopScope
	TpMobilityStopScope
	Specify if only a part of the assignment or if whole the assignment shall be stopped.

	Users
	TpAddressSet
	Optional parameter describing which users a stop request is addressing when only a part of an assignment is to be stopped.

8.6.2.6
TpMobilityStopScope

This enumeration is used in requests to stop mobility reports that are sent from the Network User Location service capability feature to an application.

	Name
	Value
	Description

	P_M_ALL_IN_ASSIGNMENT
	0
	The request concerns all users in an assignment.

	P_M_SPECIFIED_USERS
	1
	The request concerns only the users that are explicitly specified in a collection.

8.6.3
Network User Location Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.mm.ul package.

8.6.3.1
TpLocationCellIDOrLAI

This data type is identical to a TString. It specifies the Cell Global Identification or the Location Area Identification (LAI).

The Cell Global Identification (CGI) is defined as the string of characters in the following format:

MCC-MNC-LAC-CI

where:

MCC
Mobile Country Code (three decimal digits)

MNC
Mobile Network Code (two or three decimal digits)

LAC
Location area code (four hexadecimal digits)

CI
Cell Identification (four hexadecimal digits)

The Location Area Identification (LAI) is defined as a string of characters in the following format:

MCC-MNC-LAC

where:

MCC
Mobile Country Code (three decimal digits)

MNC
Mobile Network Code (two or three decimal digits)

LAC
Location area code (four hexadecimal digits)

The length of the parameter indicates which format is used. See 3GPP TS 29.002 for the detailed coding.

8.6.3.2
TpLocationTriggerCamel
Defines the structure of data elements that specifies the criteria for a triggered location report to be generated.

	Structure Member Name
	Structure Member Type
	Description

	UpdateInsideVlr
	TpBoolean
	Generate location report when it occurs an location update inside the current VLR area.

	UpdateOutsideVlr
	TpBoolean
	Generate location report when the user moves to another VLR area.

8.6.3.3
TpUserLocationCamel

Defines the structure of data elements that specifies the location of a mobile telephony user. Observe that if the statusCode is indicating an error, then neither geographicalPosition, timestamp, vlrNumber, locationNumber, cellIdOrLai nor their associated presense flags are defined.
	Structure Member Name
	Structure Member Type
	Description

	UserID
	TpAddress
	The address of the user.

	StatusCode
	TpMobilityError
	Indicator of error.

	GeographicalPositionPresent
	TpBoolean
	Flag indicating if the geographical position is present.

	GeographicalPosition
	TpGeographicalPosition
	Specification of a position and an area of uncertainty.

	TimestampPresent
	TpBoolean
	Flag indicating if the timestamp is present.

	Timestamp
	TpDateAndTime
	Timestamp indicating when the location information was attained .

	VlrNumberPresent
	TpBoolean
	Flag indicating if the VLR number is present.

	VlrNumber
	TpAddress
	Current VLR number for the user.

	VocationNumberPresent
	TpBoolean
	Flag indicating if the location number is present.

	LocationNumber

	TpAddress
	Current location number.

	CellIdOrLaiPresent
	TpBoolean
	Flag indicating if cell-id or LAI of the user is present.

	CellIdOrLai
	TpLocationCellIDOrLAI
	Cell-id or LAI of the user.

8.6.3.4
TpUserLocationCamelSet

Defines a collection of TUserLocationCamel

8.7
User Status Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.mm.us package.

8.7.1.1
TpUserStatus

Defines the structure of data elements that specifies the identity and status of a user.

	Structure Element Name
	Structure Element Type
	Description

	UserID
	TpAddress
	The user address.

	StatusCode
	TpMobilityError
	Indicator of error.

	Status
	TpUserStatusIndicator
	The current status of the user.

8.7.1.2
TpUserStatusSet

Defines a collection of TUserStatus.

8.7.1.3
TpUserStatusIndicator

Defines the status of a user.

	Name
	Value
	Description

	P_US_REACHABLE
	0
	User is reachable

	P_US_NOT_REACHABLE
	1
	User is not reachable

	P_US_BUSY

	2
	User is busy (only applicable for interactive user status request, not when triggers are used)

8.8
Terminal Capabilities Data Definitions

8.8.1
Interface Definitions

8.8.1.1
IpTerminalCapabilities

Defines the address of an IpTerminalCapabilities Interface.

8.8.1.2
IpTerminalCapabilitiesRef

Defines a reference to type IpTerminalCapabilities

8.8.2
Terminal Capabilities Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.termcap package.

8.8.2.1
terminalIdentity

Identifies the terminal.

	Name
	Type
	Documentation

	terminalIdentity
	TpString
	Identifies the terminal. It may be a logical address known by the WAP Gateway/PushProxy.

8.8.2.2
TpTerminalCapabilities

This data type is a Sequence_of_Data_Elements that describes the terminal capabilities. It is a structured type that consists of:

	Sequence Element

Name
	Sequence Element

Type
	Documentation

	StatusCode
	TpBoolean
	Indicates whether or not the terminalCapabilities are available.

	TerminalCapabilities
	TpString
	Specifies the latest available capabilities of the user´s terminal.
This information, if available, is returned as CC/PP headers as specified in W3C [6] and adopted in the WAP UAProf specification [9]. It contains URLs; terminal attributes and values, in RDF format; or a combination of both.

8.8.2.3
TpTerminalCapabilitiesError

Defines an error that is reported by the Terminal Capabilities SCF.

	Name
	Value
	Description

	P_TERMCAP_ERROR_UNDEFINED
	0
	Undefined.

	P_TERMCAP_INVALID_TERMINALID
	1
	The request can not be handled because the terminal id specified is not valid.

	P_TERMCAP_SYSTEM_FAILURE
	2
	System failure.

The request cannot be handled because of a general problem in the terminal capabilities service or the underlying network.

9
IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are placed in the root module while each of the specific service capability feature API definitions are being assigned their own module directly under that root. Each specific SCF functions, like User Status, have their data and interface definitions collocated. This structure has the advantage that explicit scoping is kept to a minimum.

The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are provided in the org.threegpp.osa module within a file name called OSA.idl

	Module Name
	Description
	IDL file name

	org.threegpp.osa
	Common data/interface definitions
	OSA.idl

	org.threegpp.osa.fw
	common Framework data-types
	FW.idl

	org.threegpp.osa.fw.discovery
	Discovery data-types and interfaces
	DISC.idl

	org.threegpp.osa.fw.trust_and_security
	Trust and Security date-types and interfaces
	TandS.idl

	org.threegpp.osa.fw.integrity
	Integrity management data-types and interfaces
	IM.idl

	org.threegpp.osa.fw.registration
	Registration data-types and interfaces
	REG.idl

	org.threegpp.osa.cc
	Call Control data-types
	CC.idl

	org.threegpp.osa.cc.gcc
	Generic Call Control interfaces
	GCC.idl

	org.threegpp.osa.cc.ecc
	data-types and interfaces specific for Enhanced Call Control. This is only needed to compile the User Interaction IDL
	ECC.idl

	org.threegpp.osa.ui
	User Interaction data-types
	UI.idl

	org.threegpp.osa.ui.gui
	User Interaction interfaces
	GUI.idl

	org.threegpp.osa.dsc
	Data Session data-types and interfaces
	DSC.idl

	org.threegpp.osa.mm
	Common mobility data definitions (root)
	MM.idl

	org.threegpp.osa.mm.ul
	Network User Location (UL)
	MMul.idl

	org.threegpp.osa.mm.us
	User Status (US)
	MMus.idl

	org.threegpp.osa.termcap
	Terminal Capabilities
	TERMCAP.idl

Some of the interfaces contain more operations than defined in the interface classes of Chapter 6. These operations must return a “Method not supported” exception in case the interface is implemented on a SCS based on this specification.

9.1
Generic IDL

#ifndef __OSA_DEFINED

#define __OSA_DEFINED

module org

{

module threegpp

{

module osa

{

/**/

// Primitive data types

/**/

typedef boolean TpBoolean; // Defines a Boolean data type

typedef long TpInt32; // Defines a signed 32 bit integer

typedef float TpFloat; // Defines a single precision real number.

typedef string TpString; // Defines a string comprising length and data.

// Primitive based OSA datatypes

typedef TpInt32 TpDuration; // This data type is a TpInt32 representing a

// time interval in milliseconds. A value of "-1" defines

// infinite duration and a value of "-2" represents default

// duration.

typedef TpInt32 TpSessionID; // Defines a network unique session ID. OSA

// uses this ID to identify sessions, e.g. call or call leg

// sessions, within an object implementing an interface

// capable of handling multiple sessions. For the different

// OSA service capability feature, the sessionIDs are unique

// only in the context of a manager instantiation (e.g., within

// the context of one generic call control manager). As such

// if an application creates two instances of the same SCF

// manager it shall use different instantiations of the

// callback objects which implement the callback interfaces.

typedef TpInt32 TpAssignmentID; // This data type is identical to a TpInt32. It

// specifies a number which identifies an individual

// event notification enabled by the application or

// OSA service capability feature.

typedef sequence < TpSessionID> TpSessionIDSet;

 exception TpGeneralException

{

 TpInt32 exceptionType;

};

 const TpInt32 P_RESULT_INFO_UNDEFINED = 0;

 const TpInt32 P_INVALID_DOMAIN_ID = 1;

 const TpInt32 P_INVALID_AUTH_CAPABILITY = 2;

 const TpInt32 P_INVALID_AGREEMENT_TEXT = 3;

 const TpInt32 P_INVALID_SIGNING_ALGORITHM = 4;

 const TpInt32 P_INVALID_INTERFACE_NAME = 5;

 const TpInt32 P_INVALID_SERVICE_ID = 6;

 const TpInt32 P_INVALID_EVENT_TYPE = 7;

 const TpInt32 P_SERVICE_NOT_ENABLED = 8;

 const TpInt32 P_INVALID_ASSIGNMENT_ID = 9;

 const TpInt32 P_INVALID_PARAMETER = 10;

 const TpInt32 P_INVALID_PARAMETER_VALUE = 11;

 const TpInt32 P_PARAMETER_MISSING = 12;

 const TpInt32 P_RESOURCES_UNAVAILABLE = 13;

 const TpInt32 P_TASK_REFUSED = 14;

 const TpInt32 P_TASK_CANCELLED = 15;

 const TpInt32 P_INVALID_DATE_TIME_FORMAT = 16;

 const TpInt32 P_NO_CALLBACK_ADDRESS_SET = 17;

 const TpInt32 P_INVALID_SIGNATURE = 18;

 const TpInt32 P_INVALID_SERVICE_TOKEN = 19;

 const TpInt32 P_ACCESS_DENIED = 20;

 const TpInt32 P_INVALID_PROPERTY = 21;

 const TpInt32 P_METHOD_NOT_SUPPORTED = 22;

 const TpInt32 P_NO_ACCEPTABLE_AUTH_CAPABILITY = 23;

 const TpInt32 P_INVALID_INTERFACE_TYPE = 24;

 const TpInt32 P_SERVICE_ACCESS_TYPE = 25;

 const TpInt32 P_SERVICE_ACCESS_DENIED = 26;

 const TpInt32 P_USER_NOT_SUBSCRIBED = 48;

 const TpInt32 P_APPLICATION_NOT_ACTIVATED = 49;

 const TpInt32 P_USER_PRIVACY = 50;

/**/

/********************* Date and Time related data definitions *************/

/**/

// This data type is identical to a TpString. It specifies the data in

// accordance with International Standard ISO 8601. This is defined as the

// string of characters in the following format:

// YYYY-MM-DD

// where the date is specified as:

// YYYY four digits year

// MM two digits month

// DD two digits day

// The date elements are separated by a hyphen character (-).

typedef TpString TpDate;

// This data type is identical to a TpString. It specifies the time in accordance

// with International Standard ISO 8601. This is defined as the string of

// characters in the following format:

// HH:MM:SS.mmm

// or

// HH:MM:SS.mmmZ

// where the time is specified as:

// HH two digits hours (24h notation)

// MM two digits minutes

// SS two digits seconds

// mmm three digits fractions of a second (i.e. milliseconds)

// The time elements are separated by a colon character (:).The date and time

// are separated by a space. Optionally, a capital letter Z may be appended

// to the time field to indicate Universal Time (UTC). Otherwise, local time

// is assumed.

typedef TpString TpTime;

// This data type is identical to TosaString. It specifies the data and time

// in accordance with International Standard ISO 8601. This is defined as the

// string of characters in the following format:

//

// YYYY-MM-DD HH:MM:SS.mmm

// or YYYY-MM-DD HH:MM:SS.mmmZ

//

// Example:

// The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

// 1998-12-04 10:30:15.000

// for local time, or in UTC it would be:

// 1998-12-04 10:30:15.000Z

typedef TpString TpDateAndTime;

/**/

// Address related data definitons

/**/

// Defines whether an address can be presented to an end user

enum TpAddressPresentation

{

P_ADDRESS_PRESENTATION_UNDEFINED, // Undefined

P_ADDRESS_PRESENTATION_ALLOWED, // Presentation Allowed

P_ADDRESS_PRESENTATION_RESTRICTED, // Presentation Restricted

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE // Address not available for

 // presentation

};

// Defines whether an address has been screened by the application

enum TpAddressScreening

{

P_ADDRESS_SCREENING_UNDEFINED, // Undefined

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED, // user provided address verified

 // and passed

P_ADDRESS_SCREENING_USER_NOT_VERIFIED, // user provided address not verified

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED, // user provided address verified and

 // failed

P_ADDRESS_SCREENING_NETWORK // Network provided address

};

// Defines the address plan (or numbering plan) used. It is also used to indicate

// whether an address is actually defined in a TAddress data element

enum TpAddressPlan

{

P_ADDRESS_PLAN_NOT_PRESENT, // No Address Present

P_ADDRESS_PLAN_UNDEFINED, // Undefined

P_ADDRESS_PLAN_IP, // IP

P_ADDRESS_PLAN_MULTICAST, // Multicast

P_ADDRESS_PLAN_UNICAST, // Unicast

P_ADDRESS_PLAN_E164, // E.164

P_ADDRESS_PLAN_AESA, // AESA

P_ADDRESS_PLAN_URL, // URL

P_ADDRESS_PLAN_NSAP, // NSAP

P_ADDRESS_PLAN_SMTP, // SMTP

P_ADDRESS_PLAN_NOT_USED,

P_ADDRESS_PLAN_X400 // X.400

};

// Defines the reasons why an address is invalid.

enum TpAddressError

{

P_ADDRESS_INVALID_UNDEFINED, // Undefined error

P_ADDRESS_INVALID_MISSING, // Mandatory address not present

P_ADDRESS_INVALID_MISSING_ELEMENT, // Mandatory address element not present

P_ADDRESS_INVALID_OUT_OF_RANGE, // Address is outside of the valid range

P_ADDRESS_INVALID_INCOMPLETE, // Address is incomplete

P_ADDRESS_INVALID_CANNOT_DECODE // Address cannot be decoded

};

// Defines the structure of data elements that specifies an address

struct TpAddress

{

TpAddressPlan plan;

TpString astring;

TpString name;

TpAddressPresentation presentation;

TpAddressScreening screening;

TpString subAddressString;

};

// Defined a collection of TpAddress elements

typedef sequence < TpAddress> TpAddressSet;

// Defined a collection of TpAddress elements

typedef TpAddress TpAddressRange;

// This data type is identical to a TpString and contains a URL address.

typedef TpString TpURL;

// This data type is identical to a TpString. It specifies price information.

