Error! No text of specified style in document.
8
Error! No text of specified style in document.

3GPP TSG SA WG5 (Telecom Management) Meeting #84
S5-122150
20-24 August 2012; Berlin, Germany
revision of S5-121abc
Source:
Ericsson
Title:
pCR on Version handling TR
Document for:
Approval

Agenda Item:
7.5.1 Study on version handling (470050)
1
Decision/action requested

Approve the modifications & additions in this pCR
2
References

[1]

Latest draft of TR 32.830 (Study on version handling), version 1.3.0
3
Rationale

A number of new alternative solution proposals are provided in order to address the issue with bad efficiency, caused by the high degree of redundancy, pointed out with the earlier (in TR version 1.2.0) proposed solution to use case 13 (as described in subclause 7.2.3.2 below).

One correction in Annex A, Use case 3b sequence diagram is also proposed (copy-paste error from UC diagram 3a).
4
Detailed proposal

See pCR below (changes marked with revision marks).

	Beginning of changes

7.2.3 UC13 (NRM object instance version)
7.2.3.1 Introduction
3GPP TS 32.300 [15] is about name spaces. The name space specified in [15] is the “container” of identifiers of class instances.

Quoted from http://en.wikipedia.org/wiki/Namespace, “…a namespace is a container that provides context for the identifiers (names, or technical terms, or words) it holds, and allows the disambiguation of homonym identifiers residing in different namespaces”.

In this document, the “name space” is not about the “container” of identifiers of class instances. Rather, it refers to the “container” of identifiers of classes.

A number of solution proposal options are presented here.
7.2.3.2 Option 1
In this solution, unique class name space names are assigned to organizations (e.g., standard bodies, vendors) by the Internet Corporation for Assigned Names and Numbers (ICANN), a non-profit corporation for assigning and managing, among other things, name spaces. The assigned name space can be further extended (i.e. subdivided) by the organization to create its own hierarchical name spaces.
This solution does not require modification of the DN structure. This solution requires:

· A new attribute, called nsVersionInfo, is defined in Top IOC (which is inherited by all other IOCs).

· Also to consider (for discussion): Having the new nsVersionInfo attribute in Top IOC means that all instances (could be hundreds of thousands of them in a large installation) will have it. That would mean in a large installation, lots of attributes with the same value data. We should consider a better way of implementing this attribute (on IS and/or SS level) – see Options 2a, 2b and 3 below.
If and when an IRPManager wants to be certain of the class namespace and version of an instance, it reads this new attribute (assuming IRPAgent implements this attribute). The attribute value could be “RED1.0”, “WHITE2.1” etc., explicitly indicating the class namespace and version.
The legal values (and their semantics) of “RED1.0”, “WHITE2.1” etc. need clarification. For example, should the standard define legal values for all, some or none of these values?

The “RED1.0”, “WHITE2.1” etc. are fictitious names for a string representing a specification authority, a specification number and a version number. Examples of legal values could be:

· “3GPP, 32.766 V9.1” where the first component is the name of the specification authority and the 2nd component is the IRPVersion string (as defined in [3]) of the specification where the subject class is defined.

· “MEF, 7.1” that identifies the “Technical Specification MEF 7.1, Phase 2 EMS-NMS Information Model” published by MEF (the name of the specification authority).

· “www.acme.com, turbo 3.4.112” that identifies the specification named “turbo 3.4.112” published by an organization identified by “www.acme.com”.

7.2.3.3 Option 2a
This option builds on option 1 regarding the namespace and version definition format and semantics, but with the following differences removing the redundancy of the version information.
Detailed description:
1. A new IOC is defined, e.g. named NSV. It is optionally name-contained by SubNetwork and ManagedElement (with an {xor} constraint between these two containment relations), and contains a multi-valued attribute named NsVersionInfo holding the default namespace and version information of all supported NRM SSs. The contents and legal values of each element of NsVersionInfo is according to the description in Option 1 above.
2. The root instance of each MIB portion (SubNetwork or ManagedElement) directly name-contains one NSV instance. This “root NSV instance” identifies the list of default namespace and version values for all NRM IRP SSs supported by the MOs in the MIB portion contained by this root SubNetwork or ManagedElement instance.

3. Optionally, other NSV instances may be contained by the “root NSV instance”. These NSV instances are all directly name-contained the “root NSV instance”, and are used to identify fragments of the MIB which deviate from the default namespace and version values.
4. For each fragment (sub-tree) of the MIB where any deviation from the default namespace and specification versions exists, a new instance of NSV is created with an association directly to the root (MO) of this MIB fragment, which can be any MO in the MIB. The NsVersionInfo of that NSV instance contains the namespace and version of the NRM SSs deviating from the default value(s) (given by the “root” NSV instance), and supported by the MOs of this fragment. Deviations associated with fragments on “lower containment level” will over-ride deviations identified for fragments higher up in the same branch of the containment tree.
Below is an example illustrating the use of the NSV instances. Figure 1 is a fictitious MO tree.

