
	3GPP T3 Meeting #16

Seoul, Korea, 13 - 15 November, 2000
	Tdoc T3-00 0613

(revised version of T3-00 0567)

	
	
	

	

	CHANGE REQUEST
	Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

	

	
	03.19
	CR
	A007
	Current Version:
	7.3.0
	

	
	
	
	
	

	GSM (AA.BB) or 3G (AA.BBB) specification number (
	
	(CR number as allocated by MCC support team

	

	For submission to:
	TSG-T #10
	for approval
	X
	
	strategic
	
	(for SMG

	list expected approval meeting # here (
	for information
	
	
	non-strategic
	
	use only)

	
	
	

	Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

	

	Proposed change affects:
	(U)SIM
	X
	ME
	
	UTRAN / Radio
	
	Core Network
	

	(at least one should be marked with an X)

	

	Source:
	T3
	Date:
	14/11/2000

	

	Subject:
	Clarification to the SIM Toolkit Framework behaviour

	

	Work item:
	SIM API

	

	Category:
	F
Correction
	X
	Release:
	Phase 2
	

	
	A
Corresponds to a correction in an earlier release
	
	
	Release 96
	

	(only one category
	B
Addition of feature
	
	
	Release 97
	

	shall be marked
	C
Functional modification of feature
	
	
	Release 98
	X

	with an X)
	D
Editorial modification
	
	
	Release 99
	

	
	
	
	
	Release 00
	

	

	Reason for
change:
	Clarify the SIM Toolkit Framework behaviour and the API.
The Minor Version of the Export files shall be incremented.

	

	Clauses affected:
	§4.1, §6.2, §6.5

	

	Other specs
	Other 3G core specifications
	
	(List of CRs:
	

	affected:
	Other GSM core specifications
	
	(List of CRs:
	

	
	MS test specifications
	
	(List of CRs:
	

	
	BSS test specifications
	
	(List of CRs:
	

	
	O&M specifications
	
	(List of CRs:
	

	

	Other
comments:
	

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

4
Description

The present document describes an API for the GSM SIM. This API allows application programmers access to the functions and data described in GSM 11.11 [2] and GSM 11.14 [3], such that SIM based services can be developed and loaded onto SIMs, quickly and, if necessarily, remotely, after the card has been issued.

This API is an extension to the Java Card 2.1 API [7] based on the Java Card 2.1 Runtime Environment [8].

4.1
GSM Java Card Architecture

The over all architecture of the SIM Toolkit API based on Java Card 2.1 is:

[image: image2.wmf] Applets

 Applets

Toolkit

 Applets

Toolkit

 Applets

JCRE

File System

GSM

Applet

SIM Toolkit Framework

Toolkit

Registry

Toolkit

Handler

Toolkit

 Applets

 Applets

Loader

Applet

shareable interface

Figure 1: GSM Java Card Architecture

SIM Toolkit Framework: this is the GSM Java Card runtime environment, it is composed of the JCRE, the Toolkit Registry, the Toolkit Handler and the File System.

JCRE: this is specified in Java Card 2.1 Runtime Environment Specification [8] and is able to select any specific applet and transmit to it the process of its APDU.

Toolkit Registry: this is handling all the registration information of the toolkit applets, and their link to the JCRE registry.

Toolkit Handler: this is handling the availability of the system handler and the toolkit protocol (i.e. toolkit applet suspension).

File System: this contains the card issuer file system, and handles the file access control and the applet file context. It is a JCRE owned object implementing the shareable interface sim.access.SIMView.

Applets: these derive from javacard.framework.applet and provide the entry points : process, select, deselect, install as defined in the Java Card 2.1 Runtime Environment Specification [8].

Toolkit applets: these derive from javacard.framework.applet, so provide the same entry points, and implement the shareable interface sim.toolkit.ToolkitInterface so that these applets can be triggered by an invocation of their processToolkit method. These applets' AID is defined in EG 201 220[10].
GSM Applet: this is the default applet as defined in Java Card 2.1 Runtime Environment Specification [8], it behaves as regular applet e.g. when another applet is selected via the SELECT AID APDU its deselect method is invoked. It's AID is defined in EG 201 220[10]. This applet handles the GSM 11.11[2] APDUs, CHV1/2, the GSM authentication algorithm and the subscriber file access control according to GSM 11.11[2].

Loader applet: this is handling the installation and uninstallation of the applets as specified in the applet loading specification GSM 03.48 [4].

Shareable interface: this is defined in the Java Card 2.1 specifications.

4.2
Java Card Selection Mechanism

The Java Card selection mechanism is defined in the Java Card Runtime Environment Specification [8].

5
GSM Framework

5.1
Overview

The GSM Framework consists of the GSM applet and the JCRE File System Object.

The GSM Framework is based on two packages:

-
The GSM low level package [FFS];

-
The sim.access package, which allows applets to access the GSM files.