// This is defined as the string of characters (digits) in the following format:

// DDDDDD.DD

typedef TpString TpPrice;

struct TpChargePerTime {

TpInt32 InitialCharge; /*Initial charge amount (in currency units * 0.0001)*/

TpInt32 CurrentChargePerMinute; /* Current tariff (in currency units * 0.0001)*/

TpInt32 NextChargePerMinute; /* Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge()*/

};

enum TpAoCOrderCategory {

P_CHARGE_ADVICE_INFO,
/* Set of GSM Charge Advice Information elements according to 3GPP TS 22.024*/

P_CHARGE_PER_TIME,
/* Charge per time*/

P_CHARGE_NETWORK
/* Operator specific charge plan specification, e.g. charging table name / charging table entry*/

};

/* Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3GPP TS 22.024.*/

struct TpCAIElements {

TpInt32 UnitsPerInterval;

/* Units per interval */

TpInt32 SecondsPerTimeInterval;

/* Seconds per time interval */

TpInt32 ScalingFactor;

/* Scaling factor */

TpInt32 UnitIncrement;

/* Unit increment */

TpInt32 UnitsPerDataInterval;

/* Units per data interval */

TpInt32 SegmentsPerDataInteral;

/* Segments per data interal */

TpInt32 InitialSecsPerTimeInterval;
/* Initial secs per time interval */

};

struct TpChargeAdviceInfo {

TpCAIElements CurrentCAI ; /* Current tariff*/

TpCAIElements NextCAI ; /* Next tariff after tariff switch*/

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan */

union TpAoCOrder switch(TpAoCOrderCategory) {

case P_CHARGE_ADVICE_INFO:

TpChargeAdviceInfo ChargeAdviceInfo;

case P_CHARGE_PER_TIME:

TpChargePerTime ChargePerTime;

case P_CHARGE_NETWORK:

TpString NetworkCharge;

};

struct TpAoCInfo {

TpAoCOrder ChargeOrderType; /* Charge order*/

TpString Currency; /* Currency unit according to ISO-4217:1995*/

};

/**/

// base OSA interface

/**/

// All application, framework and service capability features interfaces inherit

// from the following interface. This API Base Interface does not provide any

// additional methods.

interface IpOsa

{

};

// All service capability feature interfaces inherit from the following interface.

interface IpService : IpOsa

{

// This method specifies the reference address of the callback interface

// that a SCF uses to invoke methods on the application.

void setCallback(in IpOsa appInterface) raises(TpGeneralException);

void setCallbackWithSessionID(in IpOsa appInterface, in TpSessionID sessionID) raises(TpGeneralException);

};

};

};

};

#endif

9.2
Framework IDL

9.2.1
Common Data Types for the Framework

#include <OSA.idl>

module org{

module threegpp{

module osa{

module fw{

typedef TpString
 TpClientAppID; // Identifies the client appl to the framework.

typedef sequence
 <TpClientAppID> TpClientAppIDList;

/* Defines either the framework or the type of entity attempting to access the framework

The framework

A client application

An enterprise operator

A registered service

A service supplier */

enum TpDomainIDType

{

P_FW,

P_CLIENT_APPLICATION,

P_ENT_OP,

P_REGISTERED_SERVICE,

P_SERVICE_SUPPLIER

};

typedef TpString TpEntOpID;

typedef sequence < TpEntOpID >
 TpEntOpIDList;

typedef TpString TpFwID;

typedef TpString TpServiceSupplierID;

/* Defines the Tagged Choice of Data Elements that specify either the framework or the type of entity

attempting to access the framework.

Tag Element Type

TpDomainIDType */

union TpDomainID switch (TpDomainIDType)

{

case P_FW:

 TpFwID FwID;

case P_CLIENT_APPLICATION:

 TpClientAppID ClientAppID;

case P_ENT_OP:

 TpEntOpID EntOpID;

case P_REGISTERED_SERVICE:

 TpServiceID ServiceID;

 case P_SERVICE_SUPPLIER:

 TpServiceSupplierID ServiceSupplierID;

};

typedef TpString TpPropertyName;

typedef TpString TpPropertyValue;

typedef sequence < TpProperty > TpPropertyList;

 struct TpProperty {

TpPropertyName

PropertyName;

TpPropertyValue
 PropertyValue;

 };

typedef TpString
TpServiceID;
// A string of characters, generated automatically by the

// Framework and comprising a TpUniqueServiceNumber,

// TpServiceNameString, and a number of relevant

// TpServiceSpecString, concatenated using a forward

// separator (/), that uniquely identifies an instance of a

// SCF interface.

typedef sequence <TpServiceID>

TpServiceIDList;

 typedef TpString

TpServiceNameString;

// Uniquely identifies the name of an SCF

// interface. For OSA release 99 the following

// values have been defined: NULL (no SCF name),

// P_CALL_CONTROL, P_USER_INTERACTION,

// P_USER_LOCATION_CAMEL, P_TERMINAL_CAPABILITIES and

// P_USER_STATUS.

typedef TpString

TpServiceSpecString;

// Uniquely identifies the name of a SCF

// specialization interface. For OSA release 99

// the following values have been defined: NULL

// no SCF specialization) and P_CALL.

typedef TpString

TpUniqueServiceNumber;

// A string of characters that represents a

// unique number.

enum TpServicePropertyMode {

NORMAL,

// The value of the corresponding SCF property type may optionally be

// provided.

MANDATORY,

// The value of the corresponding SCF property type must be provided

// at SCF registration.

_READONLY,

// The value of the corresponding SCF property is optional, nut once

// given a value it may not be modified.

MANDATORY_READONLY

// The value of the corresponding SCF property type must be provided

// and may not be modified subsequently.

};

typedef TpString

TpServicePropertyTypeName;

typedef TpString

TpServicePropertyName;

typedef sequence <TpServicePropertyName>
TpServicePropertyNameList;

typedef TpString

TpServicePropertyValue;

typedef sequence <TpServicePropertyValue>
TpServicePropertyValueList;

struct TpServiceProperty {

// Describes a SCF property

TpServicePropertyName

ServicePropertyName;

TpServicePropertyValueList
ServicePropertyValueList;

TpServicePropertyMode

ServicePropertyMode;

};

typedef sequence <TpServiceProperty>

TpServicePropertyList;

typedef TpString

TpServiceTypeName;

typedef sequence <TpServiceTypeName>

TpServiceTypeNameList;

struct TpService {

// Describes a registered SCF.

TpServiceID

ServiceID;

TpServicePropertyList
ServicePropertyList;

};

typedef sequence <TpService>
TpServiceList;

struct TpServiceDescription {

// Describes the properties of a registered SCF.

TpServiceTypeName
ServiceTypeName;

TpServicePropertyList
ServicePropertyList;

};

struct TpServiceTypeProperty {

// Describes a SCF property.

TpServicePropertyName

ServicePropertyName;

TpServicePropertyMode

ServicePropertyMode;

TpServicePropertyTypeName
ServicePropertyTypeName;

};

typedef sequence <TpServiceTypeProperty>
TpServiceTypePropertyList;

struct TpServiceTypeDescription {

// Describes a SCF type.

TpServiceTypePropertyList

ServiceTypePropertyList;

TpServiceTypeNameList

ServiceTypeNameList;

TpBoolean

EnabledOrDisabled;

};

};};};};

9.2.2
Service Discovery IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module discovery{

/***/

// Interface definitions //

/***/

/* The Service Discovery Framework interface is used by the client application to

know what types of services are supported by the Framework, and what are their

properties; and to obtain the services its subscription allows access to. */

interface IpServiceDiscovery : IpOsa {

 /* This method is invoked by the client application to obtain the names of all service

 types that are in the Framework repository. */

 void listServiceTypes (

 out TpServiceTypeNameList listTypes // The names of the requested service types.

) raises (TpGeneralException);

 /* This method is invoked by the client application to obtain the detailed description of

 a particular service type. */

 void describeServiceType (

 in TpServiceTypeName name,
// Identifies the service

// type to be described.

 out TpServiceTypeDescription serviceTypeDescription

// Describes the specified

// service type.

) raises (TpGeneralException);

 /* This method is invoked by the client application to obtain the IDs of the services

 that meet its requirements. */

 void discoverService (

 in TpServiceTypeName serviceTypeName, // Type of the required service.

 in TpServicePropertyList desiredPropertyList, // Properties that the discovered set

// of SCFs should satisfy.

 in TpInt32 max, // Maximum number of SCFs that are

// to be returned.

 out TpServiceList serviceList // A list of matching SCFs.

) raises (TpGeneralException);

 /* This method is invoked by the client application to obtain a list of subscribed

 SCFs that they are allowed to access. */

 void listSubscribedServices (

 out TpServiceList serviceList // A list of subscribed SCFs.

) raises (TpGeneralException);

};

};};};};};

9.2.3
Trust and Security Management IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module trust_and_security{

/***/

// Data definitions //

/***/

typedef TpString

TpAccessType;

// The type of access interface requested by the client

// application. For OSA release 99 the following value

// has been defined: P_ACCESS.

typedef TpString

TpAuthType;

// The type of authentication mechanism requested by the

// client. For OSA release 99 the following values has

// been defined:

// P_AUTHENTICATION (indicates use of the OSA

// authentication interfaces).

typedef TpString
TpAuthCapability;

// The authentication capabilities that could be supported

// by the OSA. For OSA release 99 the following values

// have been defined: NULL (indicates no client

// capabilities, P_DES_56, P_DES_128, P_RSA_512 and P_RSA_1024).

typedef TpString

TpAuthCapabilityList;
// A string of multiple TpAuthCapability

// concatenated using a commas.

struct TpAuthDomain

{

TpDomainID DomainID;

 IpOSA AuthInterface;

};

typedef TpPropertyList TpEndAccessProperties;

typedef TpString

TpInterfaceName;
// Identifies the names of the framework SCFs that are to be

// supported by the OSA API. For release 99 these are,

// P_DISCOVERY, P_OAM

// P_LOAD_MANAGER,

// P_FAULT_MANAGER,

// P_HEARTBEAT_MANAGEMENT,

// P_REGISTRATION

struct TpServiceAccessControl {

TpString

Policy;

// Access control policy information controlling access to the

// service feature.

TpString

TrustLevel;

// The level of trust that the network operator has assigned to the

// client application.

};

typedef TpString

TpServiceToken;
// Uniquely identifies a SCF.

struct TpSignatureAndServiceMgrRef {

TpString

DigitalSignature;

// The digital signature of the Framework for the service

// agreement.

IpOsa

ServiceMgrInterface;

};

typedef TpString

TpSigningAlgorithm;

// Identifies the signing algorithm that must be

// used. For OSA release 99 the follwing values have

// been defined: NULL (indicates no signing algorithm

// is required), P_MD5_RSA_512 and P_MD5_RSA_1024.

typedef TpString

TpFwID;

struct TpFwAuth {

TpFwID
FwID;

IpOsa
FwAuthInterface;

};

/***/

// Interface definitions //

/***/

/* The Initial Framework interface is used by the client application to initiate the mutual

authentication with the Framework and, when this is finished successfully, to request access

to it. */

interface IpInitial : IpOsa {

/* This method is invoked by the client application to start the process of mutual

authentication with the framework, and request the use of a specific authentication method.

*/

void initiateAuthentication (

in TpAuthDomain appDomain,
// Identifies the client to the framework.

in TpAuthType authType,
// Allows the client application to request a

// specific type of authentication mechanism.

out TpAuthDomain fwDomain // Provides a framework identifier, and a reference

// to framework authentication interface.

) raises (TpGeneralException);

/* This method is invoked by the client application, once mutual authentication is

achieved, to request access to the framework and specify the type of access desired. */

void requestAccess (

in TpAccessType accessType,
// Identifies the type of access interface requested by

// the client application.

in IpOsa appAccessInterface,
// Provides a reference to the access interface of the

// client application.

out IpOsa fwAccessInterface

 // Provides a reference to call the access interface of

 // the framework.

) raises (TpGeneralException);

};

/* The Access Framework interface is used by the client application to perform the mechanisms

necessary for it to obtain access to SCFs. */

interface IpAccess : IpOsa {

/* This method is invoked by the client application to obtain interface references to other

framework interfaces. */

void obtainInterface (

in TpInterfaceName interfaceName,
// The name of the framework interface to which a

// reference to the interface is requested.

out IpOsa fwInterface

// The requested interface reference.

) raises (TpGeneralException);

/* This method is invoked by the client application to obtain interface references to other

framework interfaces, when it is required to supply a callback interface to the framework. */

void obtainInterfaceWithCallback (

in TpInterfaceName interfaceName,
// The name of the framework interface to which

// a reference to the interface is requested.

in IpOsa appInterface,

// This is the reference to the client application

// interface which is used for callbacks.

out IpOsa fwInterface

// The requested interface reference.

) raises (TpGeneralException);

/* This method may be invoked by the client application to check whether it has been

granted permission to access the specified SCF and, if granted, the level of trust that

will be applied. */

void accessCheck (

in TpServiceToken serviceToken,

in TpString securityContext,
// A group of security relevant

// attributes.

in TpString securityDomain,
// The security domain in which

// the client application is

// operating.

in TpString group,
// Used to define the access

// rights associated with all

// clients that belong to that

// group.

in TpString serviceAccessTypes,
// Defined by the specific

// security model in use.

out TpServiceAccessControl serviceAccessControl

// The access control policy

// information controlling

// access to the service

// capability feature, and the

// trustLevel that the network

// operator has assigned to the client

// application.

) raises (TpGeneralException);

/* This method is invoked by the client application to identify the SCF that it wishes

to use. */

void selectService (

in TpServiceID serviceID,
// Identifies the SCF.

out TpServiceToken serviceToken

// A free format text token returned by

// the framework, which can be signed as

// part of a service agreement.

) raises (TpGeneralException);

/* This method is invoked by the client application to request that the framework sign an

agreement on the SCF, which allows the client application to use the SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,
// Used to identify the SCF

// instance requested by the

// client application.

in TpString agreementText,
// The agreement text to be

// signed by the framework.

in TpSigningAlgorithm signingAlgorithm,
// The algorithm used to compute

// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr
// A reference to a structure

// that contains the digital

// signature of the framework

// for the service agreement,

// and a reference to the

// SCF manager interface of

// the SCF.

) raises (TpGeneralException);

/* This method is invoked by the client application to terminate an agreement for the

specified SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the service agreement to be terminated.

in TpString terminationText,
// Describes the reason for the termination of the

// service agreement.

in TpString digitalSignature
// Used by the framework to check that the

// terminationText has been signed by the client.

