3GPP TR 23.722 V0.2.0 (2017-05)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Common API Framework for 3GPP Northbound APIs
(Release 15)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions, symbols and abbreviations
8
3.1
Definitions
8
3.2
Symbols
8
3.3
Abbreviations
8
4
Gap Analysis
9
4.x
<existing API framework>
9
4.x.1
Description
9
4.x.2
Gaps
9
4.1
OMA API framework
9
4.1.1
Description
9
4.1.2
Gaps
9
5
Key issues
10
5.1
Discovery of service API information
10
5.1.1
Key issue description
10
5.2
Topology hiding of the service
11
5.2.1
Key issue description
11
5.3
Application authentication to access service APIs
11
5.3.1
Key issue description
11
5.4
Application authorization to access service APIs
11
5.4.1
Key issue description
11
5.5
Charging on invocation of service APIs
11
5.5.1
Key issue description
11
5.6
Lifecycle management of service APIs
11
5.6.1
Key issue description
11
5.7
Monitoring service API invocations
12
5.7.1
Key issue description
12
5.8
Logging service API invocations
12
5.8.1
Key issue description
12
5.9
Auditing service API invocations
12
5.9.1
Key issue description
12
5.10
Onboarding API invoker to CAPIF
12
5.10.1
Key issue description
12
5.11
CAPIF authentication to applications
12
5.11.1
Key issue description
12
5.12
Service API access control
12
5.12.1
Key issue description
12
5.13
Secure API communication
13
5.13.1
Key issue description
13
5.14
Policy configuration
13
5.14.1
Key issue description
13
5.15
API protocol stack model
13
5.15.1
Key issue description
13
5.16
API security protocol
13
5.16.1
Key issue description
13
6
Architectural requirements
14
6.1
General requirements
14
6.x
<Common aspect x> requirements
14
6.x.1
Description
14
6.x.2
Requirements
14
6.2
Service API discovery requirements
14
6.2.1
General
14
6.2.2
Requirements
14
6.3
Security requirements
14
6.3.1
General
14
6.3.2
Requirements
14
6.4
Charging requirements
15
6.4.1
General
15
6.4.2
Requirements
15
6.5
Lifecycle management requirements
15
6.5.1
General
15
6.5.2
Requirements
15
6.6
Monitoring service API invocation requirements
15
6.6.1
General
15
6.6.2
Requirements
15
6.7
Logging service API invocation requirements
16
6.7.1
General
16
6.7.2
Requirements
16
6.8
Auditing service API invocation requirements
16
6.8.1
General
16
6.8.2
Requirements
16
6.9
Onboarding API invoker requirements
16
6.9.1
General
16
6.9.2
Requirements
16
6.10
Policy configuration requirements
16
6.10.1
General
16
6.10.2
Requirements
16
6.11
Protocol design requirements
17
6.11.1
General
17
6.11.2
Requirements
17
7
Solutions
17
7.1
High level architecture
17
7.1.1
Solution 1 – High level functional architecture for CAPIF
17
7.1.1.1
Solution description
17
7.1.1.1.1
General
17
7.1.1.1.2
Architectural Model
17
7.1.1.1.3
Deployment options
18
7.1.1.1.3.1
Option 1 – Centralized deployment
18
7.1.1.1.3.2
Option 2 – Distributed deployment
19
7.1.1.2
Solution evaluation
21
7.2
Solutions to key issues
21
7.2.1
Solution 1 – Service API discovery
21
7.2.1.1
Solution description
21
7.2.1.2
Solution evaluation
22
7.2.2
Solution 1: Subscription and notifications for CAPIF events related to service APIs
22
7.2.2.1
Solution description
22
7.2.2.1.1
General
22
7.2.2.1.2
Procedure
22
7.2.2.3
Solution evaluation
23
7.2.3
Solution 1: CAPIF access control with topology hiding
24
7.2.3.1
Solution description
24
7.2.3.1.1
General
24
7.2.3.1.2
Procedure
24
7.2.3.3
Solution evaluation
25
8
Overall evaluation
25
9
Conclusions
25
Annex A (informative): API work done by other 3GPP WGs
26
A.1
Introduction
26
A.2
Discussion
26
A.2.1
SA4: API for the interface between MBMS service provider and BM-SC (xMB) (TR 26.981)
26
A.2.2
SA2: SCEF to expose the services and capabilities provided by 3GPP network interfaces and protocols (TS 23.682)
27
A.2.3
CT3: Representational State Transfer (REST) protocol-based St reference point (TS 29.155)
27
A.2.4
CT3: Representational State Transfer (REST) reference point between the Application Function (AF) and the Protocol Converter (PC) (TS 29.201)
27
A.3
Summary
28
Annex B: OMA API Program
29
B.1
General
29
B.2
OMA API Architecture
30
B.2.1
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
30
B.2.1.1
Service Registration and Discovery
30
B.2.1.2
Identity Control
30
B.2.1.3
Data Configuration and Management
31
B.2.2
OMA RESTful APIs
31
B.2.2.1
Authorization Framework for Network APIs
31
B.2.2.2
RESTful Network API for Capability Discovery
31
B.3
API consistency within OMA APIs
31
Annex C: ETSI MEC API framework
33
C.1
General
33
C.2
MEC Application Enablement
34
C.3
Design aspects of ETSI MEC APIs
35
C.3.1
Entry point of a Mobile Edge service API
35
C.3.2
API security and privacy considerations
36
C.3.3
API template
36
C.3.4
Patterns of the API
36
Annex D: Change history
37

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.
Introduction

In 3GPP, there are multiple northbound API-related discussions e.g., APIs for Service Capability Exposure Function (SCEF) functionalities defined in 3GPP TS 23.682 [2], API for the interface between MBMS service provider and BM-SC defined in 3GPP TR 26.981[3]. To avoid duplication and inconsistency of approach between each individual API activity, 3GPP has considered the development of a common API framework (CAPIF) that includes common aspects applicable to any northbound APIs.

The present document identifies a common approach for API development within 3GPP, corresponding solutions for the CAPIF for 3GPP northbound APIs, and recommendations for normative work.
1
Scope

The present document is a technical report which identifies the architecture aspects necessary for the development of a CAPIF for 3GPP northbound APIs, and corresponding architectural solutions. The aspects of the study include identifying architecture requirements for the CAPIF (e.g. registration, discovery, identity management) that are applicable to any service APIs when used by northbound entities, as well as any interactions between the CAPIF and the service APIs themselves.

The study takes into consideration the existing work within 3GPP related to APIs and as well as API frameworks defined outside 3GPP. The recommendations from the study include architecture solutions that may be considered for normative work, based on the gap analysis of the identified architecture requirements and the existing solutions.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.682: "Architecture enhancements to facilitate communications
with packet data networks and applications".

[3]
3GPP TR 26.981: "MBMS Extensions for Provisioning and Content Ingestion".
[4]
3GPP TS 29.155: "Traffic steering control; Representational state transfer (REST) over St reference point".

[5]
3GPP TS 29.201: "Representational State Transfer (REST) reference point between Application Function (AF) and Protocol Converter (PC)".

