
SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 1

Abstract

This document illustrates how the JMS API can be used as transport mechanism supporting the

MTOSI application level requirements in terms of communication and operation exchange.

It gives an introduction to the JMS concepts and then it gives the bindings rules and recommendations

to use JMS to support MTOSI operations.

Table of Contents

1. INTRODUCTION ...2

2. OVERVIEW OF THE JMS FRAMEWORK ...3

2.1 ESSENTIAL ABSTRACTIONS...3
2.2 THE TWO MESSAGING PARADIGMS ..5
2.3 JMS AND NAMING OF ADMINISTERED OBJECTS...6
2.4 DELIVERY MODES ..6
2.5 STRUCTURE OF A JMS MESSAGE ..7
2.6 MESSAGE SELECTOR ..10
2.7 PROCEDURES FOR CREATING AND USING THE JMS INTERFACE..11

3 MTOSI RULES AND RECOMMENDATIONS CONCERNING HOW TO USE JMS.....................14

3.1 GENERAL ASPECTS ...14
3.2 MAPPING SOAP ADDRESSES TO JMS DESTINATIONS ...15
3.3 MAPPING WSDL OPERATIONS TO JMS MESSAGE EXCHANGES..15
3.3.1 SimpleResponse MTOSI Communication Pattern ...21
3.3.2 MultipleBatchResponse MTOSI Communication Pattern ...22
3.3.3 Notification MTOSI Communication Pattern ...23

3.4 MAPPING SOAP MESSAGES TO JMS MESSAGES: GENERAL CASE..25
3.5 MTOSI HEADER FIELDS MAPPING ...29
3.6 MAPPING SOAP MESSAGES TO JMS MESSAGES: MTOSI NOTIFICATIONS..33

4 FUTURE WORK...34

5 REFERENCES...34

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 2

1. Introduction

MTOSI requirements call for a transport independent API. Details of the communication concepts

requested at the application level and the different styles supported by MTOSI are presented in [5].

Different Application OSs communicate between each other through the CCV abstraction (Common

Communication Vehicule).

A service consumer interacts with a service provider through the invocation of operations to achieve a

business goal. The operations involve exchanges of XML messages. The messages are exchanged

using a particular communication style. In addition, a communication pattern identifies the sequence

and cardinality of messages sent and/or received as well as whom they are sent to or received from.

Two communication styles are promoted by MTOSI, Messaging and RPC, and for each of them there

are four communication patterns considered: SimpleResponse, MultipleBatchResponse,

BulkResponse and Notification.

However, MTOSI phase 1 supports only the Messaging communication style (MSG), associated with

the JMS transport. The RPC communication style (RPC) is best suited for other kind of transport

technologies (such as HTTP/S or CORBA). While JMS can also support RPC communication style,

MTOSI recommends that JMS transport be used in conjunction with the MSG communication style.

This document illustrates how the JMS API can be used to implement the CCV as transport

mechanism supporting the MTOSI application level requirements in terms of communication and

operation exchange.

Throughout this document, we present different facets of JMS and show how they fit with the MTOSI

requirements.

Companion documents illustrate those concepts using the support of a concrete example,

demonstrating the usage of the JMS API using code snippets.

There are many reasons why JMS is perfectly appropriate to support the MTOSI communication

requirements. While this document focuses mainly on the technical ones, it is worth mentioning some

others:

• The JMS API is available in many middleware products

• It is complete enough to avoid unnecessary proprietary extensions

• It is available in version 1.1 as part of the J2EE 1.4 framework.

The document has the following main sections:

• Section 2 presents the essential concept of the JMS framework for readers not familiar

with JMS. Experts in JMS should skip this section.

• Section 3 presents MTOSI rules (denoted as Rxx)

and recommendations (denoted as Oxx) concerning how JMS should be used as a

transport mechanism for MTOSI.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 3

2. Overview of the JMS Framework

2.1 Essential Abstractions

Java Message Service (JMS) is available as part of the J2EE architecture as the preferred

mechanism for communication between enterprise applications. It allows for reliable and flexible

exchanges of information between Java applications running on the same system or on independent

systems.

JMS simplifies interoperability and eliminates the need for proprietary intercommunication protocols.

JMS fits at the middleware level. Based on the concept of messages, it supports point-to-point and

multi-point to multi-point interaction. Compared to the different alternative approaches to inter

applications communication, JMS compromises by minimizing the set of concepts that a programmer

will have to learn while offering enough expressive power to support sophisticated communication

between applications and maximizing portability. It provides different levels of message delivery

assurance, and also does not have any dependencies on wire or wireless transport protocol

underneath.

JMS is a Java API. However different vendors provide connection libraries for other languages like

C/C++/C#/Perl/PHP, facilitating the usage of JMS for non Java applications.

First published in August 1998, the latest version of JMS is Version 1.1, which was released
in April 2002. The specification document [1] is available at http://java.sun.com/products/jms/.

While focusing on the essential to offer a simple and powerful API, JMS deliberately does not

address the following features (see [1]):

• Load Balancing/Fault Tolerance

The JMS API does not specify how applications cooperate to appear to be a single, unified

service.

• Standard Error/Advisory Notification
Most messaging products define system messages that provide asynchronous notification of
problems or system events to clients. JMS does not attempt to standardize these messages.
By following the guidelines defined by JMS, clients can avoid using these messages and thus
prevent the portability problems their use introduces.

This does not mean that JMS cannot be used to support MTOSI notifications. To the contrary,
while not imposing any fixed format, JMS allows the application designer to use his own
messages to support notification service between MTOSI applications.

• Administration
JMS does not define an API for administering messaging products. Vendor product offer
specific tools for this purpose.

• Security
JMS does not specify an API for controlling the privacy and integrity of messages.

• Message Type Repository
JMS does not define a repository for storing message type definitions and it does not define a
language for creating message type definitions.

Applications communicate in JMS by exchanging messages, representing business actions such as
requests, responses, reports or events at the application level. Messages are not exchanged directly

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 4

between the applications, but through an intermediate broker, the JMS Provider: Applications
produce or consume messages to and from a common JMS Provider.

This message exchange principle and the mechanisms associated to it are powerful enough to
support the different communication styles and patterns promoted in MTOSI.

Here are the essential abstractions of the Java Messaging Architecture (JMS V1.1).

• JMS Provider: a messaging system that implements the JMS interfaces and provides

administrative and control features. The JMS provider encapsulates the physical JMS queues

and topics.

• JMS Clients: programs or components that produce or consume messages.

o Message Producers: A message producer is an object that is created by a JMS

session and used for sending messages to a JMS Destination. It implements the

MessageProducer interface.

o Message Consumers: A message consumer is an object that is created by a JMS

session and used for receiving messages sent to a JMS Destination. It implements

the MessageConsumer interface.