) raises (TpGeneralException);

/* This method is invoked by the client application to end the access session

with the Framework. */

void endAccess () raises (TpGeneralException);

};

/* The Access client application interface is used by the Framework to perform the steps that

are necessary in order to allow it to SCF access. */

interface IpAppAccess : IpOsa {

/* This method is invoked by the Framework to request that client application sign an

agreement on a specified SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the SCF instance to which

 // this service agreement corresponds.

in TpString agreementText,
// Agreement text that has to be signed by the

 // client application.

in TpSigningAlgorithm signingAlgorithm,

// Algorithm used to compute the digital

 // signature.

out TpString digitalSignature

// Signed version of a hash of the service

// token and agreement text given by the

// framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to terminate an agreement for a specified

SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,

// Identifies the SCF agreement to be terminated.

in TpString terminationText, // Describes the reason for the termination.

in TpString digitalSignature
// Used by the Framework to confirm its identity to the

// client.

) raises (TpGeneralException);

/* This method is invoked by the Framework to end the client application's access session

with the framework. */

void terminateAccess (

in TpString terminationText,
// Describes the reason for the termination of

 // the access session.

in TpSigningAlgorithm signingAlgorithm,

// The algorithm used to compute the digital

// signature.

in TpString digitalSignature

// Used by the Framework to confirm its

// identity to the client.

) raises (TpGeneralException);

};

/* The Authentication Framework interface is used by client application to perform its part of

the mutual authentication process with the Framework necessary to be allowed to use any of the

other interfaces supported by the Framework. */

interface IpAuthentication : IpOsa {

/* This method is invoked by the client application to start the authentication process,

informed the Framework of the authentication mechanisms it supports, and be informed by its

of its preferred choice. */

void selectAuthMethod (

in TpAuthCapabilityList auths,
// Informs the Framework of the authentication

// mechanisms supported by the client

// application.

out TpAuthCapability prescribedMethod

// Indicates the mechanism preferred by the

// framework.

) raises (TpGeneralException);

/* This method is invoked by the client application to authenticate the framework using the

mechanism indicated in the parameter prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod,

// Specifies the method accepted by that the

// framework for authentication.

in TpString challenge, // The challenge presented by the client

// application to be responded to by the

// framework.

out TpString response
// The response of the framework to the

// challenge of the client application.

) raises (TpGeneralException);

/* This method is invoked by the client application to to abort the authentication

process.*/

void abortAuthentication() raises (TpGeneralException);

};

/* The Authentication client application interface is used by the Framework to authenticate

the client application. */

interface IpAppAuthentication : IpOsa {

/* This method is invoked by the Framework to authenticate the client application using the

mechanism indicated in prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod,

// The agreed authentication method.

in TpString challenge,

// The challenge presented by the Framework.

out TpString response

) raises (TpGeneralException);

/* This method is invoked by the Framework to abort the authentication process. */

void abortAuthentication() raises (TpGeneralException);

};

};};};};};

9.2.4
Integrity Management IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module integrity{

/***/

// Data definitions //

/***/

typedef TpString

TpActivityTestRes;

// An implementation specific result, whose values

// are Framework provider specific.

struct TpTimeInterval {

// A time interval.

TpDateAndTime

StartTime;

TpDateAndTime

StopTime;

};

enum TpInterfaceFault {

// The cause of the interface fault detected.

INTERFACE_FAULT_UNDEFINED,

// Undefined.

INTERFACE_FAULT_LOCAL_FAILURE,

// A fault in the local API software or hardware has been

// detected.

INTERFACE_FAULT_GATEWAY_FAILURE,

// A fault in the gateway API software or hardware has been

// detected.

INTERFACE_FAULT_PROTOCOL_ERROR

// An error in the protocol used on the client-gateway link

// has been detected.

};

struct TpFaultStats {

// Statistics on a per fault type basis.

TpInterfaceFault
Fault;

TpInt32

Occurrences;

// The number of separate instances of this fault

// during the period.

TpInt32

MaxDuration;

// The duration in seconds of the longest fault.

TpInt32

TotalDuration;

// The cumulative total during the period.

TpInt32

NumberOfClientsAffected;

// Those informed of the fault by the Framework.

};

typedef sequence <TpFaultStats> TpFaultStatsSet;

struct TpFaultStatsRecord {

// The set of fault information records to be returned for the

// requested time period.

TpTimeInterval

Period;

TpFaultStatsSet
FaultRecords;

};

typedef TpInt32

TpActivityTestID;

// Used as a token to match activity test requests

// with their results.

enum TpSvcUnavailReason {

// The reason why a SCF is unavailable.

SERVICE_UNAVAILABLE_UNDEFINED,

// Undefined.

SERVICE_UNAVAILABLE_LOCAL_FAILURE,

// The local API software or hardware has failed.

SERVICE_UNAVAILABLE_GATEWAY_FAILURE,
// The gateway API software or hardware has failed.

SERVICE_UNAVAILABLE_OVERLOADED,

// The SCF is fully overloaded.

SERVICE_UNAVAILABLE_CLOSED

// The SCF has closed itself.

};

enum TpAPIUnavailReason {

// The reason why the API is unavailable.

API_UNAVAILABLE_UNDEFINED,

// Undefined.

API_UNAVAILABLE_LOCAL_FAILURE,

// The local API software or hardware has failed.

API_UNAVAILABLE_GATEWAY_FAILURE,

// The gateway API software or hardware has failed.

API_UNAVAILABLE_OVERLOADED,

// The gateway is fully overloaded.

API_UNAVAILABLE_CLOSED,

// The gateway has closed itself.

API_UNAVAILABLE_PROTOCOL_FAILURE

// The protocol used on the client-gateway link has failed.

};

enum TpLoadLevel {

// The load level values.

LOAD_LEVEL_NORMAL,

// Normal load.

LOAD_LEVEL_OVERLOAD,

// Overload.

LOAD_LEVEL_SEVERE_OVERLOAD

// Severe overload.

};

struct TpLoadThreshold{

// The load threshold value.

TpFloat

LoadThreshold;

};

struct TpLoadInitVal {
// The pair of load level and associated load threshold values.

TpLoadLevel

LoadLevel;

TpLoadThreshold
LoadThreshold;

};

struct TpLoadPolicy {

// The load balancing policy.

TpString

LoadPolicy;

};

enum TpLoadStatisticEntityType {

P_LOAD_STATISTICS_FW_TYPE,

P_LOAD_STATISTICS_SVC_TYPE,

P_LOAD_STATISTICS_APP_TYPE

};

union TpLoadStatisticEntityID switch(TpLoadStatisticEntityType)

{

case P_LOAD_STATITICS_FW_TYPE:

TpFwID FrameworkID;

case P_LOAD_STATITICS_SVC_TYPE:

TpServiceID ServiceID;

case P_LOAD_STATITICS_APP_TYPE:

TpClientAppID ClientAppID;

};

 struct TpLoadStatisticData {

TpFloat

LoadValue;

// Expressed in percentage.

TpLoadLevel

LoadLevel;

};

 enum TpLoadStatisticError {

P_LOAD_INFO_ERROR_UNDEFINED,

P_LOAD_INFO_UNAVAILABLE

};

enum TpLoadStatisticInfoType {

P_LOAD_STATISTICS_VALID,

P_LOAD_STATISTICS_INVALID

};

union TpLoadStatisticInfo switch(TpLoadStatisticInfoType)

{

case P_LOAD_STATISTICS_VALID:

TpLoadStatisticData LoadStatisticData;

case P_LOAD_STATISTICS_INVALID:

TpLoadStatisticError LoadStatisticError;

};

struct TpLoadStatistic {

TpLoadStatisticEntityID

LoadStatisticEntityID;

TpDateAndTime

TimeStamp;

 TpLoadStatisticInfo LoadStatisticInfo;

};

 typedef sequence <TpLoadStatistic>
TpLoadStatisticList;

/***/

// Interface definitions //

/***/

/* The Heartbeat Framework interface is used by the client application to supervise the

Framework or a SCF. */

interface IpHeartBeat : IpOsa {

/* This method is invoked by the client application to make the service or Framework

supervision. */

void send (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Heartbeat client application interface is used by the Framework to supervise the client

application. */

interface IpAppHeartBeat : IpOsa {

/* This method is invoked by the Framework to make the client application supervision. */

void send (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Heartbeat Management Framework interface is used by the client application to

initialise a heartbeat supervision of the client application. */

interface IpHeartBeatMgmt : IpOsa {

/* This method is invoked by the client application to register at the Framework for

heartbeat supervision. */

void enableHeartBeat (

in TpDuration duration,
// Duration in milliseconds between heartbeats.

in IpAppHeartBeat appInterface,

// The callback interface the heartbeat is calling.

out TpSessionID session

// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the client application to stop its heartbeat supervision. */

void disableHeartBeat (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the client application to change the heartbeat period. */

void changeTimePeriod (

in TpDuration duration,
// Duration in milliseconds between heartbeats.

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Heartbeat Management client application interface is used by the Framework to

initialise its heartbeat supervision of the Framework. */

interface IpAppHeartBeatMgmt : IpOsa {

/* This method is invoked by the Framework to register at the client application for its

heartbeat supervision. */

void enableAppHeartBeat (

in TpDuration duration,

// Time interval in milliseconds between the heartbeats.

in IpHeartBeat fwInterface,
// The callback interface the heartbeat is calling.

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the Framework to stop the heartbeat supervision by the

application. */

void disableAppHeartBeat (

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

/* This method is invoked by the Framework to change the heartbeat period. */

void changeTimePeriod (

in TpDuration duration,
// Interval in milliseconds between the heartbeats.

in TpSessionID session
// The heartbeat session.

) raises (TpGeneralException);

};

/* The Load Manager Framework interface is used by the client application for load balancing

management. */

interface IpLoadManager : IpOsa {

/* This method is invoked by the client application to notify framework its current load

level (0,1, or 2) when the load level on the application has changed. */

void reportLoad (

in TpLoadLevel loadLevel
// The application's load level.

) raises (TpGeneralException);

/* This method is invoked by the client application to request load statistic records for

the framework and specified SCFs. */

void queryLoadReq (

in TpServiceIDList serviceIDs,
// Specifies the framework and SCFs for which the

// load statistics shall be reported.

in TpTimeInterval timeInterval
// The time interval within which the load statistics

// are generated.

) raises (TpGeneralException);

/* This method is invoked by the client application to report load statistics back to the

framework that requested the information. */

void queryAppLoadRes (

in TpLoadStatisticList loadStatistics
// The application's load statistics.

) raises (TpGeneralException);

/* This method is invoked by the client application to return an error response to the

framework that requested the application's load statistics information. */

void queryAppLoadErr (

in TpLoadStatisticErrorList loadStatisticsError
// The error code associated with the

// failed attempt to retrieve the

// application's load statistics.

) raises (TpGeneralException);

/* This method is invoked by the client application to register the client application for

load management under various load conditions. */

void registerLoadController (

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs to be

// registered for load control.

) raises (TpGeneralException);

/* This method is invoked by the client application to unregister for load management. */

void unregisterLoadController (

in TpServiceIDList serviceIDs // Specifies the framework or SCFs to be

// unregistered for load control.

) raises (TpGeneralException);

/* This method is invoked by the client application to resume load management notifications

to it from the framework and specified SCFs. */

void resumeNotification (

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs for which

// notifications are to be resumed.

) raises (TpGeneralException);

/* This method is invoked by the client application to suspend load management

notifications to it from the framework and specified SCFs, while it handles a temporary

load condition. */

void suspendNotification (

in TpServiceIDList serviceIDs
// Specifies the framework and SCFs for which

// notifications are to be suspended.

) raises (TpGeneralException);

};

/* The Load Manager client application interface is used by the Framework to access the

application load balancing SCF. */

interface IpAppLoadManager : IpOsa {

/* This method is invoked by the Framework to request for load statistic records produced

by a specified application. */

void queryAppLoadReq (

in TpServiceIDList serviceIDs,
// Specifies the SCFs or application for which the

// load statistics shall be reported.

in TpTimeInterval timeInterval
// The time interval within which the load statistics

// are generated.

) raises (TpGeneralException);

/* This method is invoked by the Framework to return load statistics to the application

which requested the information. */

void queryLoadRes (

in TpLoadStatisticList loadStatistics
// The load statistics supplied by the

 // Framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to return an error code to the application that

requested load statistics. */

void queryLoadErr (

in TpLoadStatisticErrorList loadStatisticsError
// The error code supplied by the

// Framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to disable load control activity at the client

application based on policy, after the load level of the Framework or SCF which has

been registered for load control moves back to normal. */

void disableLoadControl (

in TpServiceIDList serviceIDs
 // Specifies the framework and SCFs for which the

// load has changed to normal.

) raises (TpGeneralException);

/* This method is invoked by the Framework to enable load management activity at the client

application based on the policy, upon detecting load condition change. */

void enableLoadControl (

in TpLoadStatisticList loadStatistics
// The new load statistics.

) raises (TpGeneralException);

/* This method is invoked by the Framework to resume the notification from an application

for its load status after the detection of load level change at the Framework and the

evaluation of the load balancing policy. */

void resumeNotification() raises (TpGeneralException);

/* This method is invoked by the Framework to suspend the notification from an application

for its load status after the detection of load level change at the Framework and the

evaluation of the load balancing policy. */

void suspendNotification() raises (TpGeneralException);

};

/* The Fault Manager Framework interface is used by the client application to inform the

Framework of events that affect the integrity of the Framework and SCFs, and to request

information about the integrity of the system. */

interface IpFaultManager : IpOsa {

/* This method may be invoked by the client application to test that the Framework or a

SCF is operational. */

void activityTestReq (

in TpActivityTestID activityTestID,
// Identifier provided by the client

// application to correlate the

// response with this request.

in TpServiceID svcID

// Identifies for which SCF the client

 // application is requesting the activity test

// be done.

) raises (TpGeneralException);

/* This method is invoked by the client application to return the result of a previously

requested activity test. */

void appActivityTestRes (

in TpActivityTestID activityTestID, // Used by the Framework to correlate this

// response with the original request.

in TpActivityTestRes activityTestResult // Result of the activity test.

) raises (TpGeneralException);

/* This method is invoked by the client application to inform the Framework that it can no

longer use the indicated SCF. */

void svcUnavailableInd (

in TpServiceID serviceID
// Identity of the SCF which can no longer be used.

) raises (TpGeneralException);

/* This method is invoked by the client application to request fault statistics from the

Framework. */

void genFaultStatsRecordReq (

in TpTimeInterval timePeriod,
// The period over which the fault statistics

// are to be generated.

in TpServiceIDs serviceIDList
// The SCFs that the application would like

// to have included in the general fault

// statistics record.

) raises (TpGeneralException);

};

/* The Fault Manager client application interface is used by the Framework to inform the

application of events that affect the integrity of the Framework, SCF or client

application. */

interface IpAppFaultManager : IpOsa {

/* This method is invoked by the Framework, in response to an activityTestReq, to return

the result of the activity test in this method. */

void activityTestRes (

in TpActivityTestID activityTestID,

// The identifier provided to correlate this

// response with the original request.

in TpActivityTestRes activityTestResult
// Result of the activity test.