[6]
3GPP TS 29.198-1: "Open Service Access (OSA) Application Programming Interface (API) Part 1: Overview".
[7]
ETSI GS MEC 009: "Mobile Edge Computing (MEC); General Principles for Mobile Edge Service APIs".
[8]
ETSI GS MEC 003: "Mobile Edge Computing (MEC); Framework and Reference Architecture".
[9]
ETSI GS MEC 011: "Mobile Edge Computing (MEC); Mobile Edge Platform Application Enablement".
[10]
IETF RFC 6749: "The OAuth 2.0 Authorization Framework".
3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

API: The means by which an API invoker can access the service.

API invoker: The entity which invokes the CAPIF or service APIs.
API exposing function: The entity which provides the service communication entry point for the service APIs.
Common API framework: A framework comprising common API aspects that are required to support service APIs.

Northbound API:

Service API: The capabilities exposed by the service for consumption by API invokers.

Editor's Note:
The definition of Northbound API is FFS.
For the purposes of the present document, the following terms and definitions given in 3GPP TS 29.198-1 [6] apply:

Service Capability Server (SCS)

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

AF
Application Function

API
Application Program Interface

AS
Application Server

BM-SC

Broadcast Multicast Service Centre

CAPIF
Common API Framework
CRUD
Create, Read, Update, Delete

DASH
Dynamic Adaptive Streaming over HTTP

DDoS
Distributed Denial of Service

DNS
Domain Name Servers
ETSI
European Telecommunications Standards Institute

GS
Group Specification

HATEOAS
Hypermedia As The Engine Of Application State
HPLMN
Home PLMN

HTTP

Hyper Text Transfer Protocol

IDL
Interface Definition Language

IETF
Internet Engineering Task Force
IoT
Internet of Things

IP
Internet Protocol

IP-CAN
IP Connectivity Access Network

ISG
Industry Specification Group

JSON
JavaScript Object Notation
MBMS

Multimedia Broadcast and Multicast Service
MEC
Multi-access Edge Computing

MMS
Multimedia Messaging Service
NDS/IP
NDS for IP based protocols

NFV
Network Functions Virtualization

NGSI
Next Generation Service Interfaces

OAI
Open API Initiative

OAuth
Open Authorization
OMA
Open Mobile Alliance

PC
Protocol Converter

PCC
Policy and Charging Control

PCRF
Policy control and Charging Rules Function

PLMN
Public Land Mobile Network

REST
REpresentational State Transfer
RPC
Remote Procedure Call
RTP
Real Time Protocol

SCEF
Service Capability Exposure Function

SCS
Service Capability Server

SMS
Short Message Service

SOAP
Simple Object Access Protocol
TCP
Transmission Control Protocol

TLS
Transport Layer Security
TSSF
Traffic Steering Support Function

UE
User Equipment

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

VOD
Video On Demand

VPLMN
Visiting PLMN
WSDL
Web Service Definition Language

XML
eXtensible Markup Language
4
Gap Analysis
4.x
<existing API framework>
Editor’s Note:
Add proper title describing the existing API framework.

4.x.1
Description

Editor’s Note:
This clause will describe the API framework.

4.x.2
Gaps
Editor’s Note:
This clause will investigate existing API frameworks and identify potential gaps.
4.1
OMA API framework
4.1.1
Description

Editor’s Note:
This clause will describe the API framework.

4.1.2
Gaps

Editor’s Note:
This clause will investigate existing API frameworks and identify potential gaps.

OMA worked on high-level gap analysis identifying the required enhancements to existing OMA Network APIs and the new network APIs needed to support the IoT networks. Table 4.1.2-1 lists the gaps identified in the analysis by OMA that may be applicable to the CAPIF.
Table 4.1.2-1: OMA gap analysis

	Functionality
	OMA Support? (Available/Partial/Gap)
	SCEF APIs (Net API)
	SCEF API 23.682 (e20) section

	Authentication for attaching SCS/AS
	Partial
	OMA-ER-Autho4 covers much of this
	4.2, 4.4.8

	Identification of the API consumer
	Partial
	OMA-ER-Autho4 covers much of this
	4.4.8

	Profile Management
	Partial
	OMA-ER-Autho4 covers much of this
	4.4.8

	ACL management
	Partial
	OMA-ER-Autho4 covers much of this
	4.4.8

	Policy Enforcement
	
	
	4.4.8

	Infrastructure policy / network protection
	Gap (not clearly defined functionality)
	
	4.4.8

	Business policy e.g number portability
	Gap (not clearly defined functionality)
	
	4.4.8

	Application Layer Policy e.g. throttling
	Gap (not clearly defined functionality)
	
	4.4.8

	Assurance
	
	
	4.4.8

	Integration with O&M Platforms
	Gap (not clearly defined functionality)
	
	4.4.8

	Usage of APIs
	Gap (not clearly defined functionality)
	
	4.4.8

	Accounting for inter-operator settlements
	Gap (not clearly defined functionality)
	
	4.4.8

Editor's note: It is FFS to determine which gaps in the table above are required for CAPIF.
5
Key issues
5.1
Discovery of service API information

There are several service APIs provided by the service provider. Applications require service API information to access these service APIs. Applications need to acquire the service API information from the service provider which includes information such as IP address, port number with details about interfaces, protocols, versions numbers, and environment details to enable access to the service API. Further study is required on the mechanism of providing service API information to the applications including registration of service API information by the service providers and discovery of the service API information by the applications.

5.2
Topology hiding of the service

The applications may access the service APIs in two scenarios:

a)
Inside the same trust domain as the service API; and

b)
Outside the trust domain of the service API.

Scenario (a) may not require any topology hiding of the service from the application. Scenario (b) requires that the service topology is hidden from the application accessing the service APIs outside the trust domain of the service API to avoid any network security issue. Further study is required on the mechanism to hide topology of the service from the applications accessing the service API outside the trust domain of the service API.
5.3
Application authentication to access service APIs

A service API may have its own mechanism to authenticate the applications. It is difficult to integrate applications to different service APIs if they follow their own authentication mechanisms. Further study is required to provide a common application authentication mechanism to access service APIs.
5.4
Application authorization to access service APIs

Applications require authorization to access the service APIs. Unauthorized access to service APIs is undesirable from the operator's view. During the service communication, the service verifies the authorization of the application accessing the service API. Further study is required to provide a common authorization mechanisms to access service APIs.
5.5
Charging on invocation of service APIs

The CAPIF cannot be considered complete without having appropriate mechanisms to support charging related functions. This key issue will look into the aspects of collection of charging information during the invocation of service APIs, and architecture requirements to address them as part of the CAPIF.
5.6
Lifecycle management of service APIs

The lifecycle management is a key functionality of the CAPIF, which achieves the overall management of service level APIs. This key issue identifies aspects related to lifecycle management e.g. starting and stopping of service API, performance reporting parameters, etc.
5.7
Monitoring service API invocations

To monitor the health of service API, capture system load information and prevent potential attacks, service API invocation monitoring functionalities are to be provided by the CAPIF.
5.8
Logging service API invocations

The service APIs are typically invoked by various consumers. It is necessary that the service API provider is able to log the service API invocation events for the purposes of tracing back and analysing statistics. Therefore the service API invocation logging and storage functionalities are to be included in the CAPIF.
The stored service API invocation log may contain private and sensitive information. Such information needs to be handled carefully to respect potential privacy rules.
5.9
Auditing service API invocations

While the service API provider is able to authorize consumers with API invocation rights, it is necessary for the service providers to detect any abuse of service API invocations. To address this need, auditing capabilities (e.g. querying the service API invocations) will help the service API providers to identify illegal service API invocations.
5.10
Onboarding API invoker to the CAPIF

An API invoker has to be a recognized user of the CAPIF. Prior to authentication for service API access, the API invoker has to complete one time onboarding process to the CAPIF. Completion of onboarding process may need explicit grant by the administrator. Some of the onboarding data may be allowed to be updated by the API invoker.