• JMS Messages: objects that communicate information between JMS Clients.

Administrative objects are preconfigured JMS objects created by an administrator for the use

of clients. The two kinds of administered objects are destinations and connection factories.

• JMS Connections: A JMS Connection encapsulates a connection between one client
application and a JMS Provider. It typically represents an open TCP/IP socket between a
client and a JMS Provider’s service daemon. A JMS connection is created programmatically
using an administratively defined connection factory.
A JMS Connection can be used to create one or more JMS Sessions.

• JMS Sessions: A JMS Session is a single-threaded context for producing and consuming

messages. You use JMS Sessions to create message producers, message consumers.

• JMS Destinations: A JMS Destination is the object a client uses to specify the target of

messages it produces and the source of messages it consumes. In the point-to-point

messaging domain, JMS Destinations are called queues. In the publish/subscribe messaging

domain, JMS Destinations are called topics.

Most of the time JMS Destination resources are permanent and are created administratively.

It is also possible to use temporary JMS Destinations. Temporary JMS Destinations are

created programmatically; they receive a system specific name which cannot be published

externally through a JNDI interface.

• Message Listener: A message listener is an object that acts as an asynchronous event

handler for messages. This object implements the MessageListener interface, which

contains one method, onMessage. In the onMessage method, you define the actions to be

taken when a message arrives.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 5

2.2 The two messaging paradigms

JMS supports two messaging paradigms: point-to-point and publish/subscribe.

• Point-to-point messaging:

A point-to-point (P2P) interaction is built around the concept of queues of messages. Each

message is addressed to a specific queue, and receiving clients extract messages from the

queue(s) established to hold their messages. Queues retain all messages sent to them until

the messages are consumed or until the messages expire.

• Each message has only one consumer.

• A sender and a receiver of a message have no timing dependencies. The receiver

can fetch a message whether or not it was running when the sender sent it.

• The receiver acknowledges the successful processing of a message.

Use P2P messaging when every message you send must be processed successfully by one

consumer only.

Strictly speaking, the JMS specification does not prevent the creation of more than one

consumer (within the same application or in different applications) for a given queue. But, in

the case more than one consumer is created, then JMS does not define how messages will

be distributed between them, knowing that each message will be delivered only once.

Producer1

MessagesProducer2

ConsumerQueue

Messages

Messages
Producer1

MessagesProducer2

ConsumerQueue

Messages

Messages

Figure 1. Point to Point Messaging

• Publish/Subscribe messaging:

In a publish/subscribe (pub/sub) scenario, clients address messages to a topic. Publishers

and subscribers are generally anonymous and may dynamically publish or subscribe to the

content hierarchy. The system takes care of distributing the messages arriving from a topic's

multiple publishers to its multiple subscribers. Topics retain messages only as long as it takes

to distribute them to current subscribers.

Pub/sub messaging has the following characteristics.

• Each message can have multiple consumers

• Publishers and subscribers have a timing dependency. A client that subscribes to a

topic can consume only messages published after the client has created a

subscription, and the subscriber must continue to be active in order for it to consume

messages.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 6

The JMS API relaxes this timing dependency to some extent by allowing subscribers to

create durable subscriptions, which receive messages sent while the subscribers are not

active. Durable subscriptions provide the flexibility and reliability of queues but still allow

clients to send messages to many recipients.

Use pub/sub messaging when each message can be processed by zero, one, or many

consumers.

Publisher1

MessagesPublisher2

Subscriber1

Topic

Messages

Messages Subscriber2

Messages
Publisher1

MessagesPublisher2

Subscriber1

Topic

Messages

Messages Subscriber2

Messages

Figure 2. Publish and Subscribe Messaging

2.3 JMS and Naming of administered objects

Typically, JMS Clients look up configured JMS objects using the Java Naming Directory Interface
(JNDI) API. JMS administrators use provider-specific facilities for creating and configuring these
objects.

This JMS architecture maximizes the portability of clients across different JMS middleware vendors
by delegating provider-specific work to the administrator. It also leads to more administrable
applications because clients do not need to embed administrative values in their code.

2.4 Delivery Modes

As we have already seen, the communication between producers and consumers is always

asynchronous within JMS, meaning that, once a message has been produced, a consumer may

consume it without any further dependencies on the producer. This being said, the communication

between JMS Clients (consumers or producers) and the JMS Provider handling queues and topics

(destinations) can have different styles, which we present below.

• Consumer

A JMS Client uses a MessageConsumer to receive messages from a destination.

A MessageConsumer is created by passing a queue or topic to a session’s

createConsumer method.

A JMS Client may either synchronously receive consumer’s messages or have the
JMS Provider asynchronously delivering them as they arrive.

o Synchronous delivery

A JMS Client can request the next message from a MessageConsumer using one of its

receive methods. There are several variations of receive that allow a client to

poll or wait for the next message.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 7

// blocks forever until a message is received
Message m = consumer.receive();

// blocks 1000 ms waiting for the reception of a message
Message m = consumer.receive(1000);

o Asynchronous delivery
A JMS Client can register an object that implements the JMS MessageListener

interface with a MessageConsumer. As messages arrive for the consumer, the provider

delivers them by calling the listener’s onMessage method.

• Producer

A JMS Client uses a MessageProducer to send messages to a destination. A

MessageProducer is created by passing a queue or topic to a session’s createProducer

method.
A producer can specify a default delivery mode, priority, and time-to-live for
messages it sends to a destination. It can also specify delivery mode, priority, and
time-to-live per message. Those default values are left to the responsibility of the
implementer.

There are two delivery modes that a producer can use: PERSISTENT and
NON_PERSISTENT:

A JMS Provider must deliver a NON_PERSISTENT message at-most-once. This
means that it may lose the message, but it must not deliver it twice.

A JMS Provider must deliver a PERSISTENT message once-and-only-once. This
means a JMS Provider failure must not cause it to be lost, and it must not
deliver it twice.

PERSISTENT (once-and-only-once) and NON_PERSISTENT (at-most-once)
message delivery are a way for a JMS Client to select between delivery
techniques that may lose a messages if a JMS provider dies and those which
take extra effort to insure that messages can survive such a failure.

A JMS Client producer can specify a time-to-live value in milliseconds for each message it
sends.

2.5 Structure of a JMS Message

A JMS Message is composed of three parts:

• Header - All messages support the same set of header fields. Header fields contain values
used by both JMS Clients and by the JMS Provider to identify and route messages.

• Properties - In addition to the standard header fields, messages provide a built-in facility for
adding optional header fields to a message.

o Application-specific properties - This provides a mechanism for adding application-

specific header fields to a message.
o Standard properties - JMS defines some standard properties that are, in effect, optional

header fields.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 8

o Provider-specific properties - Integrating a JMS Client with a JMS Provider native client
may require the use of provider-specific properties. JMS defines a naming convention for
these.