5.2
GSM file data access

The following methods shall be offered by the API to card applets, to allow access to the GSM data:

select
Select a file without changing the current file of any other applet or of the subscriber session. At the invocation of the processToolkit method of a toolkit applet, the current file is the MF. The toolkit applet file context remains unchanged during the whole execution of the processToolkit method, the current record may be altered if the current file is a cyclic file and the content of the current file may be altered. This method returns the selected file information;

status
Read the file status information of the current DF;

readBinary
Read data bytes of the transparent EF currently selected by the applet;

readRecord
Read data bytes of the linear fixed or cyclic EF currently selected by the applet without changing the current record pointer of any other applet / subscriber. This method allows reading part of a record;

updateBinary
Modify data bytes of the transparent EF currently selected by the applet. The toolkit applet shall send the corresponding refresh ;

updateRecord
Modify data bytes of the linear fixed or cyclic EF currently selected by the applet. The current record pointer of other applets / subscriber shall not be changed in case of linear fixed EF but the record pointer of a cyclic EF shall be changed for all other applets / subscriber to the record number 1. This method allows updating part of a record. The toolkit applet shall send the corresponding refresh ;

seek
Search a record of the linear fixed file currently selected by the applet starting with a given pattern. The current record pointer of any other applet or of the subscriber session shall not be changed;

increase
Increase the value of the last updated record of the cyclic EF currently selected. It becomes than record number 1 for every other applet and subscriber session. This method returns the increased value. The toolkit applet shall send the corresponding refresh;

rehabilitate
Rehabilitate the EF currently selected by the applet with effect for all other applets / subscriber. The toolkit applet shall send the corresponding refresh;

invalidate
Invalidate the EF currently selected by the applet with effect for all other applets / subscriber. The toolkit applet shall send the corresponding refresh.

These methods are described in the sim.access.SIMView interface in Annex A.

5.3
Access control

The Access Control privileges of the applet are granted during installation according to the level of trust. When an applet requests access to GSM or operator specific files, the SIM Toolkit Framework checks if this access is allowed by examination of the file control information stored on the card. If access is granted the SIM Toolkit Framework will process the access request, if access is not granted, an exception will be thrown.

[Contents and coding of the file(s) containing access control information will be defined in GSM 11.11]

5.4
GSM low Level API

[FFS. This API allows the implementation of the GSM applet]

6
SIM Toolkit Framework

6.1
Overview

The SIM API shall consist of APIs for GSM 11.14 [3] (pro-active functions) and GSM 11.11 [2] (transport functions).

[image: image3.wmf]Toolkit

Applet 1

Applet 2

Toolkit

Applet 3

Applet n

Proactive

Command handler

ommand handler

GSM Framework

Files

Toolkit Framework

Applet

install/uninstall

Security

Applet

triggering

Applet security

manager

Activation

Proactive

commands

P/C

responses

Install

Uninstall

APDU

JCRE

APDU

e.g.

Envelopes

Proactive polling, 91XX, Fetch,

Proactive commands,

Terminal Response

File

access

File access

…

 (

see NOTE 1)

NOTE 1:

The install /

uninstall

process is defined in

GSM

03.48

xx.yy

 [

4

]

sim.access

package

sim.toolkit

package

Figure 2: SIM Toolkit Framework functional description

In this model, the GSM data field structure is viewed as a series of data objects to the API. In the physical model of course, they may still be stored in elementary fields, but classes will access these data as part of the objects within those classes.

6.2
Applet Triggering

The application triggering portion of the SIM Toolkit Framework is responsible for the activation of toolkit applets, based on the APDU received by the GSM application.

[image: image4.wmf]APDU

Applet Triggering

Menu Selected

SMS Received

Terminal Profile

...

Figure 3: toolkit applet triggering diagram

The ME shall not be adversely affected by the presence of applets on the SIM card. For instance a syntactically correct Envelope shall not result in an error status word in case of a failure of an applet. The only application as seen by the ME is the SIM application. As a result, a toolkit applet may throw an exception, but this error will not be sent to the ME.

The difference between a Java Card applet and a Toolkit applet is that the latter does not handle APDUs directly. It will handle higher level messages. Furthermore the execution of a method could span over multiple APDUs, in particular, the proactive protocol commands (Fetch, Terminal Response).

As seen above, when the GSM applet is the selected application and when a toolkit applet is triggered the select() method of the toolkit applet shall not be launched since the toolkit applet itself is not really selected.

Here after are the events that can trigger a toolkit applet :

EVENT_PROFILE_DOWNLOAD

Upon reception of the Terminal Profile command by the SIM, the SIM Toolkit Framework stores the ME profile and then triggers the registered toolkit applet which may want to change their registry. A toolkit applet may not be able to issue a proactive command.

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST

A toolkit applet might be activated upon selection in the ME's menu by the user, or request help on this specific menu.

In order to allow the user to choose in a menu, the SIM Toolkit Framework shall have previously issued a SET UP MENU proactive command. When a toolkit applet changes a menu entry of its registry object, the SIM Toolkit Framework shall dynamically update the menu stored in the ME during the current card session. The SIM Toolkit Framework shall use the data of the EFsume file when issuing the SET UP MENU proactive command.

The positions of the toolkit applet menu entries in the item list, the requested item identifiers and the associated limits (e.g. maximum length of item text string) are defined at the loading of the toolkit applet.