Editor's note: Clarification on the term "onboarding" is FFS.
5.11
CAPIF authentication to applications

While we know that API invoker authentication is required to access service APIs, it may also be necessary for the CAPIF to authenticate to the API invoker accessing service APIs before the actual API traffic is sent over the connection. Further study is required to provide mutual authentication between the CAPIF and the API invoker accessing service APIs.
5.12
Service API access control

Service API access control is required to regulate the ability of the API invoker to use the service API. Operators may configure some access control policies (e.g. invocations/sec, max invocations limit). These access control policies are further required to be applied to service communications between the API invoker and the service API.

5.13
Secure API communication

Securing of the communication between the API invoker and the CAPIF is necessary for ensuring data is accessed only by the authorized entities. Further the communication has to be trustworthy by protecting the data from intentional or accidental changes i.e. to prevent unauthorized users from making modifications to the data.
5.14
Policy configuration

The CAPIF need to support an API provider (or the CAPIF administrator) to configure policies. Enforcement of such policies is required to exert control over accessing/using protected network resources from the API invokers.
Such policies would include the following:
-
Infrastructural Policy: policies to protect platforms and network. An example of which may be ensuring that a service node such as BM-SC is not overloaded.

-
Business Policy: policies related to the specific functionalities exposed. Examples may be number portability, service routing, subscriber consent etc.

-
Application Layer Policy: policies that are primarily focused on message payload or throughput provided by an application. An example may be throttling.
5.15
API protocol stack model

In order for the CAPIF to be common across all present and future API invokers for various usages and purposes, a minimum common protocol stack model should be defined so that all API invokers need to support only one and the same protocol stack model. This likely includes aspects such as protocols for transport of the API content itself. In other words, for example, multiple different API implementations requiring API invokers to support different protocols (HTTP in one implementation, and something else in another implementation) does not make sense from the spirit of the framework being common, thus such situation should be avoided.

On the other hand, API message definition, representation, and encoding (e.g. XML, JSON) may be outside of this minimum protocol model due to several reasons: 1) it typically falls under stage 3 specification domain, 2) suitability for API representation and encoding may be influenced by different API invoker needs, and 3) we should not exclude the possibility of any future new protocol that may emerge in the future.

5.16
API security protocol

Similar to API protocol stack model key issue discussed in subclause 5.15, the CAPIF should also include commonality in the security protocol for all API implementations. In other words, for example, multiple different API implementations requiring API invokers to support different security protocols (HTTPS in one implementation, and something else in another implementation) does not make sense from the spirit of the framework being common, thus such situation should be avoided.
6
Architectural requirements
6.1
General requirements
Editor’s Note:
This clause will investigate and describe general architectural requirements for CAPIF.

6.x
<Common aspect x> requirements
Editor’s Note:
Add proper title describing the common aspect.

6.x.1
Description

Editor’s Note:
This clause will describe the common aspect.

6.x.2
Requirements

Editor’s Note:
This clause will describe the architectural requirements.

6.2
Service API discovery requirements
6.2.1
General

This subclause specifies the service API discovery related requirements.

6.2.2
Requirements

[AR-6.2.2-a] The CAPIF shall provide a mechanism to publish the service API information such as IP address, port number with details about interfaces, protocols, versions numbers, and environment details.
[AR-6.2.2-b] The CAPIF shall provide a mechanism to discover the service API information which is already published as specified in [AR-6.2.2-a].

6.3
Security requirements
6.3.1
General

This subclause specifies the security related requirements for applications accessing the service APIs.

6.3.2
Requirements

[AR-6.3.2-a] The CAPIF shall provide mechanisms to hide the topology of the service from the applications accessing the service APIs from outside the trust domain of the service APIs.

[AR-6.3.2-b] The CAPIF shall provide mechanisms to authenticate applications to access the service APIs.

[AR-6.3.2-c] The CAPIF shall provide mechanisms to authorize applications to access the service APIs.

[AR-6.3.2-d] The CAPIF shall provide mechanisms for mutual authentication between the CAPIF and the API invoker accessing service APIs.

[AR-6.3.2-e] The CAPIF shall provide mechanisms to control the service API access for every API invocation.

[AR-6.3.2-f] The communication between the CAPIF and the API invoker shall be confidentiality protected.

[AR-6.3.2-g] The communication between the CAPIF and the API invoker shall be integrity protected.

6.4
Charging requirements
6.4.1
General

This subclause specifies the charging related requirements for the usage or invocation of service APIs.
6.4.2
Requirements

[AR-6.4.2-a] The CAPIF shall provide mechanisms to record the invocation count of the service APIs for charging purpose.
[AR-6.4.2-b] The CAPIF shall provide mechanisms to record identification of the application and the associated service API invocation for charging purpose.
[AR-6.4.2-c] The CAPIF shall provide mechanisms to record timestamp of the service API invocation.

[AR-6.4.2-d] The CAPIF shall provide mechanisms to record the service API related information, e.g. API location.

6.5
Lifecycle management requirements
6.5.1
General

This subclause specifies the lifecycle management aspects such as monitoring the running status of service APIs and related operations.
6.5.2
Requirements

[AR-6.5.2-a] The CAPIF shall provide mechanisms to monitor the lifecycle of service APIs, e.g. starting and stopping of the service APIs.

[AR-6.5.2-b] The CAPIF shall provide mechanisms to monitor and report the performance status about the service APIs.

[AR-6.5.2-c] The CAPIF shall provide mechanisms to monitor and report the fault information about the service APIs.

[AR-6.5.2-d] The CAPIF shall provide mechanisms to record change events of service APIs, e.g. service APIs relocation.

6.6
Monitoring service API invocation requirements
6.6.1
General
The CAPIF includes monitoring functions. This enables API provider to monitor service API invocations in near real-time, to determine cirtical aspects such as system load, API usage information, uncover potential overload and attacks (e.g. DDoS) conditions.

6.6.2
Requirements
[AR-6.6.2-a] The CAPIF shall provide mechanisms to capture service API invocation events and make them available to service API provider in near real-time (second level).

[AR-6.6.2-b] The CAPIF shall provide mechanisms to analyse system load and resource usage information, detect overload conditions and existence of threat conditions.
[AR-6.6.2-c] The CAPIF shall provide mechanisms to allow service API provider to apply monitoring filters based on criteria such as invoker's ID and IP address, service API name and version, input parameters, and invocation result.

6.7
Logging service API invocation requirements
6.7.1
General

The CAPIF supports the ability to logging service API invocations and its related storage. This enables API providers to record service API invocation events for the purpose of tracing back and statistical anlaysis.
6.7.2
Requirements
[AR-6.7.2-a] The CAPIF shall provide mechanisms for service API invocation event logging and storage functionality. For each service API invocation, the service API invocation log shall at least include: invoker's ID and IP address, service API name and version, input parameters, invocation result, and time stamp information.
[AR-6.7.2-b] The service API invocation log shall be stored for a configurable time period, according to the service API provider's policy.
[AR-6.7.2-c] The service API invocation log shall be stored securely, and shall only be accessed by authorized administrators of the service API provider.
Editor's note: The relationship between logging and charging is FFS.