• Body - JMS defines several types of message body which cover the majority of messaging
styles currently in use. There are five different message types defined in JMS:

• StreamMessage - a message whose body contains a stream of Java primitive values.

It is filled and read sequentially.

• MapMessage - a message whose body contains a set of name-value pairs where

names are Strings and values are Java primitive types.

• TextMessage - a message whose body contains a java.lang.String. This type is

perfectly appropriate for content message using XML.

• ObjectMessage - a message that contains a Serializable Java object.

• BytesMessage - a message that contains a stream of uninterpreted bytes.

The JMS header fields are shown in the table below:

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 9

Header Field Type Description

JMSMessageID String Unique ID for each message sent by the

JMS provider. Set by JMS Provider during

send process, it can be modified by the

receiving application.

JMSDestination Destination Message destination. Set by the sender

application on a per message basis.

JMSDeliveryMode Int Delivery mode (persistent or nonpersistent).

Set by the sender application, as a

parameter of the MessageProducer

resource.

Can be changed at any time.

Delivery mode is set to PERSISTENT by

default

JMSTimestamp Long Time message is handed to provider for

sending. Set by JMS Provider during send

process, it can be modified by the receiving

application.

JMSExpiration Long Expiration time. Set by JMS Provider during

send process, it can be modified by the

receiving application.

The setTimeToLive method can also be

used by the sender application as a

parameter of the MessageProducer

resource (sets the default length of time in

milliseconds from its dispatch time that a

produced message should be retained by

the message system).

Can be changed at any time.

Time to live is set to zero by default.

JMSPriority Int Message priority (10 possible values). Set

by the sender application as a parameter of

the MessageProducer resource.

Can be changed at any time.

Priority is set to 4 by default.

JMSCorrelationID String Links one message with another. A typical

use is to link a response message with its

request message.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 10

Header Field Type Description

Set by the sender application on a per

message basis.

JMSReplyTo Destination Destination where a reply to the message

should be sent.

Set by the sender application on a per

message basis.

The JMSReplyTo header field contains the

destination where a reply to the current
message should be sent.

If it is null, no reply is expected (typical
usage case will be for notifications).

Messages with a JMSReplyTo value

typically expect a response. A response is
optional; it is up to the receiving application
to decide.

JMSType String Message type identifier.

Set by the sender application on a per

message basis.

JMSRedelivered Boolean Message was probably delivered earlier, but

client did not acknowledge

Table 1. The JMS header fields

2.6 Message Selector

JMS offers a mechanism to support the filtering of messages, through the concept of JMS Message

Selector.

A JMS Message Selector is a conditional expression, subset of SQL92, which has a string

representation, to be used by a JMS Client when it creates a MessageConsumer associated to a

given JMS destination. Doing so, a JMS Client delegates to the JMS Provider the selection of the

messages it is interested to receive. Messages not matching the condition expression specified in the

Message Selector will not be forwarded by the JMS Provider to the corresponding JMS client.

Message Selectors cannot reference message body values, meaning that Message Selectors may

only reference JMS headers and properties values.

Message Selector expressions may contain:

o Literals: string, numeric and boolean

o Identifiers, representing JMS header fields or JMS property fields.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 11

o Operators: logical operators, comparison operators and arithmetic operators

Here is an example of a string representation of a Message Selector:

MTOSI_EventType = 'OBJECTCREATION' OR MTOSI_EventType = 'OBJECTDELETION'

2.7 Procedures for Creating and Using the JMS Interface

JNDI NameSpace
Admin tool

JMS Application

physical queues

physical topics

�������� ����

JMS ProviderCF

D

creates

Context

ConnectionFactory Destinations

Session

lookup

creates

Connection

creates

creates

creates

MessageProducer

MessageConsumer

sends

receives

JNDI NameSpace
Admin tool

JMS Application

physical queues

physical topics

�������� ������������ ����

JMS ProviderCF

D

creates

Context

ConnectionFactory Destinations

Session

lookup

creates

Connection

creates

creates

creates

MessageProducer

MessageConsumer

sends

receives

Figure 3. The JMS API Programming Model

A typical JMS system (e.g. a set of OS applications supporting the MTOSI) goes through the

following steps to begin producing and consuming messages:

• Set-up the Administrative Environment

Create the ConnectionFactory and the permanent JMS Destination Resources

Connection factories and permanent destination resources need to be registered in a

directory service to be further looked up using the JNDI API. They are many different

standards and implementations of directory services (e.g. DNS, LDAP, NDS, NIS to name a

few).

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 12

How to actually create those JMS entities depends on the JMS environment used. For

instance, Sun Java™ System Application Server Platform offers a specific tool with a graphic

interface and a set of CLI commands.

• Look up a ConnectionFactory and Destinations through JNDI

What is common to all popular naming services is the support of the JNDI interface. It is

through this interface that MTOSI applications look up for the JMS resources they need, using

their published names.

Context ctx = new InitialContext();

(Assuming that the client is linked with the JNDI libraries specific of a JNDI

vendor and also has the proper configuration to access the JNDI server.)

ConnectionFactory c1 = (ConnectionFactory)
 ctx.lookup("jms/QueueConnectionFactory");

Destination myDest = (Destination) ctx.lookup("jms/RtoNMSQA");

In the example above, note the usage of the type Destination from the JMS common

interface, which allows handling queues and topics in the same abstraction.

• Use the ConnectionFactory to create a JMS Connection.

A connection factory is used by an application to create a connection to the JMS Provider.

Connection connection = c1.createConnection();

• Use the connection to create one or more sessions.

A connection can support one or many sessions, which can be transacted or not.

Session session = connection.createSession
 (false,
 Session.AUTO_ACKNOWLEDGE);

The first argument specifies whether the session is transacted or not, and the second
argument specifies whether the application requests the session to automatically
acknowledge the messages upon reception.

Using transacted sessions allows to group a series of send and receive messages into an
atomic unit of work. Transactions are rolled back if they fail at any time.

• Use a JMS Session and a JMS Destination to create the required MessageProducers and

MessageConsumers.

The message producers and consumers are created associated within a given session, using

appropriate Destination objects.

MessageProducer producer = session.createProducer(myDest1);

MessageConsumer consumer = session.createConsumer(myDest2);

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 13

• Start the JMS Connection

Starting the connection allows to start the message delivery mechanism. It is not possible to

send or to receive messages before having requested the start of the connection.

This step may be done after or before having created the producers and consumers.

connection.start ();

• Send and receive messages

At this stage the dialogue between applications through the JMS Provider can start.