[image: image1.emf]1

23

11

1213

14

678

1817

16

15

10

19

45

9

2021

22

N1

N2

N4N3

Figure 1: Example containment tree of MIB instances

Example 1:
NSV instance N1 (contained by MO 1) contains NsVersionInfo attribute with the list of two namespace-versions (a,b). This means that class definitions for instances 1..10 should be found in namespace-versions a and b.
Example 2:
NSV instance N2 (contained by MO 11) contains NsVersionInfo attribute with the list of namespace-versions (a,b,c). NSV instance N3 (contained by N2 and with an association to MO 19) contains NsVersionInfo attribute with the list of namespace-versions (d,e). NSV instance N4 (contained by N2 and with an association to MO 21) contains NsVersionInfo attribute with the single element of namespace-versions (a).
This means that
· class definitions for instances 11..18 should be found in namespace-versions a, b and c,
· class definitions for instances 19, 20 and 22 should be found in namespace-versions d and e, and
· class definition for instance 21 should be found in namespace-version a.
7.2.3.4 Option 2b
This option also builds on option 2a regarding the namespace and version definition format and semantics in the NsVersionInfo attribute, as well as identifying a) default namespace and version information of all supported NRM SSs and b) deviating namespace and version information in the fragments of the MIB, if any, where it exists.
The main difference compared to option 2a is that in 2b, the NsVersionInfo attribute is defined in one of the Inventory NRM IRP IOCs, e.g. InventoryUnit, thereby reusing the structure of the Inventory NRM which the IRPManager already may be using to identify “administrative” type of information about the MOs which is semi-permanent (not updated frequently), and mirroring a large portion of the MOs even if not all.
One issue with this option is that InventoryUnit (and other IOCs in this NRM) can only point to ManagedFunction and its derivatives. Therefore this option cannot identify “versions deviating from the default” for those MOs which are not derived from ManagedFunction, and there are a few, e.g.: UtranRelation, EP_RP, EP_IuCS, EP_IuPS, EP_Iur, CellOutageCompensationInformation, EUtranCellNMCentralizedSON. Possible ways to get around this issue could be to:
a) Assume that all MOs whose MOCs are not derived from ManagedFunction are of the same version as the closest (or topmost) MOC in the same containment branch defined in the same NRM SS.

b) Define a <<ProxyClass>> ManagedEntity in the Inventory NRM IRP to which InventoryUnit has an association, representing an optional association to any IOC in any NRM IRP.
Another issue with this option is that InventoryUnit (and other IOCs in this NRM) are all contained by ManagedElement, so definition of default namespace and version info in a “root InventoryUnit instance” would be valid per ManagedElement instance. So it must be defined once per ManagedElement instance, which can be a large number, and cannot be set up once per SubNetwork instance. Further, it cannot define the version information for MOs name-contained by SubNetwork instead of ManagedElement, such as ExternalENBFunction and ExternalEUtranGenericCell. Possible ways to get around this issue could be to:
c) Define a new IOC contained by SubNetwork and holding the NsVersionInfo attribute, in the Inventory NRM. But that would mean practically the same solution as option 2a.
d) Let the InventoryUnit(s) in one and only one of the ManagedElement instances define the default and possibly deviating versions for all MOs contained by SubNetwork and not ManagedElement.
e) “Move” the containment of InventoryUnit up to be directly name-contained by SubNetwork.
A third issue with this option is that it is less straightforward to identify which instance of InventoryUnit that contains the default namespace-version values, since InventoryUnit does not have an association to ManagedElement and there could be 0..n instances of InventoryUnit directly name-contained by one ManagedElement. Possible ways to get around this issue could be to:

f) Add an association from InventoryUnit to ManagedElement IOC (or to SubNetwork, if option e) above is chosen).
g) Limit the cardinality for instances of InventoryUnit directly name-contained by one ManagedElement, to 0..1.
Detailed proposal for option 2b:

1. Add an NsVersionInfo attribute to the InventoryUnit IOC.
2. Choose one of the options a) and b) above, one of the options c), d) or e) above, and one of the options f) and g) above.
7.2.3.5 Option 3

This option uses a new operation called getIRPVersionMap. This operation can be defined as a new operation for Kernel CM IRP.

The NM invokes this getIRPVersionMap operation to discover the IRPVersion of the IOC definition used for one, some or all MOs in the MIB.

This operation does not require any input parameter.

The IRPAgent shall respond, via the map output parameter carrying the requested information. The map parameter is defined as a list of elements where each element is an ordered list of (DN, pIdentifiers, scope) defined in Table 7.2-1 below.

An MO (i.e. the subject) in the MIB has its DN.