If at least one toolkit applet registers to EVENT_MENU_SELECTION_HELP_REQUEST, the SET UP MENU proactive command sent by the SIM Toolkit Framework shall indicate to the ME that help information is available.A toolkit applet registered for one or more menu entries, may be triggered by the event EVENT_MENU_SELECTION_HELP_REQUEST, even if it is not registered to this event. A toolkit applet registered for one or more menu entries should provide help information.

EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV,
EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_UPD

A toolkit applet can be activated upon the reception of a short message.

There are two ways for a card to receive an SMS : via the Envelope SMS-PP Data Download or the Update Record EFsms instruction.

The reception of the SMS by the toolkit applet cannot be guaranteed for the Update Record EFsms instruction.

The received SMS may be :
- formatted according to GSM 03.48[4] or an other protocol to identify explicitly the toolkit applet for which the message is sent ;
- unformatted or using a toolkit applet specific protocol the SIM Toolkit Framework will pass this data to all registered toolkit applets.

EVENT_FORMATTED_SMS_PP_ENV

This event is triggered by an envelope APDU containing an SMS_DATADOWNLOAD BER TLV with an SMS_TPDU simple TLV according to GSM03.48[4].

The SIM Toolkit Framework shall:

· verify the GSM03.48[4] security of the SMS TPDU ;

· trigger the toolkit applet registered with the corresponding TAR defined at applet loading;

· take the optional Application Data posted by the triggered toolkit applet if present;

· secure and send the response packet.

The toolkit applet will only be triggered if the TAR is known and the security verified, application data will also be deciphered.

EVENT_UNFORMATTED_SMS_PP_ENV

The registered toolkit applets will be triggered by this event and get the data transmitted in the APDU envelope SMS_DATADOWNLOAD.

But only the first toolkit applet triggered will be able to send back a response as defined by the rules in chapter 6.6.

EVENT_FORMATTED_SMS_PP_UPD

This event is triggered by Update Record EFsms with an SMS TP-UD field formatted according to GSM03.48[4].

The SIM Toolkit Framework shall :

· update the EFsms file with the data received, it is then up to the receiving toolkit applet to change the SMS stored in the file (i.e. the toolkit applet need to have access to the EFsms file)

· verify the GSM03.48[4] security of the SMS TPDU ;

· convert the Update Record EFsms in a TLV List, an EnvelopeHandler ;

· trigger the toolkit applet registered with the corresponding TAR defined at applet loading;

The Update Record EFsms APDU shall be converted in a TLV list as defined below :

	UPDATE RECORD APDU
	nb bytes
	Handler TLV LIST
	size

	CLA, INS
	2
	specific event
	1

	P1,P2
	2
	device Identity rec-number
	1

	P3 = 176
	1
	
	1

	status
	1
	device Identity rec-status
	1

	TS-SCA (RP-OA)
	<= 12
	Address
	Y

	SMS TPDU
	var
	SMS TPDU
	Y

	padding bytes
	var
	
	Y

The EnvelopeHandler provided to the applet shall:

-
return BTAG_SMS_PP_DOWNLOAD to the getEnvelopeTag() method call;

-
return the Simple TLV list length to the getLength() method call;

-
contain the Simple TLV list :

	EnvelopeHandler TLV List

	Device identities

	Address

	SMS TPDU

The applet should use the findTLV() methods to get each Simple TLV.

The Device Identity Simple TLV is used to store the information about the absolute record number in the EFsms file and the value of the EFsms record status byte, and formatted as defined below:

	Device identities Simple TLV

	Device identities tag

	length = 02

	Absolute Record Number

	Record Status

With the absolute record number the toolkit applet can update EFsms in absolute mode to change the received SMS in a readable text.

EVENT_UNFORMATTED_SMS_PP_UPD

The SIM Toolkit Framework will first update the EFsms file, convert the received APDU as described above, and then trigger all the registered toolkit applets. All of them may modify the content of EFsms (i.e. the toolkit applets need to have access to the EFsms file).

EVENT_UNFORMATTED_SMS_CB

When the ME receives a new cell broadcast message, the cell broadcast page may be passed to the SIM using the envelope command. E.g. the application may then read the message and extract a meaningful piece of information which could be displayed to the user, for instance.

EVENT_CALL_CONTROL_BY_SIM

When the SIM is in call control mode and when the user dials a number, this number is passed to the SIM. Only one toolkit applet can handle the answer to this command: call barred, modified or accepted.

EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED, EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS, EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,
EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

The toolkit applet will be triggered by the registered event download trigger, upon reception of the corresponding Envelope command.

In order to allow the toolkit applet to be triggered by these events, the SIM Toolkit Framework shall have previously issued a SET UP EVENT LIST proactive command. When a toolkit applet changes one or more of these requested events of its registry object, the SIM Toolkit Framework shall dynamically update the event list stored in the ME during the current card session.

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Before sending an SMS MO entered by the user, the SMS is submitted to the SIM. Only one toolkit applet can register to this event

EVENT_TIMER_EXPIRATION

At the registration to this event the toolkit applet gets the reference to its timer. The toolkit applet can then manage the timer, it will be triggered at the reception of the APDU Envelope TIMER EXPIRATION.