• Stop/Close the session. Clean-up

As mentioned already, in MTOSI phase 1, the way destinations will be named and organized for

registration in a directory to be looked up at a later stage by JMS Client applications through the JNDI

interface has not been finalized. It will be further investigated as part of the phase 2. The names used

in the remaining parts of this document are used just as supporting examples, without precluding any

syntax or style that will be proposed in MTOSI phase 2.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 14

3 MTOSI Rules and Recommendations concerning how to use JMS

This section gives the rules and recommendations on how to use JMS to support MTOSI message

exchange:

• Rules are mandatory: noted R x

• Recommendations are optional: noted O x.

MTOSI specifies the definitions of service operations and the binding to SOAP using WSDL format

(see [7]). In turn, the SOAP binding makes references to the XML specifications. Those WSDL

definitions are normative.

However, due to WSDL v1.1 limitations with respect to the definition of standard extensions for the

SOAP bindings with JMS, it is necessary to provide all required specifications about these binding

definitions.

This is the purpose of this section which is organized into the following subsections:

• “General Aspects”: about general JMS configuration definitions and MTOSI settings of JMS

parameters.

• “Mapping SOAP Addresses to JMS Destinations”

• “Mapping WSDL Operations to JMS Message Exchanges”

• “Mapping SOAP Messages to JMS Messages”

3.1 General Aspects

R 1. MTOSI mandates that JMS version 1.1 (or later version when available) be used. The current
version is 1.1.

O 1. MTOSI recommends the usage of JMS Text message only, since the messages exchanged
will contain XML data only.

O 2. Both kinds of domain specific JMS Destinations (JMS topics or JMS queues) may be used
for any of the MTOSI communication patterns. However, MTOSI recommends to use JMS
Topics for the MTOSI Notification pattern and JMS Queues for the others.

O 3. MTOSI recommends the usage of the JNDI interface to access the administratively created
JMS Destinations. MTOSI, in phase 1, does not suggest or recommend any style or
technology. Note JNDI will hide the implementation technology by offering a common API to
the clients.

O 4. MTOSI recommends the usage of the version domain-independent common API as available
in JMS 1.1.

O 5. MTOSI does not mandate any style for consumer delivery: consumers may use synchronous
(receive) or asynchronous delivery (listener) styles.

O 6. MTOSI does not mandate any style for producer delivery. Both PERSISTENT and
NON_PERSISTENT styles can be used.
However, the default style will be NON_PERSISTENT:

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 15

DEFAULT_DELIVERY_MODE = NON_PERSISTENT

O 7. Based on MTNM agreements concerning usage of the OMG Notification Service, MTOSI
recommends the following default values:

DEFAULT_TIME_TO_LIVE =

 24 hours for life cycle events messages

 30 minutes for any other message

DEFAULT_PRIORITY = 4

3.2 Mapping SOAP Addresses to JMS Destinations

Planning for the deployment of an OS application that supports MTOSI shall start with the following
two important steps:

• The MTOSI profile of the OS application (Refer to SD2-1)

• Identify the access points where the service operations supported by this application will be
available.

Using JSM terminology those access points are materialized as administratively defined JMS
Destinations (JMS Queues or JMS Topics). A JMS Destination is known through its name.
Using WSDL terminology, a service is accessible through the port of the server that supports it. Since
MTOSI uses SOAP, this port is known through its SOAP Address.

When the designer has decided on the name of the JMS Destinations, he needs to report it in the

SOAP Address of the WSDL specification for this application.

3.3 Mapping WSDL Operations to JMS Message Exchanges

The four MTOSI services are specified in terms of WSDL.

Manager Interfaces and the corresponding WSDL Ports as summarized in the tables below:

• File DiscoveryServiceJMS.wsdl:

Discovery Service

Client (RequestorOS) Server (SupplierOS)

 NA Discovery

• File ConfigurationServiceJMS.wsdl:

Configuration Service

Client (RequestorOS) Server (SupplierOS)

 NA EquipmentInventoryMgr

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 16

 InventoryRetrieval

 ManagedElementMgr

 MultiLayerSubnetworkMgr

 OperationsSystemMgr

 ProtectionMgr

 TransmissionDescriptorMgr

• File FaultServiceJMS.wsdl:

Fault Service

Client (RequestorOS) Server (SupplierOS)

 NA AlarmRetrieval

• File NotificationServiceJMS.wsdl:

For this service, the JMS Provider actually plays the role of the Notification Broker, and as

such it exposes an interface to collect the notifications sent by PublisherOS applications (JMS

Clients).

SubscriberOS applications (JMS Clients), in turn, expose an interface to collect the

notifications sent by the JMS Provider.

Notification Service

Client (SubscriberOS) JMS Provider Server

(PublisherOS)

NotificationConsumerInterface NotificationBrokerInterface NA

MTOSI supports three different communication patterns: SimpleResponse, MultipleBatchResponse

and Notification.

WSDL does not propose a separate operation type pattern to differentiate the case of a single

response from the case of multiple responses. After considerations of the different existing patterns

available in WSDL V1.1, V1.2 and those ones in preparation in V2, and different discussions with

experts from W3C, the following decisions have been taken:

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 17

• the WSDL Request-Response MEP is used to specify operations that can use

SimpleResponse, MultipleBatchResponse MTOSI patterns.

• the WSDL One-Way MEP is used to specify the “Notify” operation.

O 8. As a consequence, all operations, to the exception of the “Notify” operation, are specified
using the WSDL Request-Response MEP. The decision to choose the SimpleResponse or
MultipleBatchResponse for a given operation can be taken at run time. Two different
invocations of the same operation may use the SimpleResponse or the
MultipleBatchResponse patterns ad libidum. For instance, the “getInventory” operation

may use either pattern depending on the value of the filter passed as parameter which will
drive the size of the result.

R 2. A temporary destination is system specific and can be consumed only by the JMS
Connection that created it. There is no naming mechanism proposed by the JMS
specifications for temporary destinations, preventing the registration of temporary destination
into a naming service.

The JMS Destinations must respect the following rules:

• All interfaces must be supported by administratively defined JMS Destinations

• Temporary JMS Destinations may be used only on the Client side. However, for

the Client side also, MTOSI recommends the use of administratively defined JMS

Destinations.

O 9. A JMS Destination may be used for all or any combinations of Server or Client port types
bundled in the same MTOSI service.
In case a given OS application supports more than one WSDL Service interface, it is a
designer decision to use one specific JMS Destination for each interface supported or to use
only one JMS Destination to support all the Service interfaces, or any combination in
between.
The decision is taken on a per application basis. It means that different decisions may be
considered at the Client side and at the Server side.

