

3GPP Technology Standards Roadmap

Stephen Hayes

Chair 3GPP-SA stephen.hayes@ericsson.com

Contents

- 3GPP and IMS Services
- 3GPP and non-IMS Services
- 3GPP work related to Services
- More information

The 3GPP Services Story

- IMS
 - IMS is the goal for voice over LTE
 - volTE
 - IMS allows a transition to Multimedia
 - Multimedia Telephony
 - Transition capabilities developed to allow transition to IMS
 - CS Fallback
 - SRVCC
 - IMS Centralized Services
- Non-IMS
 - Regulatory Services
 - Machine Type Communications

3GPP IMS Timeline

- 3GPP specified IMS as part of Rel 5 with improvements in Rel 6
- 3GPP added Voice Call Continuity in Rel 7
- Many IMS based optimizations in Rel 7
- Common IMS developed in Rel 8
- Transition services (VCC, SRVCC, ICS) started in Rel 7 and continue today
- Ability to make unauthenticated IMS emergency calls added in Rel 9

Dispelling some Myths about LTE and IMS

Myth 1: LTE is Data only

Reality: Support of voice was one of the key considerations in designing LTE. The voice solution for LTE is IMS VoIP and it is fully specified.

Myth 2: SMS isn't supported over LTE

Reality: LTE and EPS will support a rich variety of messaging applications - including SMS. The solution is twofold, covering both the full IMS case and a transition solution for those networks that do not support IMS.

Myth 3: IMS isn't ready for prime time

Reality: IMS was first developed as part of Rel 5 in 2002. It is based on IETF protocols such as SIP and SDP that are very mature. These technologies have been embraced by the industry as the signalling mechanism for multimedia applications.

Myth 4: LTE doesn't support emergency calls

Reality: VoIP support for emergency calls (incl. location) in Rel 9. A transition solution fall back to 3G/2G - has existed since IMS was introduced (Rel 5).

Multimedia Telephony Services

- Telephony Services Defined for Multimedia
 - Originating Identification Presentation (OIP)
 - Originating Identification Restriction (OIR)
 - Terminating Identification Presentation (TIP)
 - Terminating Identification Restriction (TIR)
 - Communication Diversion (CDIV)
 - Communication Hold (HOLD)
 - Communication Barring (CB)
 - Message Waiting Indication (MWI)
 - Conference (CONF)
 - Explicit Communication Transfer (ECT)
 - Communication Waiting (CW)
 - Completion of Communications to Busy Subscriber (CCBS)
 - Completion of Communications on No Reply (CCNR)
 - Customized Alerting Tone (CAT)
 - Customized Ringing Signal (CRS)
 - Personal Network Management (PNM)
 - Malicious Communication IDentification (MCID)
 - Anonymous Communication Rejection (ACR)
 - Advice Of Charge (AOC)
 - Reverse charging
 - Closed User Group (CUG)
 - Three-Party (3PTY)
 - Flexible Alerting (FA)

BLUE = Applicable to mobile only

RED = Applicable to fixed only

Multimedia Telephony Services are defined in 3GPP TS 22.173

Transition Mechanisms in 3GPP

Voice

- Voice Call Continuity (VCC) Allows a basic voice call to be handed over from IMS to circuit switched and vice-versa (Rel 7) – Primarily focused on WiFi-GSM handover
- CS Fallback CS Voice provided over GSM or UMTS if no LTE IMS voice available (Rel 8)
- SRVCC Provides voice continuity with only a single radio (Rel 8)
- IMS Centralized Services Your services also work seamlessly between CS and IMS (Rel 8)

Messaging

- CS Fallback SMS carried over LTE signalling no need to switch radio I/F (Rel 8 – improvements ongoing)
- SMS over IP Enhancements to the gateway to integrate with OMA CPM (being defined in Rel 10)

Video

SRVCC for video being defined in Rel 10

Other IMS related work ongoing

- Enhancements to Inter-Device Transfer
- IMS based Home Node B
- Non-voice Emergency Services
- Enhancements for supporting Streaming and MBMS using IMS
- Enhancements to IMS to support video

Non-IMS Services

- Regulatory
 - Public Warning System (completed in Rel 9)
 - Extensible, but currently only Japan and US supported
 - Prioritized packet communications
- Enhancements to the Codec
 - Rate adaptation for LTE allowed in Rel 9
 - Enhanced Voice Codec in Rel 10
- MTC Machine Type Communication
 - Focusing on network optimizations
 - 14 Features identified
 - Rel 10 work will focus on general functionality to allow priorities for features to stabilize

Machine Type Communications

- Work started on this in Rel 10.
- 14 MTC Features identified
 - Low Mobility
 - Time Controlled
 - Time Tolerant
 - Packet Switched (PS) Only
 - Small Data Transmissions
 - Mobile Originated Only
 - Infrequent Mobile Terminated
 - MTC Monitoring
 - Priority Alarm Message (PAM)
 - Secure Connection
 - Location Specific Trigger
 - Network Provided Destination for Uplink Data
 - Infrequent Transmission
 - Group Based MTC Features
- In Rel 10, 3GPP will focus on the general functionality required to support these features
 - Overload control (Radio Network Congestion use case, Signalling Network Congestion use case and Core Network Congestion use case)
 - Addressing
 - Identifiers
 - Subscription control
 - Security

Not Quite Services - But Related

- The Rel 8 Evolved Packet Core allows mobility at the IP level, so mobility between accesses is possible without use of IMS
 - Currently working with BBF to integrate BBF accesses
- Home Node B (and Home e Node B) No new services, but support of closed subscriber groups and provisioning
- Traffic offload As internet traffic grows, there is a need to offload the radio accesses and the core network
 - Local IP Access (LIPA) is used from a Home Node B to access local network resources (such as a printer)
 - IP Flow Mobility and Seamless Offload (IFOM) is used to carry some of a UE's traffic over wifi to offload Home Node B access.
 - Selected IP Traffic Offload (SIPTO) is used to offload the mobile core network by breaking traffic out of the network early.
 - SIPTO for Home Node B may be deferred to a later release

Fixed Mobile Convergence

- 3GPP is working with BBF to support FMC with convergence using EPC
 - Convergence addresses IP session mobility, authentication, and policy
- 3 Phase plan adopted
 - Phase 1 is basic interworking between fixed and wireless
 - Phase 2 provides offloading of traffic
 - Phase 3 provides convergence of network nodes
- Phase 1 target is Rel 10.

More Information

www.3gpp.org contact@3gpp.org

Or contact one of the Partners:

TD-SCDMA Industry Alliance