The SIM Toolkit Framework shall reply busy to this Envelope APDU if it cannot guaranty to trigger the corresponding toolkit applet.

EVENT_UNRECOGNIZED_ENVELOPE

The unrecognized Envelope event will allow a toolkit applet to handle the evolution of the GSM 11.14 specification.

EVENT_STATUS_COMMAND

At reception of a STATUS APDU command, the SIM Toolkit Framework shall trigger the registered toolkit applet.

As the SIM Toolkit Framework has control of the EVENT_STATUS_COMMAND event, it decides how often to trigger toolkit applets registered to this event. The result is that toolkit applets may be triggered more or less often than they are expecting. It is recommended that toolkit applet writers bear this in mind. Polling Interval cannot be used as an accurate timer.

A range of events is reserved for proprietary usage (from –128 to –1). The use of these events will make the toolkit applet incompatible.

The toolkit applet shall be triggered for the registered events upon reception, and shall be able to access to the data associated to the event using the methods provided by the sim.toolkit.ViewHandler.EnvelopeHandler class.

The order of triggering the toolkit applet shall follow the priority level of each toolkit applet defined at its loading. If several toolkit applets have the same priority level, the last loaded toolkit applet takes precedence.

6.3
Registration

During it's installation the toolkit applet shall register to the JCRE and the SIM Toolkit Framework so that it can be triggered by both selection mechanisms.

The toolkit applet will have to call the getEntry() method to get a reference to it's registry and then to explicitly register to each event it requires.

The toolkit applet can change the events to which it is registered during its life cycle.

The toolkit applet will register itself to some event e.g. EVENT_MENU_SELECTION by calling the corresponding method e.g. initMenuEntry().

The API is described in the sim.toolkit.ToolkitRegistry class in Annex A.

6.4
Proactive command handling

The SIM application toolkit protocol (i.e. 91xx, Fetch, Terminal Response) is handled by the GSM applet and the Toolkit Handler, the toolkit applet shall not handle those events.

The SIM Toolkit Framework shall provide a reference of the sim.toolkit.ViewHandler.EditHandler.ProactiveHandler to the toolkit applet so that when the toolkit applet is triggered it can :

-
initialise the current proactive command with the init() method ;

-
append several Simple TLV as defined in GSM 11.14 [3] to the current proactive command with the appendTLV() methods ;

-
ask the SIM Toolkit Framework to send this proactive command to the ME and wait for the reply, with the send() method.

The GSM applet and the SIM Toolkit Framework shall handle the transmission of the proactive command to the ME, and the reception of the response. The SIM Toolkit Framework will then return in the toolkit applet just after the send() method. It shall then provide to the toolkit applet the sim.toolkit.ViewHandler.ProactiveResponseHandler, so that the toolkit applet can analyse the response.

The proactive command is sent to the ME as defined and constructed by the toolkit applet without any check of the SIM Toolkit Framework.

The toolkit applet shall not issue the following proactive commands : SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF ; as those are system proactive commands that will affect the services of the SIM Toolkit Framework.

The SIM Toolkit Framework cannot guarantee that if the SET UP IDLE MODE TEXT proactive command is used by a toolkit applet, another toolkit applet will not overwrite this text at a later stage.

6.5
Envelope response handling

To allow a toolkit applet to answer to some specific events (e.g. EVENT_CALL_CONTROL_BY_SIM) the SIM Toolkit Framework shall provide the sim.toolkit.ViewHandler.EditHandler.EnvelopeResponseHandler.

The toolkit applet can then post a response to some events with the post() or the postAsBERTLV() methods, the toolkit applet can continue it's processing (e.g. prepare a proactive command) the SIM Toolkit Framework will return the response APDU defined by the toolkit applet (i.e. 9F xx or 9E xx).

6.6
Handler availability

The system handlers : ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler are Temporary JCRE Entry Point Object as defined in the Java Card Runtime Environment Specification [8].

The following table describes the minimum availability of the handlers for all the events at the invocation of the processToolkit method of the toolkit applet.

Table 1: Handler availability for each event

	EVENT_
	Reply busy
	ProactiveHandler
ProactiveResponseHandler
	EnvelopeHandler
	EnvelopeResponseHandler
	Nb of triggered / registrered Applet

	_FORMATTED_SMS_PP_ENV
	Y
	Y
	Y
	Y
	1 / n (per TAR)

	_FORMATTED_SMS_PP_UPD
	N
	Y
	Y
	N
	1 / n (per TAR)

	_UNFORMATTED_SMS_PP_ENV
	Y
	Y
	Y
	Y
	n / n

	_UNFORMATTED_SMS_PP_UPD
	N
	Y
	Y
	N
	n / n

	_UNFORMATTED_SMS_CB
	Y
	Y
	Y
	N
	n / n

	_MENU_SELECTION
	Y
	Y
	Y
	N
	1 / n (per Item Id)

	_MENU_SELECTION_HELP_REQUEST
	Y
	Y
	Y
	N
	1 / n (per Item Id)

	_CALL_CONTROL
	N
	Y/N (see Note 2)
	Y
	Y
	1 / 1

	_SMS_MO_CONTROL
	N
	Y/N (see Note 2)
	Y
	Y
	1 / 1

	_TIMER_EXPIRATION
	Y
	Y
	Y
	N
	1/ 8 (per timer) (see Note 1)