For instance, assuming we have the following applications:

• a SupplierOS supporting
the EquipmentInventoryMgr and the InventoryRetrieval interfaces

• and RequestorOS willing to invoke operations throughout those interfaces, and using
administratively defined JMS Destinations

Then the figures below show different valid configurations:

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 18

RequestorOS SupplierOS

Requests

JMS Provider

Responses

Requests

JMS Destination to request both

- EquipmentInventoryMgrServer

- InventoryRerievalServer

Responses

JMS Destination to response both

- EquipmentInventoryMgrClient

- InventoryRerievalClient

RequestorOS SupplierOS

Requests

JMS Provider

Responses

Requests

JMS Destination to request both

- EquipmentInventoryMgrServer

- InventoryRerievalServer

Responses

JMS Destination to response both

- EquipmentInventoryMgrClient

- InventoryRerievalClient

Figure 4. SupplierOS and RequestorOS have one single JMSDestination each

Figure 4 shows a configuration where:

• the SupplierOS exposes both

the EquipmentInventoryMgr

and the InventoryRetrieval interfaces

at the same JMSDestination

• the RequestorOS receives responses from both interfaces

at the same JMSDestination

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 19

RequestorOS
SupplierOS

Requests

JMS Provider

R
es
po
ns
es
 to

Eq
ui
pm
en
tIn
ve
nt
or
yM
gr
C
lie
nt

JMSDestinationS2

JMSDestinationS1JMSDestinationR1

R
eq
ue
st
s
to

In
ve
nt
or
yR
er
ie
va
lS
er
ve
r

R
eq
ue
st
s
to

E
qu
ip
m
en
tIn
ve
nt
or
yM
gr
S
er
ve
r

R
es
po
ns
es
 to

In
ve
nt
or
yR
et
rie
va
lC
lie
nt

JMSDestinationR2

RequestorOS
SupplierOS

Requests

JMS Provider

R
es
po
ns
es
 to

Eq
ui
pm
en
tIn
ve
nt
or
yM
gr
C
lie
nt

JMSDestinationS2

JMSDestinationS1JMSDestinationR1

R
eq
ue
st
s
to

In
ve
nt
or
yR
er
ie
va
lS
er
ve
r

R
eq
ue
st
s
to

E
qu
ip
m
en
tIn
ve
nt
or
yM
gr
S
er
ve
r

R
es
po
ns
es
 to

In
ve
nt
or
yR
et
rie
va
lC
lie
nt

JMSDestinationR2

Figure 5. SupplierOS and RequestorOS have two distinct JMSDestinations each

Figure 5 shows a configuration where:

• the SupplierOS uses

• JMSDestinationS1 to expose the InventoryRetrieval interface

• JMSDestinationS2 to expose the EquipmentInventoryMgr interface

• the RequestorOS uses

• JMSDestinationR1 to receive responses from the InventoryRetrieval interface

• JMSDestinationR2 to receive responses from the EquipmentInventoryMgr interface.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 20

RequestorOS
SupplierOS

Requests

JMS Provider

R
es
po
ns
es
 to

E
qu
ip
m
en
tIn
ve
nt
or
yM
gr
C
lie
nt

JMSDestinationS

JMSDestinationR1

R
eq
ue
st
s
to

In
ve
nt
or
yR
er
ie
va
lS
er
ve
r

R
eq
ue
st
s
to

E
qu
ip
m
en
tIn
ve
nt
or
yM
gr
S
er
ve
r

R
es
po
ns
es
 to

In
ve
nt
or
yR
et
rie
va
lC
lie
nt

JMSDestinationR2

RequestorOS
SupplierOS

Requests

JMS Provider

R
es
po
ns
es
 to

E
qu
ip
m
en
tIn
ve
nt
or
yM
gr
C
lie
nt

JMSDestinationS

JMSDestinationR1

R
eq
ue
st
s
to

In
ve
nt
or
yR
er
ie
va
lS
er
ve
r

R
eq
ue
st
s
to

E
qu
ip
m
en
tIn
ve
nt
or
yM
gr
S
er
ve
r

R
es
po
ns
es
 to

In
ve
nt
or
yR
et
rie
va
lC
lie
nt

JMSDestinationR2

Figure 6. SupplierOS has one JMSDestination and RequestorOS has two

Figure 6 shows a configuration where:

• the SupplierOS exposes both

the EquipmentInventoryMgr

and the InventoryRetrieval interfaces

at the same JMSDestination

• the RequestorOS uses

• JMSDestinationR1 to receive responses from the InventoryRetrieval interface

• JMSDestinationR2 to receive responses from the EquipmentInventoryMgr interface.

The following sub-sections highlight some specific aspects of the JMS bindings for each of the three

MTOSI communication patterns.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 21

3.3.1 SimpleResponse MTOSI Communication Pattern

This pattern is used in a point to point request-reply dialogue, between a RequestorOS and a

SupplierOS, when a single response is requested.

It is mapped to the WSDL Request-Response WSDL operation type.

The typical configuration of JMS destinations is illustrated on Figure 7 below.

RequestorOS SupplierOS

Requests

JMS Provider

Responses

Requests

JMS Destination to request

SupplierOS
JMS Destination to respond

to RequestorOS

Responses

RequestorOS SupplierOS

Requests

JMS Provider

Responses

Requests

JMS Destination to request

SupplierOS
JMS Destination to respond

to RequestorOS

Responses

Figure 7. An example of JMS destinations configuration

 for the SimpleResponse communication pattern

The JMS Destination to collect requests at the SupplierOS side must be permanent (name

published and accessible through JNDI interface).

The JMS Destination to collect responses at the RequestorOS side may be either permanent or

temporary. This is a deployment issue.

In the case when the RequestorOS wants to receive failure messages separated from the normal

responses, a second specific destination needs to be created for that purpose.

o Control flow on the SupplierOS side:

After processing incoming requests, the SupplierOS sends responses to the JMS

Destination identified by the JMSReplyTo JMS header field present in the request.

o Control flow on the RequestorOS side:

The application level conceptual control flow is presented on Figure 8.

R 3. A RequestorOS may send several requests at the same time to the same or
different SupplierOS. The MTOSI header field correlationID must be provided

in the request; the SupplierOS copies it back into the response.
This field is NOT mapped at the JMS level (see section 3.5).
It is this field that will allow correlating each response with its corresponding
request, at reception.
This approach is totally thread safe.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 22

RequestorOS

send

SupplierOS

send

receive
getInventoryRq (…)

getInventoryRsp (…)

listener

RequestorOS

send

SupplierOS

send

receive
getInventoryRq (…)

getInventoryRsp (…)

listener

Figure 8. Application level control flow,
 SimpleResponse communication pattern,
 MSG communication style

3.3.2 MultipleBatchResponse MTOSI Communication Pattern

This pattern is used in a point to point request-reply dialogue, between a RequestorOS and a

SupplierOS, when more than one response is expected.