) raises (TpGeneralException);

/* This method is invoked by the Framework to request that the client application carries

out an activity test to check that is it operating correctly. */

void appActivityTestReq (

in TpActivityTestID activityTestID
// The identifier provided to correlate this

// response with the original request.

) raises (TpGeneralException);

/* This method is invoked by the Framework to notify the client application of a failure

within the Framework. */

void fwFaultReportInd (

in TpInterfaceFault fault

// The fault that has been detected.

) raises (TpGeneralException);

/* This method is invoked by the Framework to notify the client application that a

previously reported fault has been rectified. */

void fwFaultRecoveryInd (

in TpInterfaceFault fault

// The fault from which the framework has recovered.

) raises (TpGeneralException);

 void fwUnavailableInd (

 in TpFwUnavailReason reason

) raises (TpGeneralException);

/* This method is invoked by the Framework to inform the client application that it can no

longer use the indicated SCF due to a failure. */

void svcUnavailableInd (

in TpServiceID serviceID,
// Identity of the SCF which can no longer be used.

in TpSvcUnavailReason reason
// The reason why the SCF is no longer available.

) raises (TpGeneralException);

/* This method is invoked by the Framework to provide fault statistics to a client

application in response to a genFaultStatsRecordReq. */

void genFaultStatsRecordRes (

in TpFaultStatsRecord faultStatistics,
// The fault statistics record.

in TpServiceIDList serviceIDs
// The SCFs that have been included in the

// general fault statistics record.

) raises (TpGeneralException);

};

/* The OAM Framework interface is used by the client application to query the system date and

time, for synchronization purposes. */

interface IpOAM : IpOsa {

/* This method is invoked by the client application to interchange the system an client

application date and time. */

void systemDateTimeQuery (

in TpDateAndTime clientDateAndTime,
// The date and time of the client.

out TpDateAndTime systemDateAndTime

// The date and time of the system.

) raises (TpGeneralException);

};

/* The OAM client application interface is used by the Framework to query the application date

and time, for synchronization purposes. */

interface IpAppOAM : IpOsa {

/* This method is invoked by the Framework to interchange the system an client application

date and time. */

void systemDateTimeQuery (

in TpDateAndTime systemDateAndTime,
// The date and time of the system.

out TpDateAndTime clientDateAndTime

// The date and time of the client.

) raises (TpGeneralException);

};

};};};};};

9.2.5
Registration IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module registration{

/***/

// Interface definitions //

/***/

/* The Service Registration Framework interface provides the methods used for the registration

of network SCFs at the Framework. */

interface IpServiceRegistration : IpOsa {

/* This method is used to register a SCF in the Framework, for subsequent discovery by

the applications. */

void registerService (

in TpServiceTypeName

serviceTypeName,

in TpServicePropertyList

servicePropertyList,

out TpServiceID

serviceID

) raises (TpGeneralException);

/* This method informs the Framework of the availability of a service factory for a

previously registered SCF. */

void announceServiceAvailability (

in TpServiceID

serviceID,

in IpOsa

serviceFactory

) raises (TpGeneralException);

/* This method is used to remove a registered SCF from the Framework. */

void unregisterService (

in TpServiceID

serviceID

) raises (TpGeneralException);

/* This method is used to ebtain the decription of a certain SCF as it was registered in

the Framework. */

void describeService (

in TpServiceID

serviceID,

out TpServiceDescription

serviceDescription

) raises (TpGeneralException);

};

/* The Service Factory Framework interface provides the Framework with access to a manager

interface of a network SCF to be given to an application. */

interface IpSvcFactory : IpOsa {

/* This method returns an SCF manager interface reference for a specified application. */

void getServiceManager (

in TpDomainID

application,

in TpServicePropertyList serviceProperties,
out IpServiceOsa

serviceManager

) raises (TpGeneralException);

};

};};};};};

9.3
Call Control

9.3.1
Common Data Types for Call Control

// source file: CC.idl

// Generic Call Data description

#ifndef __OSA_CC_DEFINED

#define __OSA_CC_DEFINED

#include <OSA.idl>

#include <UI.idl>

module org

{

module threegpp

{

module osa

{

module cc

{

/* Defines the mechanism that will be used to alert a called party. */

typedef TpInt32 TpCallAlertingMechanism;

/* Defines the bearer service associated with the call. */

enum TpCallBearerService

{

P_CALL_BEARER_SERVICE_UNKNOWN,

 /* Bearer capability information

 unknown at this time*/

P_CALL_BEARER_SERVICE_SPEECH,

 /* Speech*/

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED, /* Unrestricted digital information*/

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED,
 /* Restricted digital information*/

P_CALL_BEARER_SERVICE_AUDIO,

 /* 3.1 kHz audio*/

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES, /* Unrestricted digital information

 with tones/announcements*/

P_CALL_BEARER_SERVICE_VIDEO

 /*Video*/

};

/*This data defines the bearer capabilities associated with the call. (3GPP TS 24.002) This

 information is network operator specific and may not always be available because there

 is no standard protocol to retrieve the information */

enum TpCallNetworkAccessType

{

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN,

/* Network type information unknown at this time */

P_CALL_NETWORK_ACCESS_TYPE_POT,

/* POTS */

P_CALL_NETWORK_ACCESS_TYPE_ISDN,

/* ISDN */

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET,
/* Dial-up Internet */

P_CALL_NETWORK_ACCESS_TYPE_XDSL,

/* xDSL */

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS

/* Wireless */

};

/* Defines the category of a calling or called party (e.g. call priority, payphone,

 prepaid).*/

enum TpCallPartyCategory

{

P_CALL_PARTY_CATEGORY_UNKNOWN,

/*calling party's category unknown at this time*/

P_CALL_PARTY_CATEGORY_OPERATOR_F,
/* operator, language French*/

P_CALL_PARTY_CATEGORY_OPERATOR_E,
/* operator, language English*/

P_CALL_PARTY_CATEGORY_OPERATOR_G,
/* operator, language German*/

P_CALL_PARTY_CATEGORY_OPERATOR_R,
/* operator, language Russian*/

P_CALL_PARTY_CATEGORY_OPERATOR_S,
/* operator, language Spanish*/

P_CALL_PARTY_CATEGORY_ORDINARY_SUB,
/* ordinary calling subscriber*/

P_CALL_PARTY_CATEGORY_PRIORITY_SUB,
/* calling subscriber with priority*/

P_CALL_PARTY_CATEGORY_DATA_CALL,
/* data call (voice band data) */

P_CALL_PARTY_CATEGORY_TEST_CALL,
/* test call*/

P_CALL_PARTY_CATEGORY_PAYPHONE

/* payphone*/

};

/* This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3GPP TS 22.003)Defines the tele-service associated with the call (e.g. speech, video, fax, file transfer, browsing). */

enum TpCallTeleService

{

P_CALL_TELE_SERVICE_UNKNOWN,
/* Teleservice information unknown at this time*/

P_CALL_TELE_SERVICE_TELEPHONY,

/* Telephony */

P_CALL_TELE_SERVICE_FAX_2_3,

/* Facsimile Group 2/3 */

P_CALL_TELE_SERVICE_FAX_4_I,

/* Facsimile Group 4, Class I */

P_CALL_TELE_SERVICE_FAX_4_II_III,
/* Facsimile Group 4, Classes II and III */

P_CALL_TELE_SERVICE_VIDEOTEX_SYN,
/* Syntax based Videotex */

P_CALL_TELE_SERVICE_VIDEOTEX_INT,
/* International Videotex interworking via gateways or interworking units */

P_CALL_TELE_SERVICE_TELEX,

/* Telex service*/

P_CALL_TELE_SERVICE_MHS,

/* Message Handling Systems */

P_CALL_TELE_SERVICE_OSI,

/* OSI application*/

P_CALL_TELE_SERVICE_FTAM,

/* FTAM application*/

P_CALL_TELE_SERVICE_VIDEO,

/* Videotelephony*/

P_CALL_TELE_SERVICE_VIDEO_CONF,
/* Videoconferencing*/

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF,
/* Audiographic conferencing*/

P_CALL_TELE_SERVICE_MULTIMEDIA,
/* Multimedia services*/

P_CALL_TELE_SERVICE_CS_INI_H221,
/* Capability set of initial channel of H.221*/

P_CALL_TELE_SERVICE_CS_SUB_H221,
/* Capability set of subsequent channel of H.221*/

P_CALL_TELE_SERVICE_CS_INI_CALL,
/* Capability set of initial channel associated with an active 3.1 kHz audio or speech call.*/

P_CALL_TELE_SERVICE_DATATRAFFIC,
/* Data traffic.*/

P_CALL_TELE_SERVICE_EMERGENCY_CALLS,
/* Emergency Calls*/

P_CALL_TELE_SERVICE_SMS_MT_PP,
/* Short message MT/PP*/

P_CALL_TELE_SERVICE_SMS_MO_PP,
/* Short message MO/PP*/

P_CALL_TELE_SERVICE_CELL_BROADCAST,
/* Cell Broadcast Service*/

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3,
/* Alternate speech and facsimile group 3*/

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3,
/* Automatic Facsimile group 3*/

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL,
/* Voice Group Call Service*/

P_CALL_TELE_SERVICE_VOICE_BROADCAST
/* Voice Broadcast Service*/

};

/* Defines a specific call event report type. */

enum TpCallAppInfoType

{

P_CALL_APP_UNDEFINED, /* Undefined */

P_CALL_APP_ALERTING_MECHANISM, /* The alerting mechanism or pattern to use */

P_CALL_APP_NETWORK_ACCESS_TYPE, /* The network access type (e.g. ISDN) */

P_CALL_APP_TELE_SERVICE, /* Indicates the tele-service (e.g. speech) and related info such as clearing programme */

P_CALL_APP_BEARER_SERVICE, /* Indicates the bearer service (e.g. 64kb/s unrestricted data). */

P_CALL_APP_PARTY_CATEGORY, /* The category of the calling or called party */

P_CALL_APP_PRESENTATION_ADDRESS, /* The address to be presented to other call parties */

P_CALL_APP_GENERIC_INFO, /* Carries unspecified application-SCF information */

P_CALL_APP_ADDITIONAL_ADDRESS /* Indicates an additional address */

};

/* Defines the Tagged Choice of Data Elements that specify call application-related specific information. */

union TpCallAppInfo switch(TpCallAppInfoType)

{

case P_CALL_APP_TELE_SERVICE:

TpCallTeleService CallAppTeleService;

case P_CALL_APP_BEARER_SERVICE:

TpCallBearerService CallAppBearerService;

case P_CALL_APP_PARTY_CATEGORY:

TpCallPartyCategory CallAppPartyCategory;

case P_CALL_APP_PRESENTATION_ADDRESS:

TpAddress CallAppPresentationAddress;

case P_CALL_APP_GENERIC_INFO:

TpString CallAppGenericInfo;

case P_CALL_APP_ADDITIONAL_ADDRESS:

TpAddress CallAppAdditionalAddress;

case P_CALL_APP_ALERTING_MECHANISM:

TpCallAlertingMechanism CallAppAlertingMechanism;

case P_CALL_APP_NETWORK_ACCESS_TYPE:

TpCallNetworkAccessType CallAppNetworkAccessType;

};

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

enum TpCallChargeOrderCategory

{

P_CALL_CHARGE_PER_TIME, /* Charge per time*/

P_CALL_CHARGE_NETWORK /* Operator specific charge plan specification, e.g. charging table name / charging table entry*/

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call. */

union TpCallChargeOrder switch(TpCallChargeOrderCategory)

{

case P_CALL_CHARGE_PER_TIME:
TpChargePerTime ChargePerTime;

case P_CALL_CHARGE_NETWORK:
TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the charge plan for the call This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this data type are operator specific. */

struct TpCallChargePlan

{

TpCallChargeOrder ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined

const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1; // Offhook event

const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2; // Address information collected

const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4; // Address information is analysed

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8; // Called party is busy

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16; // Called party is unreachable

const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32; // No answer from called party

const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64; // Failure in routing the call

const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128; // Party answered call

typedef TpInt32 TpCallEventName; /*Defines the names of event being notified. */

enum TpCallNotificationType

{

P_ORIGINATING,
// The notification is related to the originating user in the call.

P_TERMINATING
// The notification is related to the terminating user in the call.

};

struct TpCallEventCriteria

{

TpAddressRange DestinationAddress;
/*Destination address or address range*/

TpAddressRange OriginationAddress;
/*Origination address or address range */

TpCallEventName CallEventName; /*Name of the event(s) */

TpCallNotificationType CallNotificationType; /*Indicates whether the criteria are related to the originating or terminating user in the call */

};

/* Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID */

struct TpCallEventCriteriaResult

{

TpCallEventCriteria EventCriteria;

TpInt32 AssignmentID;

};

/* Defines a set of TpCallEventCriteriaResult */

typedef sequence <TpCallEventCriteriaResult> TpCallEventCriteriaResultSet;

//Defines the type of notification.