	_EVENT_DOWNLOAD
	
	
	
	
	

	 _MT_CALL
	Y
	Y
	Y
	N
	n / n

	 _CALL_CONNECTED
	Y
	Y
	Y
	N
	n / n

	 _CALL_DISCONNECTED
	Y
	Y
	Y
	N
	n / n

	 _LOCATION_STATUS
	Y
	Y
	Y
	N
	n / n

	 _USER_ACTIVITY
	Y
	Y
	Y
	N
	n / n

	 _IDLE_SCREEN_AVAILABLE
	Y
	Y
	Y
	N
	n / n

	 _CARD_READER_STATUS
	Y
	Y
	Y
	N
	n / n

	_UNRECOGNISED_ENVELOPE
	Y
	Y
	Y
	Y
	n / n

	_STATUS_COMMAND
	N
	Y/N (see Note 2)
	N
	N
	n / n

	_PROFILE_DOWNLOAD
	N
	Y/N (see Note 2)
	N
	N
	n / n

	

	NOTE 1:
One toolkit applet can register to several timers, but a timer can only be allocated to one toolkit applet.

Note 2:
Y/N means that handlers may / may not be available depending whether a proactive session is ongoing.

The following rules define the minimum requirement for the availability of the system handlers and the lifetime of their content.

ProactiveHandler:

-
The ProactiveHandler is valid from the invocation to the termination of the processToolkit method.

-
If a proactive command is pending the ProactiveHandler may not be available.

-
At the processToolkit method invocation the TLV-List is cleared.

-
At the call of it's init method the content is cleared and then initialised.

-
After a call to ProactiveHandler.send method the handler will remain unchanged (i.e. previously send proactive command) until the ProactiveHandler.init or appendTLV methods are called.

ProactiveResponseHandler:

-
The ProactiveResponseHandler may not be available before the first call to ProactiveHandler.send method, if available the content is cleared.

-
The ProactiveResponseHandler is available after the first call to the ProactiveHandler.send method to the termination of the processToolkit method.

-
If a proactive command is pending the ProactiveResponseHandler may not be available.

-
The ProactiveResponseHandler content is changed after the call to ProactiveHandler.send method and remains unchanged until next call to the ProactiveHandler.send method.

EnvelopeHandler:

-
The EnvelopeHandler and its content are available for all triggered toolkit applets (see Table1), from the invocation to the termination of their processToolkit method.

-
The SIM Toolkit Framework guarantees that all registered toolkit applet are triggered and receive the data.

EnvelopeResponseHandler:

-
The EnvelopeResponseHandler is available for all triggered toolkit applets, until a toolkit applet has posted an envelope response or sent a proactive command. After a call to the post method the handler is not longer available.
-
The EnvelopeResponseHandler content must be posted before the first invocation of a ProactiveHandler.send method or before the termination of the processToolkit, so that the GSM applet can offer these data to the ME (eg 9Fxx/9Exx). After the first invocation of the ProactiveHandler.send method the EnvelopeResponseHandler is no more available.

The following diagram illustrates these rules.

	Applet
	
	Applet 1
	
	Applet 2

	method
	processToolkit
	post
	init
	termination
	init
	init

	invocation
	
	init
	send
	send
	processToolkit
	send
	

	Envelope Handler
	
	
	
	
	
	
	
	
	
	
	
	

	EnvelopeResponseHandler
	
	
	
	
	
	
	
	
	
	
	
	

	ProactiveHandler
	
	
	
	
	
	
	
	
	
	
	
	

	Proactive ResponseHandler
	
	
	
	
	
	
	
	
	
	
	
	

Figure 5: Typical handler availability for toolkit applets (see Table 1 for detail)

6.7
SIM Toolkit Framework behaviour

The following rules define the SIM Toolkit Framework behaviour for :

-
Triggering of a toolkit applet (invocation of the processToolkit() method from the ToolkitInterface shareable interface) :

-
The current context is switched to the toolkit applet .

-
A pending transaction is aborted.

-
There is no invocation of the select() or the deselect() methods.

-
The CLEAR_ON_DESELECT transient object can not be accessed and not created as defined in Java Card 2.1 Runtime Environment Specification [8], as the current selected application is unchanged (eg GSM applet) and does not correspond to the current context which is the toolkit applet.

-
The current file context of the toolkit applet is the MF.

-
The current file context of the current selected applet is unchanged.

-
The toolkit applet cannot access the APDU object.

-
Termination of a toolkit applet (return from the processToolkit() method):

-
The JCRE switches back to the context of the current selected applet, the GSM applet.

-
There is no invocation of the select() or the deselect() methods.

-
A pending toolkit applet transaction is aborted.

-
The transient data are unchanged.

-
The current file context of the toolkit applet is lost.

-
The current file context of the current selected applet is unchanged.

-
The GSM applet shall not rely on the APDU object content. The APDU content may be changed by the system [For Further Study as the interface between the toolkit system and the GSM applet is not defined yet]

-
Invocation of ProactiveHandler.send() method :

-
During the execution there might be other context switches, but at the return of the send() method the toolkit applet context is restored.