6.8
Auditing service API invocation requirements
6.8.1
General

The CAPIF incudes auditing capabilities. This enables the service API provider to identify illegal service API invocations e.g. by querying the service API invocation log.
6.8.2
Requirements
[AR-6.8.2-a] The CAPIF shall provide mechanisms to audit service API invocation, which enables the service API provider to trace back a specific API invocation, e.g. by querying the service API invocation log.
6.9
Onboarding API invoker requirements
6.9.1
General

This subclause specifies the requirements related to onboarding API invoker to the CAPIF.

6.9.2
Requirements

[AR-6.9.2-a] The CAPIF shall provide capability to onboard the new API invokers.

[AR-6.9.2-b] The CAPIF shall support granting an API invoker's request to onboard with the CAPIF administrator.

6.10
Policy configuration requirements
6.10.1
General

This subclause specifies the policy configuration related requirements.

6.10.2
Requirements

[AR-6.10.2-a] The CAPIF shall support configuring policies such as related to the protection of platforms and network, specific functionalities exposed, message payload or throughput.
6.11
Protocol design requirements

6.11.1
General

In order for the CAPIF to be common across all present and future API invokers for various usages and purposes, a minimum common protocol stack model is desirable so that all API invokers that use the common-framework-based API need to support only one and the same set of protocols, e.g. security layer protocol(s).
6.11.2
Requirements
[AR-6.11.2-a] The CAPIF shall define a minimum common protocol stack model common for all API implementations to be based on.

[AR-6.11.2-b] The CAPIF shall define a common protocol security model for all API implementations to provide confidentiality and integrity protection.

NOTE:
The protocol definition for API framework is within the stage 3 scope. HTTP/TLS (HTTPS) is one example that has been specified in other API work done by other 3GPP WGs, such as 3GPP TS 29.155 [4] and 3GPP TS 29.201 [5].
7
Solutions

7.1
High level architecture

7.1.1
Solution 1 – High level functional architecture for the CAPIF
7.1.1.1
Solution description

7.1.1.1.1
General

This subclause describes the solution for the high level functional architecture for the CAPIF.
7.1.1.1.2
Architectural Model

Figure 7.1.1.2-1 shows the architectural model for the CAPIF which allows 3rd party applications to access the service APIs.

[image: image3.emf]API invoker

API exposing functionCAPIF core functions

CAPIF APIsService APIs

CAPIF-1e

P

L

M

N

T

r

u

s

t

D

o

m

a

i

n

API invoker

CAPIF-3

CAPIF-2e

CAPIF-2

CAPIF-1

Service APIsService APIs

Figure 7.1.1.2-1: High level functional architecture for the CAPIF
Editor's Note:
How to depict the functions related to CAPIF core functions in the figure 7.1.1.2-1 is FFS.

The CAPIF consists of an API exposing function and the CAPIF core functions. The CAPIF core functions support the API invokers to access the service APIs. The API exposing function is the provider of the service APIs and is also the service communication entry point of the service API to the API invokers.

The CAPIF is hosted within the PLMN operator network. The API invoker is typically provided by a 3rd party application provider who has some PLMN service agreement with PLMN operator. The API invoker may reside within the same trust domain as the PLMN operator network.

The API invoker within the PLMN trust domain connects to the CAPIF via CAPIF-1 and CAPIF-2. The API invoker from outside the PLMN trust domain connects to the CAPIF via CAPIF-1e and CAPIF-2e.

Editor's Note:
The difference between CAPIF-1 and CAPIF-1e and the difference between CAPIF-2 and CAPIF-2e is FFS
The reference points CAPIF-1 and CAPIF-1e support the functions for the API invoker to discover service APIs, to authenticate and get authorization. The reference points CAPIF-2 and CAPIF-2e support the functions for the API invoker to communicate with the service APIs. The reference point CAPIF-3 supports the interaction between the CAPIF core functions and the API exposing function (e.g. access control, policy control). There can be one or several CAPIF-2 or CAPIF-2e instances between the API invoker and the API exposing function.
NOTE:
The aspects related to the specific service API in reference points CAPIF-2 and CAPIF-2e are out of scope of the present document.

Editor's Note:
The relationship of 3GPP functionalities like SCEF with the CAPIF is FFS.
Editor’s Note:
Whether CAPIF-3 terminates as an API or an interface or both is FFS.
7.1.1.1.3
Deployment options
7.1.1.1.3.1
Option 1 – Centralized deployment

The CAPIF can be deployed centrally as illustrated in the figure 7.1.1.1.3.1-1.

[image: image5.emf]API invoker

API exposing functionCAPIF core functions

CAPIF-1

CAPIF-2

CAPIF APIsService APIService APIService APIs

Figure 7.1.1.1.3-1: Centralized deployment of CAPIF

In centralized deployment, the CAPIF core functions and the API exposing function are co-located. The API invoker can interact independently with the CAPIF core functions and the API exposing function including the service APIs. The CAPIF appears as a gateway for all API invoker interactions. The API invoker obtains the service API information and its entry point details from the CAPIF core functions via CAPIF-1. The service communication point of entry for the service API is the API exposing function which also applies any access control or policy control to the internal interactions between the API invoker and the service API in coordination with the CAPIF core functions.

NOTE:
The API invoker can be outside the PLMN trust domain and will access the CAPIF via CAPIF-1e and CAPIF-2e instead of CAPIF-1 and CAPIF-2.

7.1.1.1.3.2
Option 2 – Distributed deployment
The CAPIF can be deployed in a distributed manner illustrated in the figure 7.1.1.1.3.2-1.

[image: image7.emf]API invoker

API exposing function

(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF-3

Service APICAPIF APIsService APIService APIs

Figure 7.1.1.1.3.2-1: Distributed deployment of the CAPIF

The API invoker can interact independently with the CAPIF core functions and the API exposing function including the service APIs. In this deployment, API exposing function appears as an agent for all service API invocations from the API invoker. The API invoker obtains the service API information and its entry point details from the CAPIF core functions via CAPIF-1 interface. The first point of entry for the service API is the API exposing function during API invocation. The API exposing function acts as agent for service API applying any access control or policy control to the interactions between the API invoker and the service API in coordination with the CAPIF core functions via CAPIF-3 interface.

The CAPIF can be deployed by splitting the functionality of the API exposing function among multiple API exposing function entities, of which one acts as the entry point. The CAPIF deployment with cascading API exposing functions is as illustrated in the figure 7.1.1.1.3.2-2.