//Indicates whether it is related to the originating of the terminating user in the call.

struct TpCallEventInfo

{

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpAddress OriginalDestinationAddress;

TpAddress RedirectingAddress;

TpCallAppInfoSet CallAppInfo;

TpCallEventName CallEventName;

TpCallNotificationType CallNotificationType;

TpCallMonitorMode MonitorMode;

};

/* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/

struct TpCallReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

/* Defines the Sequence of Data Elements that specify the reason for the call ending.*/

struct TpCallEndedReport

{

TpSessionID CallLegSessionID;

TpCallReleaseCause Cause;

};

/* Defines a specific call error. */

enum TpCallErrorType

{

P_CALL_ERROR_UNDEFINED, /* Undefined */

P_CALL_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid address was given */

P_CALL_ERROR_INVALID_STATE /* The call was not in a valid state for the requested operation */

};

/* Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors. */

union TpCallAdditionalErrorInfo switch(TpCallErrorType)

{

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;

default: short Dummy; // allows initialization of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error. */

struct TpCallError

{

TpCallAdditionalErrorInfo AdditionalErrorInfo;

TpCallErrorType ErrorType;

TpDateAndTime ErrorTime;

};

/* Defines the cause of the call fault detected. */

enum TpCallFault

{

P_CALL_FAULT_UNDEFINED, /* Undefined */

P_CALL_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time. */

P_CALL_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.*/

};

/* Defines the type of call information requested and reported */

const TpInt32 P_CALL_INFO_UNDEFINED = 0; /* Undefined */

const TpInt32 P_CALL_INFO_TIMES = 1; /* Relevant call times */

const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2; /* Call release cause. */

const TpInt32 P_CALL_INFO_INTERMEDIATE = 4; /* Send only intermediate reports (i.e., when a party leaves the call). */

typedef TpInt32 TpCallInfoType;

/* Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested may be undefined or not present. */

struct TpCallInfoReport

{

TpCallInfoType CallInfoType;

TpDateAndTime CallInitiationStartTime;

TpDateAndTime CallConnectedToResourceTime;

TpDateAndTime CallConnectedToDestinationTime;

TpDateAndTime CallEndTime;

TpCallReleaseCause Cause;

};

/* Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. */

enum TpCallMonitorMode

{

P_CALL_MONITOR_MODE_INTERRUPT, /* The call event is intercepted by the call control SCF and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY, /* The call event is detected by the call control SCF but not intercepted. The application is notified of the event and call processing continues */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */

};

/* Defines the type of call overload that has been detected (and possibly acted upon) by the network. */

enum TpCallOverloadType

{

P_CALL_OVERLOAD_TYPE_UNDEFINED, /* Infinite interval (do not admit any calls) */

P_CALL_OVERLOAD_TYPE_NEW_CALLS, /* New calls to the application are causing overload (i.e. inbound overload) */

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS /* Calls being routed to destination or origination addresses by the application are causing overload (i.e. outbound overload) */

};

/* Defines a specific call event report type. */

enum TpCallReportType

{

P_CALL_REPORT_UNDEFINED, /* Undefined */

P_CALL_REPORT_PROGRESS, /* Call routing progress event */

P_CALL_REPORT_ALERTING, /* Call alerting at address */

P_CALL_REPORT_ANSWER, /* Call answered at address */

P_CALL_REPORT_BUSY, /* Called address refused call due to busy */

P_CALL_REPORT_NO_ANSWER, /* No answer at called address */

P_CALL_REPORT_DISCONNECT, /* Call disconnect requested by address */

P_CALL_REPORT_REDIRECTED,

P_CALL_REPORT_SERVICE_CODE,

P_CALL_REPORT_ROUTING_FAILURE

};

/* Defines the Tagged Choice of Data Elements that specify additional call report information. */

union TpCallAdditionalReportInfo switch(TpCallReportType)

{

case P_CALL_REPORT_BUSY: TpCallReleaseCause Busy;

case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;

case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;

case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

default: short Dummy; // allows initialization of the union in the default case

};

struct TpCallReport

{

TpCallMonitorMode MonitorMode;

TpDateAndTime CallEventTime;

TpCallReportType CallReportType;

TpCallAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the different types of service codes that can be received during the call.*/

enum TpCallServiceCodeType

{

P_CALL_SERVICE_CODE_UNDEFINED,
/* The type of service code is unknown. The corresponding string is operator specific.*/

P_CALL_SERVICE_CODE_DIGITS, /* The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits. */

P_CALL_SERVICE_CODE_FACILITY, /* A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932*/

P_CALL_SERVICE_CODE_U2U, /* A user-to-user message was received. The associated string contains the content of the user-to-user information element. */

P_CALL_SERVICE_CODE_HOOKFLASH,
/* The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

P_CALL_SERVICE_CODE_RECALL /* The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

};

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. Defines the service code received during a call. For example, this may be a digit sequence, user-user information, recall, flash-hook or ISDN Facility Information Element. This data type is identical to a TpString. The coding of this data type is operator specific. */

struct TpCallServiceCode

{

TpCallServiceCodeType CallServiceCodeType;

TpString ServiceCodeValue;

};

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpCallAdditionalReportCriteria switch(TpCallReportType)

{

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

default: short Dummy; // allows initialization of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the criteria relating to call report requests. */

struct TpCallReportRequest

{

TpCallMonitorMode MonitorMode;

TpCallReportType CallReportType;

TpCallAdditionalReportCriteria AdditionalReportCriteria;

};

/* Defines a Numbered Set of Data Elements of TpCallReportRequest. */

typedef sequence <TpCallReportRequest> TpCallReportRequestSet;

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; /* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; /* The call has ended, either due to timer expiry or calling or called party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.*/

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; /* A warning tone has been applied. */

const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8; /* The user interaction has finished */

/* Defines the responses from the call control SCF for calls that are supervised:*/

typedef TpInt32 TpCallSuperviseReport;

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1; /* Release the call when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_RESPOND = 2; /* Notify the application when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4; /* Send a warning tone to the controlling party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period */

/* Defines the following treatment of the call by the call control SCF when the call supervision timer expires.*/

typedef TpInt32 TpCallSuperviseTreatment;

/* Define the possible Exceptions. */

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_CRITERIA = 260;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 261;

exception TpGCCSException

{

TpInt32 exceptionType;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

 typedef TpInt32 TpCallLoadControlIntervalRate;

 /* The next data type is not used for an SCF implementation based

 on this specification: */

const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0;

 /* The next data type is not used for an SCF implementation based

 on this specification: */

enum TpCallLoadControlMechanismType {

 P_CALL_LOAD_CONTROL_PER_INTERVAL

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

union TpCallLoadControlMechanism switch(TpCallLoadControlMechanismType) {

 case P_CALL_LOAD_CONTROL_PER_INTERVAL:

 TpCallLoadControlIntervalRate CallLoadControlPerInterval;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

enum TpCallTreatmentType {

 P_CALL_TREATMENT_DEFAULT,

 P_CALL_TREATMENT_RELEASE,

 P_CALL_TREATMENT_SIAR

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

union TpCallAdditionalTreatmentInfo switch(TpCallTreatmentType) {

 case P_CALL_TREATMENT_SIAR: ui::TpUIInfo InformationToSend;

 default: short Dummy;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

struct TpCallTreatment {

 TpCallTreatmentType CallTreatmentType;

 TpCallReleaseCause ReleaseCause;

 TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo;

};

}; // end module cc

}; // end module osa

}; // end module threegpp

}; // end module org

#endif

// END file CC.idl

9.3.2
Generic Call Control IDL

// source file: GCC.idl

// GenericCall Interface description

#ifndef __OSA_CC_GCC_DEFINED

#define __OSA_CC_GCC_DEFINED

#include <CC.idl>

module org {

 module threegpp {

 module osa {

 module cc {

 module gcc {

 interface IpAppCallControlManager; // forward definition

 interface IpAppCall; // forward definition

 interface IpCall; // forward definition

/* Sequence of Data Elements that unambiguously specify the Generic Call object */

 struct TpCallIdentifier {

 IpCall CallReference;

 TpSessionID CallSessionID;

 };

 /* This interface is the SCF manager' interface for Generic Call Control. */

 interface IpCallControlManager : IpService {

 /* This method is used to enable call notifications. */

 void enableCallNotification (

 in IpAppCallControlManager appInterface,

 in TpCallEventCriteria eventCriteria,

 out TpAssignmentID assignmentID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method is used by the application to disable call notifications.*/

 void disableCallNotification (

 in TpAssignmentID assignmentID

)

 raises (TpGCCSException, TpGeneralException);

 void changeCallNotification (

 in TpAssignmentID assignmentID,

 in TpCallEventCriteria eventCriteria

)

 raises (TpGCCSException, TpGeneralException);

 void getCriteria (

 out TpCallEventCriteriaResultSet eventCriteria

)

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void createCall (

 in IpAppCall appCall,

 out TpCallIdentifier callReference

)

 raises (TpGCCSException,TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void setCallLoadControl (

 in TpDuration duration,

 in TpCallLoadControlMechanism mechanism,

 in TpCallTreatment treatment,

 in TpAddressRange addressRange,

 out TpAssignmentID assignmentID

)

 raises (TpGCCSException, TpGeneralException);

 };

 /* This interface provides the means to control a simple call. */

 interface IpCall : IpService {

 /* This method requests routing of the call to the destination party.*/

 void routeReq (

 in TpSessionID callSessionID,

 in TpCallReportRequestSet responseRequested,

 in TpAddress targetAddress,

 in TpAddress originatingAddress,

 in TpAddress originalDestinationAddress,

 in TpAddress redirectingAddress,

 in TpCallAppInfoSet appInfo,

 out TpSessionID callLegSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method requests the release of the call and associated objects.*/

 void release (

 in TpSessionID callSessionID,

 in TpCallReleaseCause cause

)

 raises (TpGCCSException, TpGeneralException);

 /* This method requests that the relationship between the application and

 the call and associated objects be de-assigned. */

 void deassignCall (

 in TpSessionID callSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method requests information associated with the call.*/

 void getCallInfoReq (

 in TpSessionID callSessionID,

 in TpCallInfoType callInfoRequested

)

 raises (TpGCCSException, TpGeneralException);

 /* Set an operator specific charge plan for the call. */

 void setCallChargePlan (

 in TpSessionID callSessionID,

 in TpCallChargePlan callChargePlan

)

 raises (TpGCCSException, TpGeneralException);

 /* The application calls this method to supervise a call. */

 void superviseCallReq (

 in TpSessionID callSessionID,

 in TpDuration time,

 in TpCallSuperviseTreatment treatment

)

 raises (TpGCCSException, TpGeneralException);

 void setAdviceOfCharge(

 in TpSessionID callSessionID,

 in TpAoCInfo aOCInfo,

 in TpDuration tariffSwitch

)

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void getMoreDialledDigitsReq (

 in TpSessionID callSessionID,

 in TpInt32 length

)

 raises (TpGeneralException, TpGCCSException);

 };

 /* The generic call control manager application interface provides the

 application call control management functions to the generic call control

 SCF. */

 interface IpAppCallControlManager : IpOsa {

 void callAborted (

 in TpSessionID callReference

)

 raises (TpGCCSException, TpGeneralException);

 /* This method notifies the application of the arrival of a call-related event. */

 void callEventNotify (

 in TpCallIdentifier callReference,

 in TpCallEventInfo eventInfo,

 in TpAssignmentID assignmentID,

 out IpAppCall appInterface

)

 raises (TpGCCSException, TpGeneralException);

/* This method indicates to the application that all event notifications

 have been terminated .*/

 void callNotificationInterrupted ()

 raises (TpGCCSException, TpGeneralException);

 void callNotificationContinued ()

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void callOverloadEncountered (

 in TpAssignmentID assignmentID

)

 raises (TpGeneralException,TpGCCSException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void callOverloadCeased (

 in TpAssignmentID assignmentID

)

 raises (TpGeneralException,TpGCCSException);

 };

 /* The application side of the simple call interface is used to handle call

 request responses and state reports. */

 interface IpAppCall : IpOsa {

 /* This method indicates that the request to route the call to the

 destination was successful.*/

 void routeRes (

 in TpSessionID callSessionID,

 in TpCallReport eventReport,

 in TpSessionID callLegSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method indicates that the request to route the call to the

 destination party was unsuccessful. */

 void routeErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication,

 in TpSessionID callLegSessionID

)

 raises (TpGCCSException, TpGeneralException);

 /* This method reports all necessary information requested by the

 application, for example to calculate charging.*/

 void getCallInfoRes (

 in TpSessionID callSessionID,

 in TpCallInfoReport callInfoReport

)

 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports that the original request was erroneous,

 or resulted in an error condition.*/

 void getCallInfoErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication

)

 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision event to the application.*/

 void superviseCallRes (

 in TpSessionID callSessionID,

 in TpCallSuperviseReport report,

 in TpDuration usedTime

)

 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision error to the application.*/

 void superviseCallErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication

)

 raises (TpGCCSException, TpGeneralException);

 /* This method indicates to the application that a fault in the network has

 been detected.*/

 void callFaultDetected (

 in TpSessionID callSessionID,

 in TpCallFault fault

)

 raises (TpGCCSException, TpGeneralException);

void callEnded (

 in TpSessionID callSessionID,

 in TpCallEndedReport report

)

 raises (TpGCCSException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void getMoreDialledDigitsRes (

 in TpSessionID callSessionID,

 in TpString digits

)

 raises (TpGeneralException,TpGCCSException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void getMoreDialledDigitsErr (

 in TpSessionID callSessionID,

 in TpCallError errorIndication

)

 raises (TpGeneralException,TpGCCSException);

 };

 }; // end module gcc

 }; // end module cc

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file GCC.idl

9.3.3
Enhanced Call Control IDL

The IDL in this section is only supplied in order to make the User Interaction IDL compile.

With the createUICall() method on the UIManager object it is possible to associate the UICall object to a Call object as well as a CallLeg object. The CallLeg object is not used in this specification. However the IDL for this interface has to be supplied otherwise the User Interaction IDL will not compile.

// source file: ECC.idl

#ifndef __OSA_CC_ECC_DEFINED

#define __OSA_CC_ECC_DEFINED

#include <GCC.idl>

module org {

 module threegpp {

 module osa {

 module cc {

 module ecc {

typedef TpInt32 TpMediaType;

const TpInt32 P_AUDIO = 1;

const TpInt32 P_VIDEO = 2;

const TpInt32 P_DATA = 4;

typedef TpInt32 TpAudioCapabilitiesType;

typedef TpInt32 TpVideoCapabilitiesType;

typedef TpInt32 TpDataCapabilities;

union TpChannelDataTypeRequest switch(TpMediaType) {

case P_DATA: TpDataCapabilities Data;

case P_VIDEO: TpVideoCapabilitiesType Video;

case P_AUDIO: TpAudioCapabilitiesType Audio;

};

typedef TpChannelDataTypeRequest TpChannelDataType;

enum TpChannelDirection {

P_INCOMING,

P_OUTGOING

};

struct TpChannelRequest {

TpChannelDataTypeRequest DataTypeRequest;

TpChannelDirection Direction;

};

typedef sequence <TpChannelRequest> TpChannelRequestSet;

enum TpCallLegType {

P_CALL_LEG_TYPE_UNDEFINED,

P_CALL_LEG_TYPE_CONTROLLING,

P_CALL_LEG_TYPE_PASSIVE

 };

enum TpCallLegInfoType {

P_CALL_LEG_INFO_UNDEFINED,

P_CALL_LEG_INFO_ADDRESS,

P_CALL_LEG_INFO_RELEASE_CAUSE,

P_CALL_LEG_INFO_APPINFO,

P_CALL_LEG_INFO_TIMES

 };

interface IpMMChannel : IpService {

void close (

in TpSessionID channelSessionID

)

raises (TpGeneralException,TpGCCSException);

};

struct TpChannel {

TpChannelDirection Direction;

IpMMChannel Channel;

TpChannelDataType DataType;

TpInt32 ChannelNumber;

};

typedef sequence <TpChannel> TpChannelSet;

interface IpCallLeg : IpService {

void routeCallLegToOrigination (

in TpSessionID callLegSessionID,

in TpAddress targetAddress,

in TpAddress originatingAddress,

in TpAddress originalCalledAddress,

in TpAddress redirectingAddress,

in TpCallAppInfoSet appInfo

)

raises (TpGeneralException,TpGCCSException);

void routeCallLegToDestination (

in TpSessionID callLegSessionID,

in TpAddress targetAddress,

in TpAddress originatingAddress,

in TpAddress originalCalledAddress,

in TpAddress redirectingAddress,

in TpCallAppInfoSet appInfo

)

raises (TpGeneralException,TpGCCSException);

void eventReportReq (

in TpSessionID callLegSessionID,

in TpCallReportRequestSet eventReportsRequested

)

raises (TpGeneralException,TpGCCSException);

void release (

in TpSessionID callLegSessionID,

in TpCallReleaseCause cause

)

raises (TpGeneralException,TpGCCSException);

void getInfoReq (

in TpSessionID callLegSessionID,

in TpCallLegInfoType callLegInfoRequested

)

raises (TpGeneralException,TpGCCSException);

void getType (

in TpSessionID callLegSessionID,

out TpCallLegType callLegType

)

raises (TpGeneralException,TpGCCSException);

void getCall (

in TpSessionID callLegSessionID,

out org::threegpp::osa::cc::gcc::TpCallIdentifier callReference

)

raises (TpGeneralException,TpGCCSException);

void mediaChannelAllow (

in TpSessionID callLegSessionID,

in TpSessionIDSet channelList

)

raises (TpGeneralException,TpGCCSException);

void getMediaChannels (

in TpSessionID callLegSessionID,

out TpChannelSet channels

)

raises (TpGeneralException,TpGCCSException);

void mediaChannelMonitorReq (

in TpSessionID callLegSessionID,

in TpChannelRequestSet channelEventCriteria,

in TpCallMonitorMode monitorMode

)

raises (TpGeneralException,TpGCCSException);