If there is one element (of the ordered list) that carries the subject’s DN, then the pIdentifier of that element would be applicable to the subject.

If there is no element that carries the subject’s DN but there is one or more elements that a) carry the DN of the subject’s superiors (directly or indirectly) and b) carry a scope that is FALSE, then pick the element that identifies an MO closest to the subject in the name-tree. The pIdentifier of the picked element would be applicable to the subject.

Table 7.2-1: Output parameters

	Parameter
	Description

	dN
	This carries the Distinguished Name of the MO.

In a map, a particular DN cannot occur more than once.

	pIdentifiers
	This carries one or more IRPVersion (namespace-version). Each identifies a specific specification, of specific publication date, that contains the IOC definition.

	scope
	This holds either true or false.

The value true indicates that the IOC definitions, specified in the specifications identified, should only apply to the MO identified by the dN above.

The value false indicates that the IOC definitions, specified in the specifications identified, should apply to the MOs that form a tree whose top tree-node is the MO identified by the dN above (in Figure 3 as an example, instance-5 is the top tree-node of a tree that is made up of instance-5, 9 and 10).

[image: image2.emf]NMSDM

getIRPVersionMap(..)

Return(map)

Figure 2: Sequence diagram for getIRPVersionMap
Below are some examples illustrating the use of the map information. Figure 3 is a fictitious MO tree.

Example 1: map = (1,(a,b),FALSE)

Class definitions for instances 1..10 should be found in namespace-versions a,b. Class definitions for instances 11..22 are not known.

Example 2: map = (1,(a,b),FALSE; 5,k,TRUE)

Class definitions for instances 1..10 except 5 should be found in namespace-versions a,b. Class definition for instance 5 should be found in namespace-version k and if not, should be found in namespace-versions a,b. Class definitions for instances 11..22 are not known.

Example 3: map = (1,(a,b),FALSE; 11, (a,b,c), FALSE, 13,d,TRUE, 17,e,FALSE))

Class definitions for instances 1..10 should be found in namespace-versions a,b.

Class definitions for instance 11..22, except instances 13, 19..22, should be found in namespace-versions a,b,c. Class definition for instance-13 should be found in namespace-version d; if not, should be found in namespace-versions a,b,c. Class definition for instances 19..22 should be found in namespace-version 3; if not, should be found in namespace-versions a,b,c.

[image: image3.emf]1

23

11

1213

14

678

1817

16

15

1019

45

9

2021

22

Figure 3: Example containment tree of MIB instances

A variation of getIRPVersionMap
The getIRPVersionMap described above requires no input parameter. Here is a variation of getIRPVersionMap that requires an input parameter.

The usage of getIRPVersionMap without input parameter is to allow NMS to indicate that it wants information on all MOs. The usage of this variation of getIRPVersionMap with parameter is to allow NMS to indicate that it wants information on some MOs (e.g. instance-8 and instance-16 of Fig. 3) only or on some MOs of branches of the name tree only (e.g. instances-5,9,10 of Fig. 3).

The input parameter is a list of elements where each element is a set of (DN, scope) as defined below:
Table 7.2-2: Elements of the input parameter

	Parameter
	Description

	dN
	This carries the Distinguished Name of the MO.

The input parameter cannot have the same DN appearing more than once.

	scope
	This holds either true or false.

The value true indicates that NMS requests the namespace-version for an MO identified by the dN above.

The value false indicates that NMS requests the namespace-version(s) for MOs that form a tree whose top tree-node is the MO identified by the dN above (in Figure 2 as an example, instance-5 is the top tree-node of a tree that is made up of instance-5, 9 and 10).

The output parameter is a map as defined above.
7.2.3.6 Comparison (pros/cons) of the options

Pros/cons for Option 1:

Pros:

· Simple solution that completely reuses the existing NRM structure.

Cons:

· Will imply that the new attribute NsVersionInfo will be defined in every MO in the MIB, which can be a huge number, and it generates a lot of redundancy since most of the instances will have the same value for this attribute.

· Not backward compatible as all existing IOCs/MOCs will be modified.

· Does not work with the (currently existing) limitation that Basic CM IRP does not support reading of (one or more) selected attributes of an MO instance in one operation (the only supported semantics is “read all attributes in one shot”).

Pros/cons for Option 2a:

Pros:

· Reduces the data amount significantly. That also means reduced load on the IRPManager, IRPAgent and network in access operations over Itf-N.

· Is backward compatible in that no existing IOCs (including Inventory NRM) are modified.

· Works independently of the (currently existing) limitation that Basic CM IRP does not support reading of (one or more) selected attributes of an MO instance in one operation.

Cons:

· Requires definition of a new class and “sub-tree structure” (of all NSV instances) for the IRPManager to process before the version information of all MOs can be identified. However, there should normally be a limited number of these instances (if there are few deviations from the default namespace-versions).