[image: image8.emf]API invoker

API exposing function

(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

Service (X&Y) APIs

CAPIF-2

CAPIF-2

API exposing function

(AEF-2)

Service X APIs

API exposing function

(AEF-3)

Service Y APIs

CAPIF APIs

Service (X&Y) APIs

CAPIF-2

Figure 7.1.1.1.3.2-2: Distributed deployment of the CAPIF with cascading API exposing functions
In this deployment option, the API exposing function can have several instances like AEF-1, AEF-2 and AEF-3 which can be assigned with different roles. The roles for each API exposing function are decided by the operator. In this illustration, the API exposing functions AEF-2 and AEF-3 provide service APIs for service X and service Y respectively. The API exposing function AEF-1 provides the service communication entry point to the service APIs for service X APIs and service Y APIs. The API exposing function AEF-1 for instance can hide the topology of service X APIs and service Y APIs from the API invoker. The API exposing function AEF-1 also applies any access control or policy control to the interactions between the API invoker and service X APIs and between the API invoker and service Y APIs, in coordination with the CAPIF core functions using CAPIF-3.

The CAPIF core functions and the API exposing function AEF-1 can be co-located. The API invoker interacts with the CAPIF core functions via CAPIF-1. The API invoker interacts with service (X&Y) APIs on API exposing function AEF-1 via CAPIF-2. The API exposing function AEF-1 forwards the invocation of the service X API or service Y API from the API invoker to the API exposing functions AEF-2 or AEF-3 respectively via CAPIF-2. The API messages are forwarded via CAPIF-2 in the interactions between API exposing functions. The API invoker cannot directly interact with service X APIs and service Y APIs provided by API exposing functions AEF-2 and AEF-3 respectively.

Different splits of responsibility are possible. In another example illustrated in figure 7.1.1.1.3.2-3, the API exposing function AEF-1 could provide topology hiding for API exposing functions AEF-2 and AEF-3, plus access control for AEF-3. The API exposing function AEF-2 would provide its own access control, interacting with the CAPIF core functions via CAPIF-3.

[image: image9.emf]API invoker

API exposing function

(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

CAPIF-2

CAPIF-2

API exposing function

(AEF-2)

Service X APIs

API exposing function

(AEF-3)

Service Y APIs

CAPIF APIs

CAPIF-3

Service (X&Y) APIs

Service (X&Y) APIs

CAPIF-2

Figure 7.1.1.1.3.2-3: Another example of distributed deployment of the CAPIF with cascading API exposing functions

NOTE:
The API invoker can be outside the PLMN trust domain and will access the CAPIF via CAPIF-1e and CAPIF-2e instead of CAPIF-1 and CAPIF-2.

7.1.1.2
Solution evaluation

Editor's Note:
This clause will evaluate the solution.

7.2
Solutions to key issues

7.2.1
Solution 1 – Service API discovery

7.2.1.1
Solution description

The following solution corresponds to the key issue on service API discovery specified in subclause 5.1.

Figure 7.2.1-1 illustrates the solution for service API discovery.

[image: image10.emf]1. Publish service API2. Discover service APIs of interest3. Communication with service APIsApplicationAPI registryCommon API framework functionsAPI registryclientFramework control functionsAPI providerService APIs

Figure 7.2.1-1: Solution 2 – Service API discovery
Editor's Note:
How to depict framework control functions and common API framework functions within common API framework in the figure 7.1.1.2-1 and figure 7.2.1-1 are FFS.
The service API discovery mechanism is supported by the API registry. The API registry provides the capabilities to publish and discover service APIs.

1)
The API registry client of the API provider publishes the service API information to the API registry.

2)
Application discovers the service APIs of interest from the API registry.

3)
Upon receiving the service API information, the application communicates with the service APIs of the API provider.

7.2.1.2
Solution evaluation

7.2.2
Solution 1: Subscription and notifications for the CAPIF events related to service APIs
7.2.2.1
Solution description

7.2.2.1.1
General

The solution corresponds to the key issues and requirements for service API lifecycle management. The CAPIF enables the API invoker to subscribe to the CAPIF events related to service API changes such as availability events of service APIs (e.g. active, inactive), change in service API information, etc.

NOTE:
Support for subscriptions and notifications can also be part of the actual service APIs. That type of subscriptions and notifications is not covered by the provisions in this clause.
7.2.2.1.2
Procedure

Figure 7.2.2.1.2-1 illustrates the procedure for service API related events subscription.

Pre-conditions:

1.
The API invoker has performed the service discovery and received the details of the service API.

2.
The API invoker is authenticated and authorized to use the service API.

[image: image11.emf]API invokerCAPIF

1. Event subscription request

2. Check authorization for

subscription

4. Event subscription response

3. Store subscription

information

Figure 7.2.2.1.2-1: Procedure for service API related event subscription

1.
The API invoker sends an event subscription request to the CAPIF.

2.
Upon receiving the event subscription request from the API invoker, the CAPIF checks for the relevant authorization for the event subscription. If the API invoker has no authorization, step 4 is performed, where the event subscription response provides the failure reasons for the event subscription.
3.
If the authorization is successful, the CAPIF stores the subscription information.

4.
The CAPIF sends an event subscription response indicating successful operation.

Figure 7.2.2.1.2-2 illustrates the procedure for service API related event notifications.

Pre-conditions:

-
The subscription procedure as illustrated in Figure 7.2.2.1.2-1 is performed.

[image: image12.emf]API invokerCAPIFAPI invoker

2. Retrieve application

subscriptions

1. Event is generated

3. Event notification request

4. Event notification response

3. Event notification request

4. Event notification response

Figure 7.2.2.1.2-2: Procedure for service API related event notifications

1.
The CAPIF generates events to be consumed by the API invoker(s).

2.
For the generated event, the CAPIF retrieves the list of corresponding subscriptions.

3.
The CAPIF sends event notification requests to all the API invoker(s) that have subscribed for the event.

4.
The API invoker sends an event notification response to the CAPIF as an acknowledgement of the event notification request.
7.2.2.3
Solution evaluation

Editor’s Note:
This clause will evaluate the solution.

7.2.3
Solution 1: CAPIF access control with topology hiding
7.2.3.1
Solution description

7.2.3.1.1
General

The solution corresponds to the key issues and requirements related to some common access control requirements for service API invocations and topology hiding.

Editor's Note:
Whether to capture a separate solution about topology hiding is FFS.

7.2.3.1.2
Procedure

Figure 7.2.3.1.2-1 illustrates the procedure for CAPIF access control with topology hiding.

Editor's Note:
The procedure in subclause 7.2.3.1.2 is to be aligned to entities specified in the high level functional architecture.

Pre-conditions:

1.
The API invoker has performed the service discovery and received the details of the service API which includes the information about the service communication entry point in the CAPIF.

2.
The API invoker is authenticated and authorized to use the service API.

3.
The CAPIF is configured with the actual destination address of the service API and is configured with an access policy for topology hiding for the service API.

4.
The CAPIF is configured with at least one access policy to be applied to the service API invocation corresponding to the API invoker and service API.

[image: image13.emf]API invokerCAPIF

Service API

(CAPIF)

2. Access control on

service API invocation

1. Service API invocation

3. Forward service API invocation

4. Response to service API invocation

5. Forward response to

service API invocation

Figure 7.2.3.1.2-1: Procedure for CAPIF access control with topology hiding

1.
The API invoker performs service API invocation according to the interface of the service API by sending a service API invocation message towards the CAPIF.
2.
Upon receiving the service API invocation from the API invoker, the CAPIF checks for configuration for access control. As per the configuration for access control, the CAPIF performs access control on the service API invocation message as per the operator policy.

