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Annex A (normative): CORBA IDL, Access Protocol

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

#pragma prefix "3gppsa5.org"

#include "CommonIRPConstDefs.idl"

module BasicCmIRPSystem 

{

   /**

    *  This constant defines the version of this IRP.

    */

   const string VERSION = "1c1";

   /**

    * The format of Distinguished Name (DN) is specified in "Name Conventions

    * for Managed Objects revision B".

    */

   typedef string DN;

   /**

    *  This module adds datatype definitions for types 

    *  used in the NRM which are not basic datatypes defined

    *  already in CORBA. 

    */

   module AttributeTypes

   {

      /**

       * An MO reference referres to an MO instance.

       * "otherMO" contains the  distinguished name of the referred MO.

       * A conceptual "null" reference (meaning no MO is referenced) 

       * is represented as an empty string (""). 

       * 

       */

      struct MOReference 

      {

         DN otherMO;

      };

      /**

       * MOReferenceSet represents a set of MO references. 

       * This type is used to hold 0..n MO references. 

       * A referred MO is not allowed to be repeated (therefore

       * it is denoted as a "Set")

       */

      typedef sequence<MOReference> MOReferenceSet;

      /**

       *  A set of strings. 

       */

      typedef sequence<string> StringSet;

   };

    exception IllegalFilterFormatException {

       string reason;

    };

    exception IllegalDNFormatException {

       string reason;

    };

    exception IllegalScopeTypeException {

       string reason;

    };

    exception IllegalScopeLevelException {

       string reason;

    };

    exception UndefinedMOException {

       string reason;

    };

   exception UndefinedScopeException {

       string reason;

   };

   exception FilterComplexityLimit {

      string reason;

   };
   exception GetBasicCmIRPVersion {

      string reason;

   };
   /**

    * 

    * In R99 the only allowed filter value is "TRUE" i.e. a filter that

    * matches everything.

    */

   typedef string FilterType;

    /**

     * ResultContents is used to tell how much information to get back

     * from the find_managed_objects operation.

     *

     * NAMES: Used to get only Distinguished Name 

     *        for MOs. 

     *        The name contains both the MO class 

     *        and the names of all superior objects in the naming

     *        tree.

     *

     * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus  

     *    MO attributes (all or selected).

     */

    enum ResultContents 

    {

       NAMES,

       NAMES_AND_ATTRIBUTES

    };

    /**

     * ScopeType defines the kind of scope to use in a search

     * together with SearchControl.level, in a SearchControl value.

     *

     * SearchControl.level is always >= 0. If a level is bigger than the

     * depth of the tree there will be no exceptions thrown.

     * BASE_ONLY: level ignored, just return the base object.

     * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

     * distance from the base object, where 0 is the base object.

     * BASE_SUBTREE: return the base object and all of its subordinates

     * down to and including the nth level.

     * BASE_ALL: level ignored, return the base object and all of it's

     * subordinates.

     */

    enum ScopeType 

    {

       BASE_ONLY,

       BASE_NTH_LEVEL,

       BASE_SUBTREE,

       BASE_ALL

    };

    /**

     * SearchControl controls the find_managed_object search,

     * and contains:

     * the type of scope ("type" field),

     * the level of scope ("level" field), level 0 means the "baseObject",

     *    level 1 means baseobject including its sub-ordinates etc..

     * the filter ("filter" field),

     * the result type ("contents" field).

     * The type, level and contents fields are all mandatory.

     * The filter field contains the filter expression. 

     *  The string "TRUE" indicates "no filter",

     * i.e. a filter that matches everything.

     */

    struct SearchControl 

    {

       ScopeType type;

       unsigned long level;

       FilterType filter;

       ResultContents contents;

    };

    /**

     * Represents an attribute: "name" is the attribute name

     * and "value" is the attribute value in form of a CORBA Any.

     * The allowed attribute value types are defined in the 

     * AttributeTypes module.