-
There is no invocation of the select() or the deselect() methods.

-
A pending toolkit applet transaction at the method invocation is aborted.

-
The current file context of the toolkit applet is unchanged (see chapter 5.2). The send() method will never return if the GSM applet is deselected and another applet is explicitly selected.
-
Emission of system proactive commands (SIM Toolkit framework dynamic behaviour)

-
The SIM Toolkit Framework shall send its system proactive command as soon as no proactive session is pending and all the applets registered to the current events have been triggered and have returned from the processToolkit method invocation.
6.8
Usage of ViewHandler and EditHandler

The ViewHandler and EditHandler classes have been defined to group the properties of the system handler, and may be used in the future to provide a simple mechanism to the toolkit applet to handle TLV lists.

7
SIM toolkit applet

7.1
Applet Loading

The SIM API card shall be compliant to the Java Card 2.1 VM Architecture Specification [9] and to the Annex B to guarantee interoperability at byte code Level.

The applet loading mechanism, protocol and applet life cycle are defined in GSM 03.48 [4]

7.2
Object Sharing

The sharing mechanism defined in Java Card 2.1 API Specification [7] and Java Card 2.1 Runtime Environment Specification [8] shall be used by the applet to share data.

The byte parameter of the getShareableInterfaceObject() method shall be set to zero (i.e. '00') when the ToolkitInterface reference is required.

Annex A (normative):
Java Card SIM API

The attached file "0319_740_AnnexA.zip" contains source files for the Java Card SIM API.

[the HTML and JAVA source files will be included]

Annex B (normative):
Java Card SIM API identifiers

The attached file "0319_740_AnnexB.zip" contains source files for the Java Card SIM API identifiers.

[the export files will be included]

Annex C (Normative):
SIM API package version management

The following table describes the relationship between each GSM 03.19 specification version and its SIM API packages AID and Major, Minor versions defined in the export files.

	
GSM 03.19 version
	sim.access package
	sim.toolkit package

	
	AID
	Major, Minor
	AID
	Major, Minor

	7.0.0
	A000000009 0003FFFFFFFF8910700001
	1.0
	A000000009 0003FFFFFFFF8910700002
	1.0

	7.1.0
	A000000009 0003FFFFFFFF8910710001
	2.0
	A000000009 0003FFFFFFFF8910710002
	2.0

	7.2.0
	A000000009 0003FFFFFFFF8910710001
	2.1
	A000000009 0003FFFFFFFF8910710002
	2.1

	7.3.0
	A000000009 0003FFFFFFFF8910710001
	2.2
	A000000009 0003FFFFFFFF8910710002
	2.2

The package AID coding is defined in EG 201 220 [10]. The SIM API packages' AID are not modified by changes to Major or Minor Version.

The Major Version shall be incremented if a change to the specification introduces byte code incompatibility with the previous version.

The Minor Version shall be incremented if a change to the specification does not introduce byte code incompatibility with the previous version.

Annex D (informative):
Toolkit applet example

/**

 * Example of Toolkit Applet

 */

package ToolkitAppletExample;

import sim.toolkit.*;

import sim.access.*;

import javacard.framework.*;

public class MyToolkitApplet extends javacard.framework.Applet implements ToolkitInterface, ToolkitConstants{

 public static final byte MY_INSTRUCTION = (byte)0x46;

 public static final byte SERVER_OPERATION = (byte)0x0F;

 public static final byte CMD_QUALIFIER = (byte)0x80;

 public static final byte EXIT_REQUESTED_BY_USER = (byte)0x10;

 private byte[] menuEntry = {(byte)'S',(byte)'e',(byte)'r',(byte)'v',(byte)'i',(byte)'c',
 (byte)'e', (byte)'1'};

 private byte[] menuTitle= {(byte)'M',(byte)'y',(byte)'M',(byte)'e',(byte)'n' ,(byte)'u'};

 private byte[] item1 = {(byte)'I',(byte)'T',(byte)'E',(byte)'M',(byte)'1' };

 private byte[] item2 = {(byte)'I',(byte)'T',(byte)'E',(byte)'M',(byte)'2' };

 private byte[] item3 = {(byte)'I',(byte)'T',(byte)'E',(byte)'M',(byte)'3' };

 private byte[] item4 = {(byte)'I',(byte)'T',(byte)'E',(byte)'M',(byte)'4' };

 private Object[] ItemList = { item1, item2, item3, item4 };

 private byte[] textDText = {(byte)'H',(byte)'e',(byte)'l',(byte)'l',(byte)'o',(byte)' ',

 (byte)'w',(byte)'o',(byte)'r',(byte)'l',(byte)'d',(byte)'2'};

 private byte[] textGInput = {(byte)'Y',(byte)'o',(byte)'u',(byte)'r',(byte)' ',(byte)'n',

 (byte)'a',(byte)'m',(byte)'e',(byte)'?'};

 private byte[] baGSMAID = {(byte)0xA0,(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x09,(byte)0x00,(byte)0x01};

 private ToolkitRegistry reg;

 private SIMView gsmFile;

 private byte buffer[] = new byte[10];

 private byte itemId;

 private byte result;

 private boolean repeat;