Like the SimpleResponse pattern, it is mapped to the WSDL Request-Response WSDL operation

type.

R 4. When the MultipleBatchResponse communication pattern is requested, the

requestedBatchSize parameter must be set in the MTOSI header part of the request.

This parameter represents the maximum number of managed object instances, as specified
in the filter, expected in partial responses (e.g. maximum number of MEs).

R 5. The responses must contain the batchSequenceNumber and

batchSequenceEndOfReply MTOSI header fields.

These fields must be mapped into the MTOSI_batchSequenceNumber and

MTOSI_batchSequenceEndOfReply JMS property fields (as shown in Table 2).

R 6. The vale of the MTOSI header field correlationID (copied from the original request) is

the same in all the partial responses. It must be provided.
This field is NOT mapped at the JMS level (see section 3.5).

The typical configuration of JMS destinations is the same as show on Figure 7.

Upon reception of the request, the SupplierOS considers the requestedBatchSize parameter to

prepare the responses.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 23

Partial responses are constructed and sent to the JMSReplyTo destination as soon as they are

available, without waiting for any further solicitation from the RequestorOS. The sequencing of the

partial responses may not be guaranteed by the JMS provider and the RequestorOS is responsible to

ensure that all messages have been received and put in the correct sequence.

There is no information context registered at the SupplierOS side.

RequestorOS

send

SupplierOS

send

receive
getInventoryRq (…)

getInventoryRsp (SN, SEOR…)

listener

RequestorOS

send

SupplierOS

send

receive
getInventoryRq (…)

getInventoryRsp (SN, SEOR…)

listener

Figure 9 Application level control flow,
 MultipleResponse communication pattern,
 MSG communication style

3.3.3 Notification MTOSI Communication Pattern

This pattern is designed to disseminate MTOSI notifications to a set of recipients possibly greater

than one.

O 10. In this current phase, MTOSI has identified three different categories of notifications, known
as MTOSI Notification Topics:

• Inventory MTOSI Notification Topic

• Fault MTOSI Notification Topic

• Protection MTOSI Notification Topic

MTOSI recommends that when an application wants to publish notifications, it uses a specific

permanent administratively declared JMS topic for each category of MTOSI Notification

Topics it wants to publish.

For example, if an application wants to publish notifications from the Inventory MTOSI

Notification Topic and the Fault MTOSI Notification Topic, it uses two independent specific

JMS topics for this purpose. Each of them will be used for a specific (unique) category of

MTOSI Notification Topic to the exclusion of any other.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 24

O 11. It is perfectly acceptable that several independent OS applications share the same JMS topic
to publish notifications belonging to a common MTOSI Notification Topic.
This is a deployment decision.

As specified in the NotificationServiceJMS.wsdl file, the MTOSI Notification service specifies the

NotificationBroker binding definition with the following operations:

 Subscribe as a Request-Response WSDL operation type

 Unsubscribe as a Request-Response WSDL operation type

 Notify as a One-Way WSDL operation type

We use the JMS Provider with the role of a Notification Broker. However, there is no direct binding at

the JMS level for the Subscribe and Unsubscribe operations. Strictly speaking JSM Clients willing

either to publish notifications or to subscribe to the reception of notifications do not exchange any

Subscribe message with the JMS Provider.

R 7. Instead, an application willing to publish notifications simply creates, at the API level, a
MessageProducer associated with a specific JMS Destination, previously created

administratively. This JMS Destination is typically looked up from its published name, using
the JNDI API.

R 8. Instead, an application willing to receive notifications simply creates, at the API level, a
MessageConsumer associated with a specific JMS Destination, previously created

administratively. This JMS Destination is typically looked up from its published name, using
the JNDI API.

O 12. While it is more “natural” to use JMS topics for the MTOSI Notification communication

pattern, MTOSI does not mandate their usage.
JMS queues and JMS topics have a different scalability and performance behaviour and
should be used in an architecture topology (MTOSI domain) according to the deployment
requirements.
For instance if we know in advance that an MTOSI Notification Topic will be dedicated to
convey information from an NMS to a single OS it may be appropriate to use a queue.
On the other hand, in a more generic loosely coupled architecture, an Inventory OS may
decide to externalise the ObjectCreation event through the use of a JMS topic in order to

efficiently reach all the federated OSS interested on the state changes. It is essential to
document this deployment decision to allow connectivity and interoperability in the context of
a MTOSI domain.

R 9. When publishing an MTOSI notification, a publisher may map filterable parameters into JMS
application-specific property fields, as shown in Table 4.
The decision about which parameters to map is left to the implementer. However MTOSI
mandates that the selection of which parameters to map is decided at configuration time and
is uniform for all publishers in the same system. In other words, several independent
publishers publishing the same type of MTOSI notifications (e.g. ObjectCreation) must

use the same set of parameters mapped into JMS property fields.

R 10. Subscriber applications will be able to make use of the JMS Message Selector mechanism
supported by JMS Providers, referencing the filterable parameters mapped into JMS property
fields.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 25

JMS Provider

Notifications

PublisherOS

Notifications

SubscriberOS1

MTOSI Fault Notifications

JMS topic for

Inventory MTOSI Notifications

JMS topic for

Fault MTOSI Notifications

MTOSI Inventory Notifications

Notifications

SubscriberOS2

JMS Provider

Notifications

PublisherOS

Notifications

SubscriberOS1

MTOSI Fault Notifications

JMS topic for

Inventory MTOSI Notifications

JMS topic for

Fault MTOSI Notifications

MTOSI Inventory Notifications

Notifications

SubscriberOS2

Figure 10. An example of JMS topics for the Notification MTOSI pattern

Figure 10 shows a configuration where two JMS topics are used to disseminate separately

- Inventory MTOSI notifications (event notification types: ObjectCreation,

ObjectDeletion, AttributeValueChange, and ObjectDiscovery)

- and Fault MTOSI notifications (event notification type: StateChange, and

AlarmInformation).

3.4 Mapping SOAP Messages to JMS Messages: General Case

The MTOSI layer architecture stipulates the use of the standard W3C SOAP envelope in the JMS

Message body. The SOAP message body contains the MTOSI message.

In MTOSI, the dialogue mechanism between the communicating OS applications is controlled by a

set of parameters that can be integrated either in the header or in the body part of the MTOSI XML

message (see [7]). Some of those parameters can be used to control the communication at the

underlying transport level (in our case JMS). For this reason, they are passed to the JMS layer and

are mapped into JMS header fields or JMS properties fields, as shown on Figure 11. The process is

as follows:

• In a producer JMS Client, the application layer encapsulates the MTOSI XML body into a

SOAP body and the MTOSI XML header into a SOAP header, and then wraps them into a

SOAP envelope (upper row in the figure). This SOAP envelope is opaque to the JMS layer.