3.
The CAPIF further resolves the actual destination service API address information of the incoming service API invocation according to the topology hiding policy and forwards the service API invocation message to the service API of the API server.

4.
The CAPIF receives a response message for service API invocation from service API.
5.
The CAPIF resolves the destination API invoker address and also modifies the source address information of the service API within the response message as per topology hiding policy and forwards the response message to the API invoker.

7.2.3.3
Solution evaluation

Editor’s Note:
This clause will evaluate the solution.

8
Overall evaluation

Editor’s Note:
This clause will provide evaluation of different solutions.

9
Conclusions

Editor's Note:
This clause is intended to list conclusions that have been agreed during the course of the study item activities.

Annex A:
API work done by other 3GPP WGs

A.1
Introduction

This annex describes the existing relevant 3GPP specifications on API work that has been done by various 3GPP WGs in the past, and summarises key points for each of them.

Although the scope of the CAPIF study is independent from the work already done in other 3GPP WGs, it is important to study the work already done in other 3GPP WGs and take it into account.

A.2
Discussion

A.2.1
SA4: API for the interface between MBMS service provider and BM-SC (xMB) (TR 26.981)
3GPP TR 26.981 [3]: MBMS Extensions for Provisioning and Content Ingestion (v14.0.0, 2017-03).

According to the introduction clause, this TR intends to "identify key functionality of an interface from external application service/content providers to the BM-SC for provisioning and content ingestion in order to leverage all delivery methods and procedures through the interface."
3GPP TR 26.981 [3] captures 5 use cases (clause 4) and describes corresponding provisioning and ingestion procedures (clause 5). They are mainly related to TV broadcast delivery over MBMS.

Use case 1: Live Video from multiple cameras angles into a stadium.
Use case 2: Nation-Wide TV channels.
Use case 3: VOD prepositioning.
Use Case 4: Software Update.
Use Case 5: TV Program Guide update delivery.
3GPP TR 26.981 [3] also looks into existing protocols for provisioning interface (i.e. API) in clause 7:
1)
Hypertext Transfer Protocol (HTTP);
2)
Diameter;
3)
EXtensible Markup Language (XML);
4)
Representational State Transfer (REST); and
5)
Simple Object Access Protocol (SOAP).
As the conclusion, 3GPP TR 26.981 [3] recommends to use RESTful API and OAI as the modelling language for RESTful API.
[Note from the editor:In the paragraph above, RESTful API and OAI are set to un-bolded.]
	[Quote from Clause 8 Conclusion]

It is recommended RESTful APIs to provide the interface specification for the interface. The benefits of RESTful APIs outweigh the complexities of other protocols. RESTful APIs not only simplify the interface specification, but also simplifies implementation tasks and has lesser overhead compared to other protocols.

It is recommended to use OAI (formerly known as Swagger) as modelling language for RESTful APIs.

A.2.2
SA2: SCEF to expose the services and capabilities provided by 3GPP network interfaces and protocols (TS 23.682)
3GPP TS 23.682 [2]: Architecture enhancements to facilitate communications with packet data networks and applications (v.15.0.0, 2017-03).

The SA2 NAPS work item (Northbound APIs for SCEF – SCS/AS Interworking) is in progress with 10% completion rate as of today. oneM2M defines API requirements which are used by SA2 as input upon doing this work. Liaison between SA2 and oneM2M is on-going.

Editor’s Note:
The paragraph above needs update as per the conclusion of NAPS work item in SA2.
A.2.3
CT3: Representational State Transfer (REST) protocol-based St reference point (TS 29.155)
3GPP TS 29.155 [4]: Traffic steering control; Representational state transfer (REST) over St reference point (v14.1.0, 2017-03).

This is a stage 3 TS that defines the St reference point between PCRF and Traffic Steering Support Function (TSSF) (clause 1).

St reference point is based on REST protocol-based interface for the PCRF to provision the traffic steering control information to the TSSF for the IP-CAN session. It is based on JSON / HTTP / TCP. The PCRF uses HTTP methods (POST, PUT, GET, PATCH, DELETE) to create, query, modify, remove to manage the session/resource for traffic steering control information to the TSSF (clause 4). To secure the communication, NDS/IP network layer security or HTTPS (HTTP/TLS) transport layer security is used (clause 6).

The discovery of TSSF (TSSF URI) is done by pre-configuration in PCRF (subclause 5.5).
A.2.4
CT3: Representational State Transfer (REST) reference point between the Application Function (AF) and the Protocol Converter (PC) (TS 29.201)
3GPP TS 29.201 [5]: Representational State Transfer (REST) reference point between Application Function (AF) and Protocol Converter (PC) (v14.0.0, 2016-12).
This is a stage 3 TS that defines the reference point between AF and PC in order for the AF to communicate with PCRF. The AF runs applications that communicate with PCRF to obtain PCC information for traffic plane resources (subclause 4.2, 4.3).

The interface to PCRF (Rx) is Diameter based. If the AF uses RESTful based API, then a protocol converter (PC) is needed to translate the protocols in the middle. The PCRF and PC can be located within the VPLMN/HPLMN; the AF can be located in the same PLMN with the PC or in 3rd party network attached to that PLMN (subclause 4.2, 4.3). Figure 4.2-1 (REST-Rx reference model) is quoted below:

[image: image14.emf]

PC

REST-Rx

AF

PCRF

Rx

Figure A.2.4-1: 3GPP TS 29.201 fig. 4.2.1 The REST-Rx reference model
PCC procedure over RESTful reference point (REST-Rx) covers the following functionalities (subclause 4.5) along with message diagrams (Annex A):

1.
Initial Provisioning of Session Information;
2.
Modification of Session Information;
3.
AF Session Termination;
4.
Gate Related Procedures;
5.
Subscription to Notification of Signalling Path Status; and
6.
Traffic Plane Events.
REST-Rx reference point is based on REST protocol-based interface for the AF to communicate with PCRF via PC. It is based on XML / HTTP / TCP. The AF uses HTTP methods (POST, PUT, DELETE) to create, modify, and delete the resource state (subclause 5.3). To secure the communication, HTTPS (HTTP/TLS) transport layer security is used (clause 7).
A.3
Summary

Based on the discussion above, this subclause summarises aspects from the TS and TR documents listed earlier.

Table A.3-1 captures the high level summary.

Table A.3-1 Summary of API work done in other WGs in 3GPP

	WG
	Specification
	Protocol
	Note

	SA4
	3GPP TR 26.981 [3]
(MBMS Extensions for Provisioning and Content Ingestion)

Stage 2
	Recommends use of RESTful API and OAI as the modelling language.
	This study (FS_xMBMS) concluded in March 2017 (Rel.14).
Carry over to the normative work is not clear (at least no SA4 work item exists for this).

	SA2
	3GPP TS 23.682 [2]
(SCEF)

Stage 2
	(SA2 NAPS work item in progress)
	(SA2 NAPS work item in progress. Planned completion date is Sept 2017)

	CT3
	3GPP TS 29.155 [4]
(Traffic steering control over St ref. point)

Stage 3
	JSON / HTTP(S) / TCP
	First introduction in Rel.13 (2015).

Annex A defines call flows.

Annex B defined JSON schema.

	CT3
	3GPP TS 29.201 [5]
(Reference point between AF and PC)

Stage 3
	XML / HTTP(S) / TCP
	First introduction in Rel.12 (2014).