 /**

 * Constructor of the applet

 */

 public MyToolkitApplet() {

 // get the GSM application reference

 gsmFile = SIMSystem.getTheSIMView();

 // register to the SIM Toolkit Framework

 reg = ToolkitRegistry.getEntry();

 // Define the applet Menu Entry and register to the EVENT_MENU_SELECTION

 itemId = reg.initMenuEntry(menuEntry, (short)0x0000, (short)menuEntry.length,

 PRO_CMD_DISPLAY_TEXT, false, (byte) 0x00, (short) 0x0000);

 // register to the EVENT_UNFORMATTED_SMS_PP_ENV

 reg.setEvent(EVENT_UNFORMATTED_SMS_PP_ENV);

 }

 /**

 * Method called by the JCRE at the installation of the applet

 */

 public static void install(byte bArray[], short bOffset, byte bLength) {

 MyToolkitApplet MyApplet = new MyToolkitApplet ();

 MyApplet.register();

 }

 /**

 * Method called by the GSM Framework

 */

 public Shareable getShareableInterfaceObject (AID clientAID, byte parameter)

 {

 if (parameter == (byte) 0x00)

 {

 if (clientAID.partialEquals(baGSMAID, (byte) 0x00, (byte) baGSMAID.length) == true)

 return ((Shareable) this);

 }

 return(null);

 }

 /**

 * Method called by the SIM Toolkit Framework

 */

 public void processToolkit(byte event) {

 // get the handler references

 EnvelopeHandler envHdlr = EnvelopeHandler.getTheHandler();

 ProactiveHandler proHdlr = ProactiveHandler.getTheHandler();

 ProactiveResponseHandler rspHdlr;

 switch(event) {

 case EVENT_MENU_SELECTION:

 // Prepare the Select Item proactive command

 proHdlr.init(PRO_CMD_SELECT_ITEM,(byte)0x00,DEV_ID_ME);

 // Append the Menu Title

 proHdlr.appendTLV((byte) (TAG_ALPHA_IDENTIFIER | TAG_SET_CR),

 menuTitle,(short)0x0000,(short)menuTitle.length);

 // add all the Item

 for (short i=(short) 0x0000; i<(short) 0x0004; i++) {

 proHdlr.appendTLV((byte) (TAG_ITEM | TAG_SET_CR),(byte) (i+1),

 (byte[])ItemList[i],(short) 0x0000,
 (short)((byte[])ItemList[i]).length);

 }

 // ask the SIM Toolkit Framework to send the proactive command and check the result

 if ((result = proHdlr.send()) == RES_CMD_PERF){

 rspHdlr = ProactiveResponseHandler.getTheHandler();

 // SelectItem response handling

 switch (rspHdlr.getItemIdentifier()) {

 case 1:

 case 2:

 case 3: // DisplayText

 proHdlr.init(PRO_CMD_DISPLAY_TEXT, CMD_QUALIFIER,

 DEV_ID_DISPLAY);

 proHdlr.appendTLV((byte)(TAG_TEXT_STRING| TAG_SET_CR), DCS_8_BIT_DATA,

 textDText,(short)0x0000, (short)textDText.length);

 proHdlr.send();

 break;

 case 4: // Ask the user to enter data and display it

 do {

 repeat = false;

 try {

 // GetInput asking the users name

 proHdlr.initGetInput((byte)0x01, DCS_8_BIT_DATA, textGInput,(byte)0x00,

 (short)textGInput.length,(short)0x0001,(short)0x0002);

 proHdlr.send();

 // display the entered text

 rspHdlr.copyTextString(textDText,(short)0x0000);

 proHdlr.initDisplayText((byte)0x00,DCS_8_BIT_DATA, textDText,

 (short)0x0000,(short) textDText.length);

 proHdlr.send();

 }

 catch (ToolkitException MyException) {

 if (MyException.getReason() == ToolkitException.UNAVAILABLE_ELEMENT) {

 if (rspHdlr.getGeneralResult() != EXIT_REQUESTED_BY_USER)

 repeat = true;

 break;

 }

 }

 }

 while (repeat);

 break;

 }

 }

 break;

 case EVENT_UNFORMATTED_SMS_PP_ENV:

 // get the offset of the instruction in the TP-UD field

 short TPUDOffset = (short) (envHdlr.getTPUDLOffset() + SERVER_OPERATION);

 // start the action requested by the server

 switch (envHdlr.getValueByte((short)TPUDOffset)) {

 case 0x41 : // Update of a gsm file

 // get the data from the received SMS

 envHdlr.copyValue((short)TPUDOffset+1,buffer, (short)0x0000,(short)0x0003);

 // write these data in the EFpuct

 gsmFile.select(SIMView.FID_DF_GSM);

 gsmFile.select(SIMView.FID_EF_PUCT);

 gsmFile.updateBinary((short)0x0000,buffer,(short)0x0000,(short)0x0003);

 break;

 case 0x36 : // change the MenuTitle for the SelectItem

 envHdlr.copyValue((short)TPUDOffset+1, menuTitle,(short)0x0000,(short)0x0006);

 break;