};

struct TpCallLegIdentifier {

 TpSessionID CallLegSessionID;

 IpCallLeg CallLegReference;

};

 }; // end module ecc

 }; // end module cc

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file ECC.idl

9.4
User Interaction IDL

9.4.1
Common data types for User Interaction

// source file: UI.idl

// User Interaction data description

#ifndef __OSA_UI_DEFINED

#define __OSA_UI_DEFINED

#include <OSA.idl>

module org {

 module threegpp {

 module osa {

 module ui {

/* Defines the additional properties for the collection of information */

struct TpUICollectCriteria {

TpInt32 MinLength; /* minimum number of characters to collect */

TpInt32 MaxLength;

 /* maxmum number of characters to collect */

TpString EndSequence;
 /* character(s) which terminate an input of variable length. */

TpDuration StartTimeout; /* defines a duration (in seconds) */

TpDuration InterCharTimeout; /* value for the inter-character time-out timer. */

};

/* Defines the UI call error codes. */

enum TpUIError {

P_UI_ERROR_UNDEFINED,

 /* Undefined error */

P_UI_ERROR_ILLEGAL_ID,

 /* The information id specified is invalid */

P_UI_ERROR_ID_NOT_FOUND,

 /* Information id is not known to the the User Interaction SCFs */

P_UI_ERROR_RESOURCE_UNAVAILABLE,
 /* Resources used by the User Interaction SCFs are unavailable. */

P_UI_ERROR_ILLEGAL_RANGE,

 /* The values for manimum and maximum collection length are out of range */

P_UI_ERROR_IMPROPER_CALLER_RESPONSE, /* Improper user response */

P_UI_ERROR_ABANDON,

 /* Specified leg is disconnected before the send information completed */

P_UI_ERROR_NO_OPERATION_ACTIVE,
 /* No active user interaction for the specified leg. */

P_UI_ERROR_NO_SPACE_AVAILABLE
 /* There is no more storage capacity to record the message.*/

};

/* Defines the type of the dataString parameter in the method userInteractionEventNotify */

 enum TpUIEventInfoDataType {

P_UI_EVENT_DATA_TYPE_UNDEFINED,

 /* Undefined */

P_UI_EVENT_DATA_TYPE_UNSPECIFIED,

 /* Unspecified data */

P_UI_EVENT_DATA_TYPE_TEXT,

 /* Text */

P_UI_EVENT_DATA_TYPE_USSD_DATA

 /* USSD data starting with coding scheme */

};

/* Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification */

struct TpUIEventCriteria {

TpAddressRange OriginatingAddress; /* Address of the end-user for which notification shall be handled */

 TpAddressRange DestinationAddress;

TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */

};

/* Defines the Sequence of Data Elements that specify a UI notification */

struct TpUIEventInfo {

TpAddress OriginatingAddress; /* Address of the end-user for which notification shall be handled */

 TpAddress DestinationAddress;

TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */

 TpUIEventInfoDataType DataTypeIndication;

 TpString DataString;

};

/* Defines the cause of the UI fault detected. */

enum TpUIFault {

P_UI_FAULT_UNDEFINED,
/* Undefined */

P_UI_CALL_DEASSIGNED

/* The related Call object has been deassigned. */

};

/* Defines the type of information send to the end-user */

enum TpUIInfoType {

P_UI_INFO_ID,

/* The information consists of an ID */

P_UI_INFO_DATA,
/* The information consists of a data string */

P_UI_INFO_ADDRESS
/* The information consists of a URL. */

};

/* Defines the Tagged Choice of Data Elements that specifies the information to be send to a end-user. */

union TpUIInfo switch(TpUIInfoType) {

case P_UI_INFO_ID: TpInt32 InfoID;
 /*Defines the ID of the user information script or stream to send to an end-user.*/

case P_UI_INFO_DATA: TpString InfoData;
 /*Defines the data to be sent to an end-user’s terminal.*/

case P_UI_INFO_ADDRESS: TpURL InfoAddress;
 /*Defines the URL of the text or stream to be sent to an end-user’s terminal*/

};

/* Defines the criteria for recording of messages */

struct TpUIMessageCriteria {

TpString EndSequence; /* Defines the character(s) which terminate an input of variable length. */

TpDuration MaxMessageTime; /* Specifies the maximum allowed duration in seconds. */

TpInt32 MaxMessageSize; /* Specifies the maximum allowed size in bytes of the message. */

};

/* Defines the UI call reports if a response was requested. */

enum TpUIReport {

P_UI_REPORT_UNDEFINED,

/* Undefined report */

P_UI_REPORT_ANNOUNCEMENT_ENDED,
/* Confirmation that the announcement has ended */

P_UI_REPORT_LEGAL_INPUT,

/* Information collected., meeting the specified criteria. */

P_UI_REPORT_NO_INPUT,

/* User immediately entered the delimiter character. No valid information has been returned */

P_UI_REPORT_TIMEOUT,

 /* User did not input any response before the input timeout expired */

P_UI_REPORT_MESSAGE_STORED,

/* A message has been stored successfully */

P_UI_REPORT_MESSAGE_NOT_STORED
/* The message has not been stored successfully */

};

/* Defines the situations for which a response is expected following the user interaction. */

 const TpInt32 P_UI_RESPONSE_REQUIRED = 1; /* A response must be sent when the request has completed. */

const TpInt32 P_UI_LAST_ANNOUNCEMENT_IN_A_ROW = 2; /* This is the final announcement within a sequence. */

const TpInt32 P_UI_FINAL_REQUEST = 4; /* This is the final request. */

typedef TpInt32 TpUIResponseRequest; /* Defines the situations for which a response is expected following the user interaction. */

/* Defines the type of the variable parts in the information to send to the user. */

enum TpUIVariablePartType {

P_UI_VARIABLE_PART_INT,
/* Variable part is of type integer */

P_UI_VARIABLE_PART_ADDRESS,
/* Variable part is of type address */

P_UI_VARIABLE_PART_TIME,
/* Variable part is of type time */

P_UI_VARIABLE_PART_DATE,
/* Variable part is of type date */

P_UI_VARIABLE_PART_PRICE
/* Variable part is of type price */

};

/* Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user. */

union TpUIVariableInfo switch(TpUIVariablePartType) {

case P_UI_VARIABLE_PART_INT: TpInt32 VariablePartInteger;

case P_UI_VARIABLE_PART_ADDRESS: TpString VariablePartAddress;

case P_UI_VARIABLE_PART_TIME: TpTime VariablePartTime;

case P_UI_VARIABLE_PART_DATE: TpDate VariablePartDate;

case P_UI_VARIABLE_PART_PRICE: TpPrice VariablePartPrice;

};

/* Defines a Numbered Set of Data Elements of TpUIVariableInfo. */

 typedef sequence <TpUIVariableInfo> TpUIVariableInfoSet;

/* Define the possible Exceptions. */

exception TpGUISException {

TpInt32 exceptionType;

};

const TpInt32 P_GUIS_INVALID_CRITERIA = 768; /* Invalid criteria specified */

const TpInt32 P_GUIS_ILLEGAL_ID = 769;
 /* Information id specified is invalid */

const TpInt32 P_GUIS_ID_NOT_FOUND = 770;
 /* Information id is not known to the User Interaction Service */

const TpInt32 P_GUIS_ILLEGAL_RANGE = 771;
 /* The values for minimum and maximum collection length are out of range */

const TpInt32 P_GUIS_INVALID_COLLECTION_CRITERIA = 772; /* Invalid collection criteria specified */

const TpInt32 P_GUIS_INVALID_NETWORK_STATE = 773; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. */

 const TpInt32 P_GUIS_UNEXPECTED_SEQUENCE = 774; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. */

 }; // end module ui

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file UI.idl

9.4.2
Generic User Interaction IDL

// source file: GUI.idl

// GUIS Interface description

#ifndef __OSA_UI_GUI_DEFINED

#define __OSA_UI_GUI_DEFINED

#include <UI.idl>

#include <ECC.idl>

module org {

 module threegpp {

 module osa {

 module ui {

 module gui {

 interface IpAppUIManager; // forward definition;

 interface IpAppUI; // forward definition;

 interface IpAppUICall; // forward definition;

 /* The Generic User Interaction SCF Interface provides functions to send

 information to, or gather information from the user. */

 interface IpUI : IpService {

 /* This method plays an announcement or sends other information to the user.*/

 void sendInfoReq (

 in TpSessionID userInteractionSessionID,

 in TpUIInfo info,

 in TpUIVariableInfoSet variableInfo,

 in TpInt32 repeatIndicator,

 in TpUIResponseRequest responseRequested,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This method plays an announcement or sends other information to the user

 and collects some information from the user. */

 void sendInfoAndCollectReq (

 in TpSessionID userInteractionSessionID,

 in TpUIInfo info,

 in TpUIVariableInfoSet variableInfo,

 in TpUICollectCriteria criteria,

 in TpUIResponseRequest responseRequested,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This method requests that the relationship between the application and

 the user interaction object be released. */

 void release (

 in TpSessionID userInteractionSessionID

)

 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UI object */

 struct TpUIIdentifier {

 TpSessionID UserInteractionSessionID;

 IpUI UIRef;

 };

 /* The Call User Interaction Service Interface provides functions to send

 information to, or gather information from, the user. */

 interface IpUICall : IpUI {

 /* This asynchronous method aborts the specified user interaction operation. */

 void abortActionReq (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void recordMessageReq (

 in TpSessionID userInteractionSessionID,

 in TpUIInfo info,

 in TpUIMessageCriteria criteria,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UICall object. */

 struct TpUICallIdentifier {

 IpUICall UICallRef;

 TpSessionID UserInteractionSessionID;

 };

 /* This interface is the 'SCF manager' interface for the Generic User Interaction SCF. */

 interface IpUIManager : IpService {

 /* This method is used to create a new user interaction object for non-call related purposes */

 void createUI (

 in IpAppUI appUI,

 in TpAddress userAddress,

 out TpUIIdentifier userInteraction

)

 raises (TpGUISException, TpGeneralException);

 /* This method is used to create a new user interaction object for call related purposes. */

 void createUICall (

 in IpAppUICall appUI,

 in cc::gcc::TpCallIdentifier callIdentifier,

 in cc::ecc::TpCallLegIdentifier callLegIdentifier,

 out TpUICallIdentifier userInteraction

)

 raises (TpGUISException, TpGeneralException);

 /* This method is used to enable the reception of user initiated user interaction. */

 void enableUINotification (

 in IpAppUIManager appInterface,

 in TpUIEventCriteria eventCriteria,

 out TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This method is used by the application to disable UI notifications. */

 void disableUINotification (

 in TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 };

 /* The Generic User Interaction SCF manager application interface provides

 the application call management functions to the Generic User Interaction SCF. */

 interface IpAppUIManager : IpOsa {

 /* This method indicates to the application that the User Interaction SCF

 instance has terminated or closed abnormally. */

 void userInteractionAborted (

 in TpUIIdentifier userInteraction

)

 raises (TpGUISException, TpGeneralException);

 /* This method notifies the application of an user initiated request for user interaction. */

 void userInteractionEventNotify (

 in TpUIIdentifier ui,

 in TpUIEventInfo eventInfo,

 in TpAssignmentID assignmentID,

 out IpAppUI appInterface

)

 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationInterrupted ()

 raises (TpGUISException, TpGeneralException);

 void userInteractionNotificationContinued ()

 raises (TpGUISException, TpGeneralException);

 };

 /* The User Interaction Application Interface is used to handle generic user

 interaction request responses and reports. */

 interface IpAppUI : IpOsa {

 /* This method informs the application about the start or the completion of a sendInfoCallReq(). */

 void sendInfoRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIReport response

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information was unsuccessful. */

 void sendInfoErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method returns the information collected to the application. */

 void sendInfoAndCollectRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIReport response,

 in TpString info

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information

 and collect a response was unsuccessful. */

 void sendInfoAndCollectErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 /* This method indicates to the application that a fault has been detected in the user interaction. */

 void userInteractionFaultDetected (

 in TpSessionID userInteractionSessionID,

 in TpUIFault fault

)

 raises (TpGUISException, TpGeneralException);

 };

 /* The Call User Interaction Application Interface is used to handle call user

 interaction request responses and reports. */

 interface IpAppUICall : IpAppUI {

 /* This method confirms that the request to abort a user interaction operation on a call was successful. */

 void abortActionRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID

)

 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to abort a user interaction

 operation on a call resulted in an error.*/

 void abortActionErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void recordMessageRes (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIReport response,

 in TpInt32 messageID

)

 raises (TpGUISException, TpGeneralException);

 /* The next operation is not supported for Release 99 and must

 return the exception “Method not supported” when invoked on a SCF

 implementation based on this specification: */

 void recordMessageErr (

 in TpSessionID userInteractionSessionID,

 in TpAssignmentID assignmentID,

 in TpUIError error

)

 raises (TpGUISException, TpGeneralException);

 };

 }; // end module gui

 }; // end module ui

 }; // end module osa

 }; // end module threegpp

}; // end module org

#endif

// END file GUI.idl

9.5
Data Session Control

// OSA data session control

#ifndef __OSA_DSC_DEFINED

#define __OSA_DSC_DEFINED

#include "osa.idl"

module org

{

module threegpp

{

module osa

{

// data session control

module dsc

{

interface IpDataSessionControlManager; // forward definition

interface IpDataSession; // forward definition

interface IpAppDataSessionControlManager; // forward definition

interface IpAppDataSession; // forward definition

const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined

const TpInt32 P_EVENT_DSCS_ESTABLISHED_ = 1; // Data Session established

typedef TpInt32 TpDataSessionEventName; /*Defines the names of event being notified. */

enum TpDataSessionChargeOrderCategory

{

P_DATA_SESSION_CHARGE_PER_VOLUME,

P_DATA_SESSION_CHARGE_NETWORK

};

struct TpChargePerVolume

{

TpInt32 InitialCharge;

TpInt32 CurrentChargePerKilobyte;

TpInt32 NextChargePerKilobyte;

};

union TpDataSessionChargeOrder switch(TpDataSessionChargeOrderCategory)