Annex A defines call flows.

Annex B defined XML schema.

Previous work done, as discussed in this annex, addresses the needs to define specific application services (e.g. file transfer, video transmission, protocol conversion, etc.). In this respect, none of these previous API work in 3GPP has addressed common API framework definition that the CAPIF study addresses.

[Note from the editor:Page break added.]
Annex B:
OMA API Program

B.1
General

The OMA API program has inventory of APIs (http://www.openmobilealliance.org/wp/API_Inventory.html) which provides standardized interfaces to the service infrastructure residing within communication networks and on devices. Focused primarily between the service access layer and generic network capabilities, OMA API specifications allow operators and other service providers to expose device capabilities and network resources in an open and programmable way to any developer community independent of the development platform. By deploying OMA APIs, fundamental capabilities such as SMS, MMS, location services, payment and other core network assets are now exposed in a standardized way. OMA Service Exposure Framework is depicted in figure B.1-1

[image: image15.emf]

OMA APIs provide an

abstracted view of network

capabilities

SCEF

e.g., 3GPP network

Figure B.1-1: OMA Service Exposure Framework

OMA API landscape spreads across various dimensions:

-
Abstract APIs: Focus on functional aspects and protocol independent aspects i.e., does not include a specific protocol binding for its operations;
-
API binding technologies: SOAP/WSDL web services, HTTP protocol binding using REST architectural style; and
-
Network API: exposed by a resource residing in the network.
B.2
OMA API Architecture

This subclause discusses the OMA API architecture for Abstract APIs and HTTP/SOAP APIs.

B.2.1
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
The reference architecture of Abstract APIs or NGSI is shown in figure B.2.1-1:

[image: image16.emf]

OMA service enablers, 3GPP network capabilities via native interfaces

Figure B.2.1-1: NGSI Architectural Diagram

Although the scope of NGSI is standardization of functional interfaces and framework aspects, the excerpts below give more emphasis on those related to framework aspects.
B.2.1.1
Service Registration and Discovery

The Service Registration and Discovery component supports NGSI interface messages for the following functions:

-
Registration of Services; and
-
Search for Services.

This component exposes the NGSI-11 and NGSI-12 interfaces. The NGSI-11 interface supports Registration of Services. The NGSI-12 interface supports Search for Services.

B.2.1.2
Identity Control

The Identity Control component supports NGSI interface messages for the following functions:

-
Management of the Identity including Identifiers; and
-
Control of the Federation of the Identity.

This component exposes the NGSI-13 and NGSI-14 interfaces.

B.2.1.3
Data Configuration and Management

The Data Configuration and Management component supports NGSI interface messages for the following functions:

-
Management (i.e. create, read, update, delete) of data stored in a document;
-
Subscription management of notifications regarding data change in the content of a document; and
-
Notifications of data change in the content of a document.

The data supported can be of the type of XML or non-XML data. This component exposes the NGSI-1, NGSI-2 and NGSI-3 interfaces.

B.2.2
OMA RESTful APIs

B.2.2.1
Authorization Framework for Network APIs

The Authorization Framework for Network APIs enables a Resource Owner owning network resources exposed by Network APIs and RESTful APIs in particular, to authorize third-party Applications (desktop, mobile and web Applications) to access these resources via that API on the Resource Owner's behalf.

OMA RESTful Network APIs may be complemented with a common delegated authorization framework based on the OAuth 2.0 Authorization Framework as specified in IETF RFC 6749 [10], for access of third party Applications via those APIs.

B.2.2.2
RESTful Network API for Capability Discovery

The RESTful Network API for Capability Discovery contains HTTP protocol bindings for Capability Discovery, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).

B.3
API consistency within OMA APIs

OMA has developed following specifications in order to ensure consistency across all the APIs that are developed:
-
Common Definitions and Specifications for RESTful Network APIs: To ensure consistency for developers using the various RESTful Network APIs specified in OMA, this "Common" technical specification aims to contain all items that are common across all HTTP protocol bindings using REST architectural style for the various individual interface definitions, such as naming conventions, content type negotiation, representation formats and serialization, and fault definitions. It also provides a repository for common data types.

-
Common specifications for RESTful Network APIs include use of REST guidelines, handling of unsupported formats, API authoring style, resource creation, encoding in HTTP requests/responses;
-
Data items include addressing, common data types; and

-
Error handling.
-
Whitepaper on Guidelines for RESTful Network APIs: This whitepaper is intended to provide the guidelines and best priorities for defining RESTful Network APIs in OMA.

-
Generic principles for defining RESTful Network APIs include:

-
Services should be defined in terms of resources that are addressable as URLs.
-
Use of nouns in URLs is recommended over the use of verbs.
-
Mapping of HTTP i.e., verbs POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations.
-
Use standard HTTP Status codes in responses for both successful and failed operations.
-
It is recommended to specify API versioning by inserting the API version in the resource URL path.
-
The API specifications should include examples.
-
APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.
-
If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required.
-
API Documentation:

-
Each RESTful Network API should be specified in a resource-oriented manner and the resources used by the API should be defined and explained. Use cases and sequence diagrams should be provided.

-
RESTful Network API data types and enumeration types must be specified with an associated detailed description including optionality. This will enable a developer to understand how to use the parameter.

-
Error handling, examples, common data formats, backward and forward compatibility.
Annex C:
ETSI MEC API framework
C.1
General

NOTE:
Although this document's scope covers stage-2 aspects of the CAPIF, this annex contain both stage 2 and stage 3 aspects of the ETSI ISG MEC specifications for informative purpose.

Multi-access Edge Computing (MEC) offers application developers and content providers cloud-computing capabilities and an IT service environment at the edge of the network. This environment is characterized by ultra-low latency and high bandwidth as well as real-time access to radio network information that can be leveraged by applications. Operators can open their Network edge to authorized third-parties, allowing them to flexibly and rapidly deploy innovative applications and services towards mobile subscribers, enterprises and vertical segments.

In its first phase, ETSI ISG MEC has covered aspects of Mobile Edge Computing (i.e., of the hosting of applications in various places close to the edge of the mobile network, and of enabling local or remote applications to provide and consume services). In its second phase, ETSI ISG MEC has changed its name to "Multi-access Edge Computing" to indicate that it extends its scope to other access networks, such as WiFi or fixed, and looks at using NFV for MEC deployments. The MEC API framework has been developed to be flexible and generic with the goal to have applicability beyond the mobile edge, and moreover, harmonization with the API principles used at ETSI NFV has been one of the main design principles.

ETSI ISG MEC has developed its own RESTful API Framework [X1]. The ETSI MEC framework and reference architecture specified in ETSI GS MEC 003 [8] provides aspects of the interaction of application with services of the mobile edge platform. The MEC application enablement specified in ETSI GS MEC 011 [9] specifies the Mp1 interface including the aspects about the API supporting functions.