• When the application layer invokes the JMS transport layer it passes it the SOAP envelope

and it also transmits the values of the relevant MTOSI XML header fields (middle row).

• The JMS layer uses those data to prepare the JMS Message (lower row).:

- the relevant MTOSI XML header fields are used as input to the JMS header fields or

JMS properties.

- the SOAP envelope will constitute the JMS Message body.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 26

SOAP body

(container of MTOSI Rq/Rsp payload)

Transport payload (SOAP envelop)

SOAP envelope

SOAP header

(container of

MTOSI header)

A
p
p
li
c
a
ti
o
n
 L
a
y
e
r

J
M
S
 T
ra
n
s
p
o
rt

L
a
y
e
r

Transport payload (SOAP envelop)
JMS Head./Prop.

SOAP body

(container of MTOSI Rq/Rsp payload)

Transport payload (SOAP envelop)

SOAP envelope

SOAP header

(container of

MTOSI header)

A
p
p
li
c
a
ti
o
n
 L
a
y
e
r

J
M
S
 T
ra
n
s
p
o
rt

L
a
y
e
r

Transport payload (SOAP envelop)
JMS Head./Prop.

SOAP body

(container of MTOSI Rq/Rsp payload)

Transport payload (SOAP envelop)

SOAP envelope

SOAP header

(container of

MTOSI header)

A
p
p
li
c
a
ti
o
n
 L
a
y
e
r

J
M
S
 T
ra
n
s
p
o
rt

L
a
y
e
r

Transport payload (SOAP envelop)
JMS Head./Prop.

Figure 11. JMS header fields and JMS properties

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 27

The two snippets in Figure 12 and Figure 13 show an example of a SOAP envelope containing a

MTOSI header and MTOSI body corresponding to a “getInventory” request.

<?xml version="1.0" ?>

 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

 <env:Header>

 <q: MTOSIHDR.v1.Header xmlns:q="mtosi_namespace_URI"

 env:role=http://www.w3.org/2003/05/soap-

envelope/role/ultimateReceiver

 env:mustUnderstand="true">

 <Header xmlns="tmf854"

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation="..." version="1.0">

 <activityName>BulkInventoryRetrieval<activityName/>

 <msgName>getInventory</msgName>

 <msgType>REQUEST</msgType>

 <payloadVersion>1.0</payloadVersion>

 <destinationURI>jms/RtoNMSQA</destinationURI>

 <senderURI>jms/RtoInventoryOSQA</senderURI>

 <failureReplytoURI>jms/RtoInventoryOSQA</failureReplytoURI>

 <correlationId>1</correlationId>

 <priority>4</priority>

 <communicationPattern>SimpleResponse</communicationPattern>

 <communicationStyle>MSG</communicationStyle>

 </Header>

 </q: MTOSIHDR.v1.Header>

 </env:Header>

Figure 12. MTOSI header of a "getInventory" request (MSG communication style)

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 28

 <env:Body >

 <getInventory xmlns="tmf854"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance"

 xsi:schemaLocation="..." version="1.0">

 <compressionType>NO_COMPRESSION</compressionType>

 <packingType>NO_PACKING</packingType>

 <filter version="1.0">

 <baseInstance version="1.0">

 <mdNm>N1/XdrEMS/Server1</mdNm>

 </baseInstance>

 <includedObjectType>

 <objectType>ME</objectType>

 <granularity>FULL</granularity>

 </includedObjectType>

 <includedObjectType>

 <objectType>EH</objectType>

 <granularity>FULL</granularity>

 </includedObjectType>

 <includedObjectType>

 <objectType>EQ</objectType>

 <granularity>FULL</granularity>

 </includedObjectType>

 <includedObjectType>

 <objectType>CC</objectType>

 <granularity>FULL</granularity>

 </includedObjectType>

 </filter>

 </getInventory>

 </env:Body>

 </env:Envelope>

Figure 13. MTOSI body of a "getInventory" request

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 29

3.5 MTOSI Header Fields Mapping

This section presents the normative rules to follow when mapping MTOSI XML header fields to JMS

header fields or JMS properties:

R 11. The candidate MTOSI XML header fields that may be mapped to JMS header fields or JMS
application specific properties are shown in Table 2.

R 12. Some MTOSI XML header fields may not always be present in the MTOSI message (e.g.
fields “priority”, “replyToURI”). Indeed, in this case, no mapping is done.

R 13. When a field is present in the MTOSI XML header, MTOSI mandates the mapping only in
some cases (see “M” in the table). In other cases, the decision to create or not create the
corresponding JMS header field or JMS application specific property is left to the
implementer.

R 14. The names of the JMS header fields and JMS application specific properties shown in the
table are prescriptive.

R 15. The value type of the JMS header fields and JMS application specific properties, shown in
the table, is a String in most cases, with the following exceptions:

- JMSReplyTo conveys Destination Java class values

- JMSPriority, MTOSI_requestedBatchSize and MTOSI_batchSequenceNumber

convey Integer values

- MTOSI_batchSequenceEndOfReply conveys Boolean values

R 16. senderURI and replyToURI:

- when the senderURI MTOSI header field is present but not the replyToURI one, then the

senderURI MTOSI header field is mapped to the JMSReplyTo header field, and the

MTOSI_senderURI is not used.

- when the senderURI and the replyToURI MTOSI header fields are both present, then the

replyToURI MTOSI header field is mapped to the JMSReplyTo JMS header field, and the

senderURI MTOSI header field is mapped to MTOSI_senderURI JMS property.

The value conveyed in the JMSReplyTo JMS header field is the JMS Destination corresponding to

the senderURI or replyToURI and not the String value of those URI.

This way, the JMSReplyTo JMS header field always contains the JMS destination where the

response should be sent.

R 17. JMSPriority:
When the priority MTOSI header field is not present, the value taken by this field is left to the
implementer.

R 18. languageCode and countryCode:
These two MTOSI header fields are not shown in the table. They should never be mapped to
a JMS header field or JMS property.

O 13. correlationID:
It is not recommended to map the correlationID MTOSI header field at the JMS level. The
reason is that it is not needed:

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 30

• the correlationID MTOSI header field present in a SOAP request is reused
unchanged by the supplier when building the SOAP response message, allowing
the SOAP requestor to correlate the received response to the SOAP request
sent earlier.