 }

 break;

 }

 }

 /**

 * Method called by the JCRE, once selected

 */

 public void process(APDU apdu) {

 // Handle the Select AID apdu

 if (selectingApplet()) return;

 switch(apdu.getBuffer()[1]) {

 // specific APDU for this applet to configure the MenuTitle from SelectItem

 case (byte)MY_INSTRUCTION:

 if (apdu.setIncomingAndReceive()>(short)0) {

 Util.arrayCopy(apdu.getBuffer(),(short)0x0005,menuTitle,(short)0x0000,

 (short)0x0006);

 }

 break;

 default:

 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

 }

 }

}

List of changes to the API

Interface sim.access.SIMView,

Methods readRecord() and updateRecord()

· +CR Add :
If mode is REC_ACC_MODE_NEXT and the record pointer is at the last record the RECORD_NUMBER_NOT_AVAILABLE SIMViewException shall be thrown.

· +CR Add :
If mode is REC_ACC_MODE_PREVIOUS and the record pointer is at the first record, the RECORD_NUMBER_NOT_AVAILABLE SIMViewException shall be thrown.

Method seek()

· +CR Add :
if pattLength is greater than the current record size than the OUT_OF_RECORD_BOUNDARIES SIMViewException shall be thrown.

· +CR Add :
if pattLength is zero then PATTERN_NOT_FOUND SIMViewException shall be thrown.

· +CR Add :
If mode is SEEK_FROM_NEXT_FORWARD and the record pointer is at the last record the PATTERN_NOT_FOUND SIMViewException shall be thrown.

· +CR Add :
If mode is SEEK_FROM_PREVIOUS_BACKWARD and the record pointer is at the first record, the PATTERN_NOT_FOUND SIMViewException shall be thrown.

Constants:

· +CR Define the constant in uppercase FID_DF_GRAPHICS, and deprecate FID_DF_Graphics.

Class sim.toolkit.ProactiveHandler,

Method send()

· +CR Add exception:
UNAVAILABLE_ELEMENT if the Result Simple TLV is missing.

· +CR Add exception :
OUT_OF_TLV_BOUNDARIES if the general result byte is missing in the Result Simple TLV.

Class sim.toolkit.ProactiveResponseHandler,

Method getItemIdentifier()

· +CR Add exception :
OUT_OF_TLV_BOUNDARIES if the item identifier byte is missing in the Item Identifier Simple TLV.

Method getGeneralResult()

· +CR Add exception :
OUT_OF_TLV_BOUNDARIES if the general result byte is missing in the Result Simple TLV.

Method copyTextString()

· +CR change exception :
java.lang.ArrayIndexOutOfBoundsException - if dstOffset or dstOffset or dstOffset + (length of the TextString to be copied, without the Data Coding Scheme included), as specified for the returned value, would cause access outside array bounds

Interface sim.toolkit.ToolkitConstants

· +CR For the field EVENT_STATUS_COMMAND correct the value of the constant in the comments from 127 to 19 as the real of the constant.

· +CR Add BTAG_SMS_PP_DOWNLOAD, and deprecate BTAG_SMS_PP_DONWLOAD.

Class sim.toolkit.ToolkitException

· +CR Change EVENT_ALREADY_REGISTERED exception description to :
This reason code (= 7) is used to indicate that the maximum number of registered applet for this event is already reached (e.g. Call Control)

Class sim.toolkit.ToolkitRegistry,

Methods setEvent(), setEventList(), clearEvent(), isEventSet(),

· +CR Change "Toolkit Registry" to "Toolkit Registry entry of the applet" for all the methods of Toolkit Registry.

Method setEvent()

· +CR Add in the description:
No exception shall be thrown if the applet registers more than once to the same event.

Method setEventList()

· +CR add in description:
In case of any exception the state of the registry is undefined. The toolkit applet has to include this call within a transaction if necessary

Method initMenuEntry(), allocateTimer(), releaseTimer()

· +Change :
"The Applet automatically de/registers…." to "The applet is de/registered… "

Methods enableMenuEntry(), disableMenuEntry()

· +Change :
- " After invocation of this method the SIM Toolkit Framework should automatically update the menu stored in the ME." to
" After invocation of this method, during the current card session, the SIM Toolkit Framework shall dynamically update the menu stored in the ME."

Method changeMenuEntry()

· +Add in the description:
"After invocation of this method, during the current card session, the SIM Toolkit Framework shall dynamically update the menu stored in the ME."

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

_1033977188.doc

Toolkit

Applet 1

Applet 2

Toolkit

Applet 3

Applet n

Proactive

Command handler

ommand handler

GSM Framework

Files

Toolkit Framework

Applet

install/uninstall

Security

Applet

triggering

Applet security

manager

Activation

Proactive

commands

P/C

responses

Install

Uninstall

APDU

JCRE

APDU

e.g.

Envelopes

Proactive polling, 91XX, Fetch,

Proactive commands,

Terminal Response

File

access

File access

…

 (

see NOTE 1)

NOTE 1:

The install /

uninstall

process is defined in

GSM

03.48xx.yy [4]

sim.access

 package

sim.toolkit

 package

_990559739.unknown