     */

   struct MOAttribute 

   {

      string name;

      any value;

   };

   typedef sequence<MOAttribute> MOAttributeSet;

    struct Result

    {

       DN mo;

       MOAttributeSet attributes;

    };

    typedef sequence<Result> ResultSet;

    /**

     * Iterator interface 

     *

     * 

     */

    interface Iterator 

    {

       exception IllegalCountException {

          string reason;

       };

       /**

        * Gets data from an Iterator.

        * This method returns between 1 and "how_many" elements

        * The IRPAgent may return less than "how_many" items even if 

        * there are more items to send. "how_many" shall be non-zero. 

        * Return TRUE if there are more elements to return. 

        * Return FALSE if thereare no more elements to be returned. 

        * Note that the IRPAgent may both provide the last items in the 

        * Basic CM operation results and also indicate FALSE for completion.

        *

        * If FALSE is returned, the IRPAgent will automatically destroy the 

        * iterator. Otherwise, it is the IRPManager's responsibility to 

        * destroy the iterator.

        *

        *

        * @parm howMany how many elements to return in the "fetchedElements" out

        * parameter.

        * @parm fetchedElements the elements.

        * @returns A boolean indicating if any elements are returned.

        * "fetchedElements" is empty when the Iterator is empty.

        *

        * @raises IllegalCountException "howMany" has a value < 0.

        */

       boolean get_next_elements(in unsigned short howMany,

                                 out ResultSet fetchedElements)

          raises (IllegalCountException);

       /**

        * Destroys an Iterator. This method shall be used if 

        * the iterator is to be removed before all elements

        * are iterated. 

        *

        */

       void destroy();

    };

   typedef sequence<string> AttributeNameSet;

    /**

     * The BasicCmIrpOperations interface.

     * Supports a number of Resource Model versions.

     */

    interface BasicCmIrpOperations

    {

       /**

        * Get the version of the interface and all supported resource

        * model versions.

        *

        * @returns all supported versions.

        */

       CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()
          raises (GetBasicCmIRPVersion);

       /**

        * Performs a containment search, using a SearchControl to

        * control the search and the returned results.

        *

        * All MOs in the scope constitute a set that the filter works on.

        * The result Iterator contains all matched MOs,

        * with the amount of detail specified in the SearchControl.

        * For the special case when no managed objects are matched in 

        * find_managed_objects, the Iterator will be returned. Executing 

        * the get_next_elements in the Iterator will return FALSE for 

        * completion.

        *

        * @parm baseObject The start MO in the containment tree.

        * @parm searchControl the SearchControl to use.

        * @parm requestedAttributes defines which attributes to get.

        *   If this parameter is empty (""),  all attributes shall 

        *   be returned. Note: In R99 this is the only supported semantics.

        *   Note that this argument is only

        *   relevant if ResultContents in the search control is 

        *   specifed to NAMES_AND_ATTRIBUTES.

        *  

        * 

        * @raises UndefinedMOException The MO does not exist.

        * @raises IllegalDNFormatException The dn syntax string is

        * malformed.

        * @raises IllegalScopeTypeException The ScopeType in scope contains

        * an illegal value.

        * @raises IllegalScopeLevelException The scope level is negative

        * (<0).

        * @raises IllegalFilterFormatException The filter string is

        * malformed.

        * @raises FilterComplexityLimit if the filter syntax is correct,

        *   but the filter is too complex to be processed by the IRP agent.

        * @see SearchControl

        * @see Iterator

        */

       Iterator find_managed_objects(in DN baseObject,  

                                     in SearchControl searchControl,

                                     in AttributeNameSet requestedAttributes)

          raises (UndefinedMOException,

                  IllegalDNFormatException,

                  UndefinedScopeException,

                  IllegalScopeTypeException,

                  IllegalScopeLevelException,

                  IllegalFilterFormatException,

                  FilterComplexityLimit);

    };

};
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