• the responsibility of the JMS middleware is to ensure that JMS response
messages are transmitted to the proper JMSReplyTo Destination. The need for
correlating JMS response messages with JMS requests message is handled by
the JMS middleware, by use of the JMSCorrelationID, which can be used as it is
recommended in [1]:
- after having sent a request, the requestor, at the JMS level, collects the
corresponding messageID as it has been assigned by the JMS middleware
during the send operation
- the supplier, at the JMS level, collects this messageID from the incoming JMS
message, and copies it into the JMSCorrelationID of the response message
- when receiving the JMS response message, the requestor can compare this
JMSCorrelationID value with the messageID values of the possibly many JMS
requests messages sent earlier, to find the corresponding request.

MTOSI is not prescriptive in this recommended approach. Other schemes may be
considered as well.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 31

MTOSI header JMS

header

JMS application property

mapping is:

- mandatory

(M) or

- optional (O)

destinationURI MTOSI_destinationURI O

senderURI JMSReplyTo

(if replyToURI

not present)

MTOSI_senderURI

(if replyToURI is present)

M

activityName MTOSI_activityName O

msgType MTOSI_msgType M

msgName MTOSI_msgName M

replyToURI JMSReplyTo M

failureReplytoURI MTOSI_ failureReplytoURI M

activityStatus MTOSI_activityStatus M

payloadVersion MTOSI_payloadVersion O

vendorExtensions MTOSI_vendorExtension O

security MTOSI_security O

securityType MTOSI_securityType O

priority JMSPriority M

communicationPattern MTOSI_communicationPattern M

communicationStyle MTOSI_communicationStyle M

requestedBatchSize MTOSI_requestedBatchSize M

batchSequenceNumber MTOSI_batchSequenceNumber M

batchSequenceEndOfReply MTOSI_batchSequenceEndOfReply M

Table 2. Mapping MTOSI header fields to JMS header field or JMS application-specific properties

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 32

As an example, from the MTOSI header fields shown in Figure 12 above, the rules specified above

will result in the creation of the following values of the JMS header fields and JMS application

properties:

MTOSI_destinationURI=”jms/RtoNMSQA”

MTOSI_senderURI=”jms/RtoInventoryOSQA”

MTOSI_activityName=”BulkInventoryRetrieval”

MTOSI_msgType=”REQUEST”

MTOSI_msgName=”getInventory”

JMSReplyTo=

 The JMS destination (of type Destination)

 whose JNDI name is ”jms/RtoInventoryOSQA”

MTOSI_ failureReplytoURI=”jms/RtoInventoryOSQA”

MTOSI_payloadVersion=”1.0”

JMSPriority=4

MTOSI_communicationPattern=”SimpleResponse”

MTOSI_communicationStyle=”MSG”

Table 3. Example of mapped values from the MTOSI header fields
("getInventory" request, MSG communication style)

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 33

3.6 Mapping SOAP Messages to JMS Messages: MTOSI notifications

MTOSI encourages the usage of JMS Message Selectors for the filtering of messages of interest by

consumer JMS Client.

While this mechanism can be used for any purpose, it is relevant mainly in the case of unsolicited

JMS Messages, that is to say messages containing MTOSI notifications.

Because JMS Message Selectors cannot reference the JMS Message body, MTOSI mandates the

following approach:

R 19. A JMS Client publishing a JMS Message containing an MTOSI notification may transmit to
the JMS layer a list of parameters which will be mapped into JMS application-specific
property fields in the corresponding message (in addition to the ones presented in the
previous section for the mapping of MTOSI header fields).

R 20. The possible candidate parameters correspond to the list of the event filterable attributes as
presented in the column named “Filterable” from table 1 “MTOSI Notification Event
Attributes” of reference [6].
Decision to use any of those candidate parameters for filtering is left to the implementer.
MTOSI mandate that only those candidate parameters may be considered for filtering
purpose to the exclusion of any other.

R 21. When mapped into JMS application-specific property fields, the following identifiers should be
used as shown below:

Filterable MTOSI
Notification Event

Attributes

JMS application specific
property fields

EventType MTOSI_EventType

objectName MTOSI_objectName

objectType MTOSI_objectType

osTime MTOSI_osTime

neTime MTOSI_neTime

edgePointRelated MTOSI_edgePointRelated

layerRate MTOSI_layerRate

aliasNameList MTOSI_aliasNameList

probableCause MTOSI_probableCause

probableCauseQualifier MTOSI_probableCauseQualifier

nativeProbableCause MTOSI_nativeProbableCause

perceivedSeverity MTOSI_perceivedSeverity

rcaiIndicator MTOSI_rcaiIndicator

acknowledgeIndication MTOSI_acknowledgeIndication

transferStatus MTOSI_transferStatus

Table 4. Filterable MTOSI Notification Event Attributes

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

SD2-9 Version 1.1 TeleManagement Forum 2005 34

4 Future Work

This document will be extended during MTOSI Phase 2. Topics of interest already identified are:

- usage of JNDI in association with naming policies of the MTOSI interfaces (e.g. LDAP)

- Running JMS on different systems

- Performance aspects: handling massive amount of information in few messages (e.g.

Inventory retrieval) of massive amount of messages of small size (e.g. notifications).

5 References

[1] Specification document: Java Message Service, Version 1.1, April 12, 2002

[2] J2EE 1.4 and JMS 1.1 Tutorial, http://java.sun.com/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf

[3] JSR 144 OSS Common API, Final Draft, http://jcp.org/en/jsr/detail?id=144

[4] OSS/J Design Guidelines, http://www.ossj.org/downloads/design_guidelines.shtml

[5] MTOSI Communication Styles, Supporting Document SD2-5 of the TM Forum MTOSI Release
1.0 Deliverables, 2005.

[6] MTOSI Notification Service, Supporting Document SD2-8 of the TM Forum MTOSI Release 1.0
Deliverables, 2005.

[7] MTOSI XML Implementation User Guide, Supporting Document SD2-2 of the TM Forum MTOSI
Release 1.0 Deliverables, 2005.

SUPPORTING DOCUMENT : Using JMS as an MTOSI Transport

__

__

SD2-9 Version 1.1 TeleManagement Forum 2005 35

Revision History

Version Date Description of Change

1.0 May 2005 This is the first version of this document and as such, there are no

revisions to report.

1.1 Dec 2005 Replaced “originatorURI” by “senderURI”

Replaced “operationStatus” by “activityStatus”

Removed “Domain”

Acknowledgements

Scott Toborg Cramer

Graham Glendinning Cramer

How to comment on the document

Comments and requests for information must be in written form and addressed to the contact

identified below:

Michel Besson Cramer

Phone: +44 7717 692 178

Fax:

e-mail: Michel.Besson@cramer.com

Please be specific, since your comments will be dealt with by the team evaluating numerous inputs

and trying to produce a single text. Thus we appreciate significant specific input. We are looking for

more input than wordsmith” items, however editing and structural help are greatly appreciated where

better clarity is the result.