{

case P_DATA_SESSION_CHARGE_PER_VOLUME: TpChargePerVolume ChargePerVolume;

case P_DATA_SESSION_CHARGE_NETWORK: TpString NetworkCharge;

};

struct TpDataSessionChargePlan

{

TpDataSessionChargeOrder ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

struct TpDataSessionEventCriteria

{

TpAddressRange DestinationAddress;
 /*Destination address range*/

TpAddressRange OriginationAddress;
 /*Origination address range */

TpDataSessionEventName DataSessionEventName; /*Name of the event(s) */

};

/* Defines the mode that the data session will monitor for events, or the mode that the data session is in following a detected event. */

enum TpDataSessionMonitorMode

{

P_DATA_SESSION_MONITOR_MODE_INTERRUPT, /* The data session event is intercepted by the data session control SCF and data session establishment is interrupted. The application is notified of the event and data session establishment resumes following an appropriate API call or network event (such as a data session release) */

P_DATA_SESSION_MONITOR_MODE_NOTIFY, /* The data session event is detected by the data session control SCF but not intercepted. The application is notified of the event data session establishment continues */

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */

};

struct TpDataSessionEventInfo

{

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpDataSessionEventName DataSessionEventName;

TpDataSessionMonitorMode MonitorMode;

};

/* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/

struct TpDataSessionReleaseCause

{

TpInt32 Value;

TpInt32 Location;

};

/* Defines a specific data session error. */

enum TpDataSessionErrorType

{

P_DATA_SESSION_ERROR_UNDEFINED, /* Undefined */

P_DATA_SESSION_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid address was given */

P_DATA_SESSION_ERROR_INVALID_STATE /* The data session was not in a valid state for the requested operation */

};

/* Defines the Tagged Choice of Data Elements that specify additional data session error and data session error specific information. */

union TpDataSessionAdditionalErrorInfo switch(TpDataSessionErrorType)

{

case P_DATA_SESSION_ERROR_INVALID_ADDRESS: TpAddressError DataSessionErrorInvalidAddress;

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined data session error. */

struct TpDataSessionError

{

TpDataSessionAdditionalErrorInfo AdditionalErrorInfo;

TpDataSessionErrorType ErrorType;

TpDateAndTime ErrorTime;

};

/* Defines the cause of the Data Session fault detected. */

enum TpDataSessionFault

{

P_DATA_SESSION_FAULT_UNDEFINED, /* Undefined */

P_DATA_SESSION_FAULT_USER_ABORTED, /* User has finalised the data session before any message could be sent by the application. */

P_DATA_SESSION_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application, but the application did not explicitly release data session object, within a specified time. */

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to handle the data session within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.*/

};

/* Defines a specific data session event report type. */

enum TpDataSessionReportType

{

P_DATA_SESSION_REPORT_UNDEFINED, /* Undefined */

P_DATA_SESSION_REPORT_CONNECTED, /* Data session established*/

P_DATA_SESSION_REPORT_DISCONNECT /* data session disconnect requested by data session party */

};

/* Defines the Tagged Choice of Data Elements that specify additional data session report information. */

union TpDataSessionAdditionalReportInfo switch(TpDataSessionReportType)

{

case P_DATA_SESSION_REPORT_DISCONNECT: TpDataSessionReleaseCause DataSessionDisconnect;

};

struct TpDataSessionReport

{

TpDataSessionMonitorMode MonitorMode;

TpDateAndTime DataSessionEventTime;

TpDataSessionReportType DataSessionReportType;

TpDataSessionAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the Sequence of Data Elements that specify the criteria relating to Data Session report requests. */

struct TpDataSessionReportRequest

{

TpDataSessionMonitorMode MonitorMode;

TpDataSessionReportType DataSessionReportType;

};

/* Defines a Numbered Set of Data Elements of TpDataSessionReportRequest. */

typedef sequence <TpDataSessionReportRequest> TpDataSessionReportRequestSet;

const TpInt32 P_DATA_SESSION_SUPERVISE_VOLUME_REACHED = 1; /* The Data Session supervision volume has been reached. */

const TpInt32 P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED = 2; /* The data session has ended, either due to reach of maximum volume or calling or called party release. */

const TpInt32 P_DATA_SESSION_SUPERVISE_MESSAGE_SENT = 4; /* A warning message has been sent. */

/* Defines the responses from the data session control SCF for data sessions that are supervised:*/

typedef TpInt32 TpDataSessionSuperviseReport;

const TpInt32 P_DATA_SESSION_SUPERVISE_RELEASE = 1; /* Release the Data Session when the Data Session supervision volume has been reached. */

const TpInt32 P_DATA_SESSION_SUPERVISE_RESPOND = 2; /* Notify the application when the data session supervision volume has been reached. */

const TpInt32 P_DATA_SESSION_SUPERVISE_INFORM = 4; /* Send a warning message to the originating party when the maximum volume is reached. If data session release is requested, then the data session will be released following the message after an administered time period */

/* Defines the following treatment of the data session by the data session control SCF when the maximum volume has been reached.*/

typedef TpInt32 TpDataSessionSuperviseTreatment;

/* Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection. */

struct TpDataSessionSuperviseVolume {

TpInt32 VolumeQuantity; /* Qantity of the granted volume that can be transmitted for the specific connection. */

TpInt32 VolumeUnit; /* Unit of the granted volume that can be transmitted for the specific connection. */

};

/* Define the possible Exceptions. */

const TpInt32 P_DSCS_SERVICE_INFORMATION_MISSING = 1024;

const TpInt32 P_DSCS_SERVICE_FAULT_ENCOUNTERED = 1025;

const TpInt32 P_DSCS_UNEXPECTED_SEQUENCE = 1026;

const TpInt32 P_DSCS_INVALID_ADDDRESS = 1027;

const TpInt32 P_DSCS_INVALID_STATE = 1028;

const TpInt32 P_DSCS_INVALID_CRITERIA = 1029;

const TpInt32 P_DSCS_INVALID_NETWORK_STATE = 1030;

exception TpDSCSException

{

TpInt32 exceptionType;

};

/* Sequence of Data Elements that unambiguously specify the Data Session object */

struct TpDataSessionIdentifier

{

IpDataSession DataSessionReference;

TpSessionID DataSessionSessionID;

};

/* This interface is the SCF manager' interface for Data Session Control. */

interface IpDataSessionControlManager : IpService

{

/* This method is used to enable data session notifications. */

void enableDataSessionNotification (

in IpAppDataSessionControlManager appInterface,

in TpDataSessionEventCriteria eventCriteria,

out TpAssignmentID assignmentID)

raises (TpDSCSException, TpGeneralException);

/* This method is used by the application to disable data session notifications.*/

void disableDataSessionNotification

(

in TpAssignmentID assignmentID)

raises (TpDSCSException, TpGeneralException);

};

/* This interface provides the means to control a data session. */

interface IpDataSession : IpService

{

/* This method requests connection of the data session to the destination party.*/

void connectReq (

in TpSessionID dataSessionID,

in TpDataSessionReportRequestSet responseRequested,

in TpAddress targetAddress,

out TpAssignmentID assignmentID)

raises (TpDSCSException, TpGeneralException);

/* This method requests the release of the data session and associated objects.*/

void release (

in TpSessionID dataSessionID,

in TpDataSessionReleaseCause cause)

raises (TpDSCSException, TpGeneralException);

/* The application calls this method to supervise a data session. */

void superviseDataSessionReq (

in TpSessionID dataSessionID,

in TpDataSessionSuperviseTreatment treatment,

in TpDataSessionSuperviseVolume bytes)

raises (TpDSCSException, TpGeneralException);

/* The application calls this method to set the charge plan */

void setDataSessionChargePlan (

in TpSessionID dataSessionID,

in TpDataSessionChargePlan dataSessionChargePlan)

raises (TpDSCSException, TpGeneralException);

/* The application calls this method to send advice of charge information */

void setAdviceOfCharge (

in TpSessionID dataSessionID,

in TpAoCInfo aoCInfo,

in TpDuration tariffSwitch)

raises (TpDSCSException, TpGeneralException);

};

/* The data session control manager application interface provides the

application data session control management functions to the data session control

SCF. */

interface IpAppDataSessionControlManager : IpOsa

{

void dataSessionAborted (

in TpSessionID dataSessionReference)

raises (TpDSCSException, TpGeneralException);

/* This method notifies the application of the arrival of a data session-related event. */

void dataSessionEventNotify (

in TpDataSessionIdentifier dataSessionReference,

in TpDataSessionEventInfo eventInfo,

in TpAssignmentID assignmentID,

out IpAppDataSession appInterface)

raises (TpDSCSException, TpGeneralException);

/* This method indicates to the application that all event notifications

are resumed.*/

void dataSessionNotificationContinued()

raises (TpDSCSException, TpGeneralException);

/* This method indicates to the application that all event notifications

are temporarely iterrupted.*/

void dataSessionNotificationInterrupted()

raises (TpDSCSException, TpGeneralException);

};

/* The application side of the data session interface is used to handle data session

request responses and state reports. */

interface IpAppDataSession : IpOsa

{

/* This method indicates that the request to route the data session to the

destination was successful.*/

void connectRes (

in TpSessionID dataSessionSessionID,

in TpDataSessionReport eventReport,

in TpAssignmentID assignmentID)

raises (TpDSCSException, TpGeneralException);

/* This method indicates that the request to connect the data session to the

destination party was unsuccessful. */

void connectErr (

in TpSessionID dataSessionSessionID,

in TpDataSessionError errorIndication,

in TpAssignmentID assignmentID)

raises (TpDSCSException, TpGeneralException);

/* This asynchronous method reports a data session supervision event to the application.*/

void superviseDataSessionRes (

in TpSessionID dataSessionSessionID,

in TpDataSessionSuperviseReport report,

in TpDataSessionSuperviseVolume usedVolume)

raises (TpDSCSException, TpGeneralException);

/* This asynchronous method reports a data session supervision error to the application.*/

void superviseDataSessionErr (

in TpSessionID dataSessionSessionID,

in TpDataSessionError errorIndication)

raises (TpDSCSException, TpGeneralException);

/* This method indicates to the application that a fault in the network has

been detected.*/

void dataSessionFaultDetected (

in TpSessionID dataSessionSessionID,

in TpDataSessionFault fault)

raises (TpDSCSException, TpGeneralException);

};

}; // end module dsc

///

///

}; // osa

}; // threegpp

};

#endif

9.6
Network User Location and User Status IDL

9.6.1
Common definitions for Network User Location and User Status: MM.idl

#include <OSA.idl>

module org {

module threegpp {

module osa {

module mm {

 // Defines the type of uncertainty shape.

 enum TpLocationUncertaintyShape {

 P_M_SHAPE_NONE, // No uncertainty shape present.

 P_M_SHAPE_CIRCLE, // Uncertainty shape is a circle.

 P_M_SHAPEa_CIRCLE_SECTOR, // Uncertainty shape is a circle sector.

 P_M_SHAPE_CIRCLE_ARC_STRIPE, // Uncertainty shape is a circle arc stripe.

 P_M_SHAPE_ELLIPSE, // Uncertainty shape is an ellipse.

 P_M_SHAPE_ELLIPSE_SECTOR, // Uncertainty shape is an ellipse sector.

 P_M_SHAPE_ELLIPSE_ARC_STRIPE // Uncertainty shape is an ellipse arc stripe.

 };

 // Defines the structure of data elements that specify a geographical position.

 // An “ellipsoid point with uncertainty shape” defines the horizontal location.

 // The reference system chosen for the coding of locations is the World Geodetic

 // System 1984 (WGS 84).

 struct TpGeographicalPosition {

 TpFloat Longitude;

 TpFloat Latitude;

 TpLocationUncertaintyShape TypeOfUncertaintyShape;

 TpFloat UncertaintyInnerSemiMajor;

 TpFloat UncertaintyOuterSemiMajor;

 TpFloat UncertaintyInnerSemiMinor;

 TpFloat UncertaintyOuterSemiMinor;

 TpInt32 AngleOfSemiMajor;

 TpInt32 SegmentStartAngle;

 TpInt32 SegmentEndAngle;

 };

// Defines a diagnostic value that is reported in addition to an error by

 // the Network User Location or User Status SCFs.

 enum TpMobilityDiagnostic {

 P_M_NO_INFORMATION, // No diagnostic information present.

 // Valid for all type of errors.

 P_M_APPL_NOT_IN_PRIV_EXCEPT_LST, // Application not in privacy exception list.

 // Valid for 'Unauthorised Application' error.

 P_M_CALL_TO_USER_NOT_SETUP, // Call to user not set-up. Valid for

 // 'Unauthorised Application' error.

 P_M_PRIVACY_OVERRIDE_NOT_APPLIC, // Privacy override not applicable. Valid for

 // 'Unauthorised Application' error.

 P_M_DISALL_BY_LOCAL_REGULAT_REQ, // Disallowed by local regulatory requirements.

 // Valid for 'Unauthorised Application' error.

 P_M_CONGESTION, // Congestion. Valid for 'Position Method

 // Failure' error.

 P_M_INSUFFICIENT_RESOURCES, // Insufficient resources. Valid for 'Position

 // Method Failure' error.

 P_M_INSUFFICIENT_MEAS_DATA, // Insufficient measurement data. Valid for

 // 'Position Method Failure' error.

 P_M_INCONSISTENT_MEAS_DATA, // Inconsistent measurement data. Valid for

 // 'Position Method Failure' error.

 P_M_LOC_PROC_NOT_COMPLETED, // Location procedure not completed. Valid for

 // 'Position Method Failure' error.

 P_M_LOC_PROC_NOT_SUPP_BY_USER, // Location procedure not supported by user.

 // Valid for 'Position Method Failure' error.

 P_M_QOS_NOT_ATTAINABLE // Quality of service not attainable. Valid for

 // 'Position Method Failure' error.

 };

 // Defines an error that is reported by the Network User Location or User Status SCFs.

 enum TpMobilityError {

 P_M_OK, // No error occurred while processing the request.

 P_M_SYSTEM_FAILURE, // System failure. The request can not be handled because

 // of a general problem in the network user location SCF

 // , the user status SCFor the

 // underlying network. Fatal

 P_M_UNAUTHORIZED_NETWORK, // Unauthorised network, The requesting network is

 // not authorised to obtain the user's location or

 // status. Non fatal

 P_M_UNAUTHORIZED_APPLICATION, // Unauthorised application. The application is

 // not authorised to obtain the user's location

 // or status. Fatal

 P_M_UNKNOWN_SUBSCRIBER, // Unknown subscriber. The user is unknown, i.e. no

 // such subscription exists. Fatal

 P_M_ABSENT_SUBSCRIBER, // Absent subscriber. The user is currently not

 // reachable. Non fatal

 P_M_POSITION_METHOD_FAILURE // Position method failure. The network user location SCF

 // failed to obtain the user's position. Non fatal

 };

 // This enumeration is used in requests to stop network user location or user status
 // reports that are

 // sent from a network user location or user status SCFs to an application.

 enum TpMobilityStopScope {

 P_M_ALL_IN_ASSIGNMENT, // The request concerns all users in an assignment.