Pros/cons for Option 2b:

Pros:

· Option 2b like 2a reduces the data amount significantly. That also means reduced load on the IRPManager, IRPAgent and network in access operations over Itf-N.

· Reuses the existing structure of InventoryUnit instances, i.e. no need to build up a new containment structure to convey the version information, thereby also easier for the IRPManager to “find” it.

Cons:

· Does not work with the (currently existing) limitation that Basic CM IRP does not support reading of (one or more) selected attributes of an MO instance in one operation (the only supported semantics is “read all attributes in one shot”).

· Requires support of Inventory NRM IRP for the version handling to be supported.

· Requires a new solution in the Inventory NRM for the issues mentioned above, mainly that the InventoryUnit today cannot have an association to all IOCs in the supported NRM IRPs – only to ManagedFunction IOCs, and practically only to those contained by a ManagedElement, as InventoryUnit is contained by ManagedElement.

· Requires InventoryUnit instances to be created for at least each MO where a deviation from the default namespace and version exists, even if there is no other inventory information available or relevant for that MO (e.g. a cell). This could mean the need to build a larger “inventory tree” than before, for existing IRPManagers and IRPAgents supporting the Inventory NRM.

· Not backward compatible for existing Inventory NRM implementations.

Pros/cons for Option 3:

Pros:

· Backward compatible in that no existing IOCs (including Inventory NRM) are modified.

· A solution that does not require any modification or enhancement of NRM structure.

· Works independently of the (currently existing) limitation that Basic CM IRP does not support reading of (one or more) selected attributes of an MO instance in one operation.

· Option 3, like 2a and 2b, reduces the data amount significantly. That also means reduced load on the IRPManager, IRPAgent and network in access operations over Itf-N.

· Reuses the existing structure of InventoryUnit instances, i.e. no need to build up a new containment structure to convey the version information, thereby also easier for the IRPManager to “find” it.

Cons:

· Requires definition of a new operation.

	Next change

8
Recommendations

It is recommended to choose the following solution:

Editor’s note: A recommended solution needs to be identified.
	Next change (See Annex A, Use case 3b sequence diagram)

Annex A:
Use Case Sequence Diagrams
This annex contains Sequence Diagrams for the Use Cases of clause 6.1.

[image: image4]
· IRPManager contacts EPIRP using the getIRPOutline operation.

· EPRIP responds with the supportedIRPList that contains the list of all IRPs and versions. The management scope of each is optionally available in the response.

The current system supports the discovery of the IRPVersions.

[image: image5]
The IRPManager contacts the EPIRP using the getIRPReference request.

The EPIRP responds with the iRPReference.

[image: image6]
· IRPManager contacts EPIRP with the getIRPOutline with an input parameter (Alarm IRP Version)

· EPIRP responds with the systemDN and iRPList, rDN and iRPVersion

The getIRReference is used to list one instance of the Alarm IRP. The IRPManager must first obtain the complete list to find one instance.

Dependency: Requires use case #1.

[image: image7]
· IRPManager directly contacts Alarm IRP with the getIRPVersion
· AlarmIRP responds with the supported Alarm IRP SS version numbers.

Dependency: Requires use case #1.

	End of changes

iRPManagementScope

versionNumberSet(M)systemDN

-

getIRPVersionOutline()

Alarm

IRPManager requests a list of supported Alarm IRP versions

Directly to Alarm IRP

–

USE CASE 3b

AlarmIRP

EPIRP

IRPManager

(O)]

iRPManagementScope

(M),

iRPVersionSet

(M),

rDN

(M), [

M),iRPList

(

systemDN

-

IRP Version)

getIRPOutline(Alarm

IRPManager request a list of supported Alarm IRP versions

USE CASE 3a - Using EPIRP

AlarmIRP

EPIRP

IRPManager

(M)

iRPReference

)

rDN

,

systemDN=AlarmIRP

,

getIRPReference(managerID

IRPManager requests the IRP Reference

Get IRP Reference.

–

USE CASE 2

AlarmIRP

EPIRP

IRPManager

(O)]

iRPManagementScope

(M),

iRPVersionSet

(M),

rDN

(M), [

M),iRPList

(

systemDN

-

supportedIRPList

getIRPOutline

IRPManager requests a list of all supported interface IRPs and versions

USE CASE 1

YyyIRP

EPIRP

IRPManager

3GPP

_1397232956.vsd
NMS

DM

getIRPVersionMap(..)

Return(map)

_1401548434.vsd
1

2

3

11

12

13

14

6

7

8

18

17

16

15

10

19

4

5

9

20

21

22

N1

N2

N4

N3

_1397220162.vsd
1

2

3

11

12

13

14

6

7

8

18

17

16

15

10

19

4

5

9

20

21

22