The reference architecture of ETSI MEC is shown in figure C.1-1:

[image: image17.emf]Mobile edge hostVirtualisation infrastructure

Data plane

Operations Support SystemUE appVirtualisationinfrastructure managerUser app LCM proxy

Other mobile edgeplatform

Mobile edge platformMobile edge platform managerMobile edge orchestrator

Mm3Mm1Mm4Mx2Mm8Mm9Mp2Mp1Mm7Mm6

ME appMEapp

Mm2Mm5

Traffic rulescontrolME serviceService registryDNS handlingME platform element mgmt

CFS portal

Mx1

Other mobile edge host

Mobile edge

system level

Mobile edge host level

ME app rules & reqts mgmtMEapp lifecycle mgmt

MEapp

Service

Mp1Mp3

Figure C.1-1: ETSI MEC reference architecture

The MEC services can be hosted on the mobile edge platform or provided by applications. They are accessible via APIs through the Mp1 reference point by the applications.

C.2
MEC Application Enablement

The mobile edge platform offers an environment where mobile edge applications can discover, advertise, consume and offer mobile edge services.
Via the Mp1 reference point between the mobile edge platform and the applications, basic functions of application enablement are provided via a REST API.

The functions of application enablement include:
a.
mobile edge service assistance:

-
authentication and authorization of producing and consuming mobile edge services;
-
a means for service producing mobile edge applications to register towards the mobile edge platform the mobile edge services they provide, and to update the mobile edge platform about changes of the mobile edge service availability;

-
a means to notify the changes of the mobile edge service availability to the relevant mobile edge application; and
-
a means for applications to discover the available mobile edge services.
b.
mobile edge application assistance:

-
mobile edge application start-up procedure; and
-
mobile edge application graceful termination/stop.
c.
traffic routing:

-
traffic rules update, activation and deactivation;

d.
DNS rules:

-
DNS rules activation and deactivation;

e.
timing:

-
providing access to time of day information;

f.
transport information:

-
providing information about available transports.

Items (c) and (d) are used to control the traffic routing feature provided by the mobile edge host. Items (a) and (f) relate to functionality of a service API registry. Item (b) relates to application management and item (e) is used for time synchronization.

The API defined for application enablement follows the API principles that are defined in ETSI GS MEC009 [7]. This way, a unified approach for API registration / discovery and for the actual APIs is followed.

The APIs of ETSI MEC are primarily REST-based. In addition, support high volume, low latency distribution of information beyond the capabilities of HTTP-based APIs, the ETSI MEC API framework allows for the use of so-called "alternative transports". Alternative transports are basedon the use of implemenation technologies such as message buses or RPC techniques, combined with serializers that create a compact, typical binary, on-the-wire representation of the data. Alternative transports allow higher throughput than HTTP and are typically not be fully standardized. By the use of the "alternative transports" concept, the API registry allows to signal the necessary configuration parameters of the actual transport, such as IP addresses, ports, URIs etc; as well as the used serializers.
C.3
Design aspects of ETSI MEC APIs
ETSI MEC defines an API framework for Mobile Edge Service APIs in ETSI GS MEC 009 [7]. It is based on REST and its implementation based on Richardson Maturity Model. All Mobile Edge service APIs shall implement at least Level 2 of the Richardson Maturity Model. It is mostly a client-server model. Any API designed should be compliant with it.
As part of the API framework, ETSI MEC defines:

a.
Entry point of a Mobile Edge service API;
b.
API security and privacy considerations;
c.
API template; and
d.
Patterns of the API.
C.3.1
Entry point of a Mobile Edge service API
The important aspects of the API entry point are:

a.
Every API needs to have only one entry point. The URL of the entry point needs to be communicated to API clients so that they can find the API.

b.
The API description should consist of information like API version, features, resources, etc.

c.
API entry point can be manually provided to the API developer or is automatically discovered.

C.3.2
API security and privacy considerations
Security and privacy considerations to allow proactive protection of the APIs against the known security and privacy issues, e.g. DDoS, frequency attack, unintended or accidental information disclosure, etc. A design for a secure API should consider at least the following aspects:
[Note from the editor:Paragraph above set to normal style.]
a.
Control the frequency of the API calls (calls/min).

b.
Anonymity of the real identities.

c.
Authorization of the applications. For this, two schemes are defined – one based on OAuth and one based on TLS credentials.
C.3.3
API template

The details of the API are specified in an API template. It includes the following structure:
1.
Sequence Diagrams – Provide the description of procedures for the API.

2.
Data Model – Provides the details of different data types like the resource data types, subscription and query criteria data types, notification and query results data types, referenced structured data types, referenced simple data types.

3.
API definition – Provides the details of the URI definitions and resource structure, description of the resource, methods associated to the resources (e.g., GET, POST, DELETE).
C.3.4
Patterns of the API

The patterns are used to model common operations and datatypes in the RESTful MEC APIs. The defined patterns are used consistently throughout the REST-based mobile edge service APIs. The following patterns are recommended:
[Note from the editor:Paragraph above set to normal style.]
a.
Name syntax;
b.
Resource identification;
c.
Resource representations and content format negotiation;
d.
Resource creation;
e.
Reading a resource;
f.
Queries on a resource;
g.
Updating a resource;
h.
Deleting a resource;
i.
Task resources;
j.
Subscribe/Notify;
k.
Asynchronous operations;
l.
Links (HATEOAS); and
m.
Error responses.
Annex D:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2017-04
	SA6#16
	
	
	
	
	TR skeleton
	0.0.0

	2017-04
	SA6#16
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6-170439; S6-170400; S6-170440; S6-170453; S6-170454; S6-170455; S6-170482; S6-170481; S6-170458; S6-170460; S6-170483; S6-170462.
	0.1.0

	2017-04
	n/a
	
	
	
	
	Correction of styles of figure and figure titles, moving history annex as the last annex
	0.1.1

	2017-05
	SA6#17
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6-170694; S6-170697; S6-170698; S6-170705; S6-170706; S6-170746; S6-170755; S6-170758; S6-170760; S6-170781; S6-170782; S6-170783. S6-170784; S6-170785; S6-170786; S6-170787; S6-170788;
	0.2.0

_1556450077.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

CAPIF-2

CAPIF-2

API exposing function
(AEF-2)

Service X APIs

API exposing function
(AEF-3)

Service Y APIs

CAPIF APIs

CAPIF-3

Service (X&Y) APIs

Service (X&Y) APIs

CAPIF-2

_1560931888.vsd
API invoker

API exposing function

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF APIs

Service API

Service API

Service APIs

_1560932001.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF-3

Service API

CAPIF APIs

Service API

Service APIs

_1556458547.vsd

_1556458581.vsd

_1556458533.vsd

_1556450021.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF-3

Service API

CAPIF APIs

Service API

Service API

_1556450041.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

Service (X&Y) APIs

CAPIF-2

CAPIF-2

API exposing function
(AEF-2)

Service X APIs

API exposing function
(AEF-3)

Service Y APIs

CAPIF APIs

Service (X&Y) APIs

CAPIF-2

_1554201958.doc

[image: image1]

Rx

PC

REST-Rx

PCRF

AF

_1556449968.vsd
API invoker

API exposing function

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF APIs

Service API

Service API

Service API

_1553439468.doc
[image: image1.emf]

OMA service enablers, 3GPP network capabilities via native interfaces

_1553441803.doc
[image: image1.png]

OMA APIs provide an abstracted view of network capabilities

SCEF

e.g., 3GPP network

1. Publish service API
2. Discover service APIs of interest
3. Communication with service APIs
Application
API registry
Common API framework functions
API registry
client

Framework control functions
API provider
Service APIs