 P_M_SPECIFIED_USERS // The request concerns only the users that are

 // explicitly specified in a collection.

 };

 // Defines the structure of data element that specifies a request to stop whole or parts of an

 // assignment. Assignments are used for periodic or triggered reporting of a

 // user locations or statuses. Observe that the parameter 'Users' is optional.

 // If the parameter 'stopScope' is set to P_M_ALL_IN_ASSIGNMENT, the parameter

 // 'stopScope' is undefined. If the parameter stopScope is set to

 // P_M_SPECIFIED_USERS, then the assignment shall be stopped only for the users

 // specified in the 'users' collection.

 struct TpMobilityStopAssignmentData {

 // Identity of the session that shall be stopped.

 TpSessionID AssignmentId;

 // Specify if only a part of the assignment or if whole the assignment

 // shall be stopped.

 TpMobilityStopScope StopScope;

 // Optional parameter describing which users a stop request is

 // addressing when only a part of an assignment is to be stopped.

 TpAddressSet Users;

 };

}; }; }; };

9.6.2
Network User Location: MMul.idl

/**/

// Data Definitions & Interfaces

// Network User Location

/**/

#include <MM.idl>

module org {

module threegpp {

module osa {

module mm {

module ul {

 /**/

 // Data definitions

 /**/

 // This data type is identical to a TString. It specifies the Cell Global

 // Identification or the Location Area Identification (LAI).

 // The Cell Global Identification (CGI) is defined as the string of characters

 // in the following format:

 // MCC-MNC-LAC-CI

 // where:

 // MCC Mobile Country Code (three decimal digits)

 // MNC Mobile Network Code (two or three decimal digits)

 // LAC Location area code (four hexadecimal digits)

 // CI Cell Identification (four hexadecimal digits)

 //

 // The Location Area Identification (LAI) is defined as a string of characters

 // in the following format:

 // MCC-MNC-LAC

 // where:

 // MCC Mobile Country Code (three decimal digits)

 // MNC Mobile Network Code (two or three decimal digits)

 // LAC Location area code (four hexadecimal digits)

 // The length of the parameter indicates which format is used. See 3GPP TS 29.002 for

 // the detailed coding.

 typedef TpString TpLocationCellIDOrLAI;

 // Defines the structure of data elements that specifies the criteria for a

 // triggered location report to be generated.

 struct TpLocationTriggerCamel {

 TpBoolean UpdateInsideVlr; // Generate location report when it occurs an

 // location update inside the current VLR area.

 TpBoolean UpdateOutsideVlr;// Generate location report when the user moves

 // to another VLR area.

 };

 // Defines the structure of data elements that specifies the location of a mobile

 // telephony user. Observe that if the StatusCode is indicating an error ,

 // then neither GeographicalPosition, Timestamp, VlrNumber, LocationNumber,

 // CellIdOrLai nor their associated presense flags are defined.

 struct TpUserLocationCamel {

 TpAddress UserID; // The address of the user.

 TpMobilityError StatusCode; // Indicator of error.

 TpBoolean GeographicalPositionPresent; // Flag indicating if the

 // geographical position is present.

 TpGeographicalPosition GeographicalPosition; // Specification of a position

 // and an area of uncertainty.

 TpBoolean TimestampPresent; // Flag indicating if the timestamp is present.

 TpDateAndTime Timestamp; // Timestamp indicating when the location information// was attained

 TpBoolean VlrNumberPresent; // Flag indicating if the VLR number is present.

 TpAddress VlrNumber; // Current VLR number for the user.

 TpBoolean LocationNumberPresent; // Flag indicating if the location

 // number is present.

 TpAddress LocationNumber; // Current location number.

 TpBoolean CellIdOrLaiPresent; // Flag indicating if cell-id or

 // LAI of the user is present.

 TpLocationCellIDOrLAI CellIdOrLai; // Cell-id or LAI of the user.

 };

 typedef sequence <TpUserLocationCamel> TpUserLocationCamelSet;

 /**/

 // Interface definitions

 /**/

 interface IpAppUserLocationCamel; // Forward definition

 // Inherits from the generic service capability feature interface.

 // This interface is the SCF manager’s interface for Network User Location.

 interface IpUserLocationCamel : IpService {

 // Request for mobile-related location information on one or several wireles users.

 void locationReportReq(

 in IpAppUserLocationCamel appLocationCamel,

 in TpAddressSet users,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // Request for periodic mobile location reports on one or several users.

 void periodicLocationReportingStartReq(

 in IpAppUserLocationCamel appLocationCamel,

 in TpAddressSet users,

 in TpDuration reportingInterval,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // This method stops the sending of periodic mobile location reports for

 // one or several users.

 void periodicLocationReportingStop(

 in TpMobilityStopAssignmentData stopRequest)

 raises (TpGeneralException);

 // Request for user location reports, containing mobile related information,

 // when the location is changed (the report is triggered by the location change).

 void triggeredLocationReportingStartReq(

 in IpAppUserLocationCamel appLocationCamel,

 in TpAddressSet users,

 in TpLocationTriggerCamel trigger,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // Request that triggered mobile location reporting should stop.

 void triggeredLocationReportingStop(

 in TpMobilityStopAssignmentData stopRequest)

 raises (TpGeneralException);

 };

 // Inherits from the generic service capability feature interface.

 // The network user location application interface is implemented by the client

 // application developer and is used to handle location reports that are

 // specific for mobile telephony users.

 interface IpAppUserLocationCamel : IpOsa {

 // Delivery of a mobile location report. The report is containing

 // mobile-related location information for one or several users.

 void locationReportRes(

 in TpSessionID assignmentId,

 in TpUserLocationCamelSet locations)

 raises (TpGeneralException);

 // This method indicates that the location report request has failed.

 void locationReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 // Periodic delivery of mobile location reports. The reports are

 // containing mobile-related location information for one or several users.

 void periodicLocationReport(

 in TpSessionID assignmentId,

 in TpUserLocationCamelSet locations)

 raises (TpGeneralException);

 // This method indicates that a requested periodic location report has

 // failed. Note that errors only concerning individual users are reported

 // in the ordinary periodicLocationReport() message.

 void periodicLocationReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 // Delivery of a report that is indicating that one or several user's

 // mobile location has changed.

 void triggeredLocationReport(

 in TpSessionID assignmentId,

 in TpUserLocationCamel location,

 in TpLocationTriggerCamel criterion)

 raises (TpGeneralException);

 // This method indicates that a requested triggered location report has

 // failed. Note that errors only concerning individual users are reported

 // in the ordinary triggeredLocationReport() message.

 void triggeredLocationReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 };

};};};};};

9.6.3
User Status: MMus.idl

/**/

// Data Definitions & Interfaces

// User Status

/**/

#include <MM.idl>

module org {

module threegpp {

module osa {

module mm {

module us {

 /**/

 // Data definitions

 /**/

 // Defines the status of a user.

 enum TpUserStatusIndicator {

 P_US_REACHABLE, // User is reachable

 P_US_NOT_REACHABLE, // User is not reachable

 P_US_BUSY // User is busy (only applicable for interactive user

 // status request, not when triggers are used)

 };

 // Defines the structure of data elements that specify the identity

 // and status of a user.

 struct TpUserStatus {

 TpAddress UserID;

// The user address.

 TpMobilityError
 StatusCode;
// Indicator of error.

 TpUserStatusIndicator Status;

// The current status of the user.

};

 typedef sequence <TpUserStatus> TpUserStatusSet;

 /**/

 // Interface definitions

 /**/

 interface IpAppUserStatus; // Forward definition

 // Inherits from the generic service capability feature interface.

 // The user status interface represents the interface to the user status SCF.

 interface IpUserStatus : IpService {

 // Request for a report on the status of one or several users.

 void statusReportReq(

 in IpAppUserStatus appStatus,

 in TpAddressSet users,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // Request for triggered status reports when one or several user's

 // status is changed. The user status SCF will send a report when

 // the status changes.

 void triggeredStatusReportingStartReq (

 in IpAppUserStatus appStatus,

 in TpAddressSet users,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // This method stops the sending of status reports for one or several users.

 void triggeredStatusReportingStop (

 in TpMobilityStopAssignmentData stopRequest)

 raises (TpGeneralException);

 };

 // Inherits from the base osa interface.

 // The user-status application interface is implemented by the client

 // application developer and is used to handle user status reports.

 interface IpAppUserStatus : IpOsa {

 // Delivery of a report, that is containing one or several user's status.

 void statusReportRes(

 in TpSessionID assignmentId,

 in TpUserStatusSet status)

 raises (TpGeneralException);

 // This method indicates that the status report request has failed.

 void statusReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 // Delivery of a report that is indicating that a user's status has changed.

 void triggeredStatusReport(

 in TpSessionID assignmentId,

 in TpUserStatus status)

 raises (TpGeneralException);

 // This method indicates that a requested triggered status reporting has

 // failed. Note that errors only concerning individual users are reported

 // in the ordinary triggeredStatusReport() message.

 void triggeredStatusReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 };

};};};};};

9.7
Terminal Capabilities: TERMCAP.idl

#ifndef __TERMCAP_DEFINED

#define __TERMCAP_DEFINED

#include <OSA.idl>

module org {

module threegpp {

module osa {

module termcap {

 enum TpTerminalCapabilitiesError {

P_TERMCAP_ERROR_UNDEFINED,

/* Undefined */

P_TERMCAP_INVALID_TERMINALID,

/* Terminal ID not valid */

P_TERMCAP_SYSTEM_FAILURE

/* General problem in terminal capabilities SCF or in underlying network */

 };

 exception TpTermCapException {

 TpTerminalCapabilitiesError error;

 };

/* TpTerminalCapabilities: Structure containing status code and terminal

capabilities. */

struct TpTerminalCapabilities {

/* statusCode: Indicates whether or not the terminalCapabilities

are available. */

TpBoolean StatusCode;

/* terminalCapabilities: Specifies the latest available capabilities of the user´s terminal.

This information, if available, is returned as CC/PP headers as specified in W3C [6] and adopted in the WAP UAProf specification [9]. It contains URLs; terminal attributes and values, in RDF format; or a combination of both. */

TpString TerminalCapabilities;

};

interface IpTerminalCapabilities : IpService {

/*
Method: getTerminalCapabilities()

This method is used by an application to get the capabilities of a

user's terminal. Direction: Application to Network

In parameter TerminalIdentity: Identifies the terminal. It may be

a logical address known by the WAP Gateway/PushProxy.

Out parameter, see TerminalCapabilityStruct*/

void getTerminalCapabilities (

in TpString terminalIdentity,

out TpTerminalCapabilities result

)

 raises (TpTermCapException, TpGeneralException);

};

};};};};

#endif

Annex A (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	June 2000
	CN#08
	NP-000310
	
	
	Approval of Specification
	2.0.0
	3.0.0

	Sept. 2000
	CN#09
	NP-000519
	001
	1
	Improvement of User Interaction STDs
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	003
	2
	Correction of numbering in TpResultInfo
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	004
	1
	Remove of E.164 Mobile and correction of numbering in TpAddressPlan
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	005
	
	Common IDL interfaces for Generic Call Control and Generic User Interaction between 3GPP, ETSI SPAN3 and Parlay
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	006
	
	Correction to table with overview of IDL files
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	007
	
	Reduction in name scoping in IDL for createUICall operation on IpUICall interface
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	008
	2
	Alignment of Framework with Parlay 2.1, improvement on business entity identification
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	009
	2
	Alignment of Framework with Parlay 2.1, correction of missing service token
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	010
	2
	Alignment of Framework with Parlay 2.1, parameter name and data-type alignments
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	011
	1
	Alignment of Framework with Parlay 2.1, one interface per application correction
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	012
	1
	Alignment of Framework with Parlay 2.1, only one error returned in load manager query
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000519
	013
	1
	Alignment of Framework with Parlay 2.1, missing operation fwUnavailableInd in IpAppFaultManager.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	014
	1
	Alignment of Framework with Parlay 2.1, missing service properties parameter in getServiceManager() operation of IpSvcFactory.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	015
	1
	Alignment of Framework with Parlay 2.1 undefined datatype in endaccess operation of IpAccess.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	016
	1
	Alignment of Framework with Parlay 2.1, service and interface naming correction.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	017
	1
	Alignment of Framework with Parlay 2.1, renaming of TpPropertyStruct to TpServiceTypeProperty
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	018
	1
	Alignment of Framework with Parlay 2.1 addition of DES 128 bit authentication.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	019
	2
	Alignment of Framework with Parlay 2.1, improvement of load statistic data-types.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	020
	1
	Correction in descriptive text for Call STD regarding user interaction in 2 Parties in Call State.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	021
	
	"Removal of double description of the type TpCallServiceCode".
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	022
	1
	"Removal of unused types TpUIMessageCriteria, TpEntOpID and TpEntOpIDList".
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	023
	
	Alignment of Framework with Parlay 2.1, addition of setCallbackWithSessionID operation to IpService.
	3.0.0
	3.1.0

	Sept. 2000
	CN#09
	NP-000520
	024
	
	Clarification of life time of parameters in TpAuthDomain
	3.0.0
	3.1.0

	Dec. 2000
	CN#10
	NP-000718
	025
	
	Removal of the originatingAddress from the connectReq method in IpDataSession
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	026
	1
	Alignment between new ETSI document for common data and TS29.198
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	027
	
	Correction of the type TpTerminalCapabilities
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	028
	
	Incorrect Date and Time example in Data Definitions
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	029
	
	Double IDL definition for TpGCCSException
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	030
	
	Parameter EnabledOrDisbled in TpServiceTypeDescription
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	031
	
	readonly is an IDL keyword
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	032
	
	Error correction in the Scope definition, section 1
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	034
	
	Specific exceptions for method invocations in invalid states
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	035
	
	Unclear default value for TpAccessType
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	036
	1
	Unclear description for TpAuthType
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	037
	
	TpInterfaceName in method obtainInterface()
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	038
	
	Correction on numbering in TpCallAppInfoType
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	039
	
	Addition of MonitorMode in TpCallEventInfo
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	040
	
	Renaming of P_CALL_REPORT_REFUSED_BUSY
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	043
	
	Removal of the parameter serviceProperties in the method selectService
	3.1.0
	3.2.0

	Dec. 2000
	CN#10
	NP-000718
	044
	
	Inclusion of missing state transitions in case call related information could not be retrieved.
	3.1.0
	3.2.0

	Mar. 2001
	CN#11
	NP-010133
	045
	
	Correction of IDL implementation of data-type TpDomainID
	3.2.0
	3.3.0

	Mar. 2001
	CN#11
	NP-010133
	046
	
	Correction to terminal capability parameter reference
	3.2.0
	3.3.0

� A typedef is a type definition declaration in IDL.

� The location number is the number to the MSC or in rare cases the roaming number.

� Only applicable to mobile (Wireless) telephony users.

_1029584563.doc
[image: image1.emf][image: image2.emf][image: image3.emf]

IpOsa

(from org.3gpp.osa)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

