3GPP TS 32.106-6 v3.0.0 (2000-12)
CR page 6

	3GPP TSG-SA5 (Telecom Management)

Meeting #17, Sophia Antipolis, FRANCE, 22 ‑ 26 Jan 2001
	SA5#17(01)0046

Tdoc S5C010009

	CR-Form-v3

	CHANGE REQUEST

	

	(

	32.106-6
	CR
	CR-Num
	(

rev
	-
	(

Current version:
	3.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Update get_basicCm_IRP_version To Be Consistent With Alarm IRP And Notification IRP

	
	

	Source:
(

	SA5

	
	

	Work item code:
(

	OAM-CM
	
	Date: (

	5 January 2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	R99

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	3GPP 32.111-3 V3.3.0 (Alarm IRP) and 3GPP 32.106-3 V3.2.0 (Notification IRP) have consistent exceptions for their get_alarm_IRP_version and get_notification_IRP_version methods. 3GPP 32.106-6 needs to be updated so the get_basicCm_IRP_version method matches the other specification.

	
	

	Summary of change:
(

	Define the GetBasicCmIRPVersion exception and raise it in get_alarm_IRP_version.

	
	

	Consequences if
(

not approved:
	Decreased consistency between different specifications. Currently, there is no way to indicate a failure of the get_BasicCm_IRP_version method.

	
	

	Clauses affected:
(

	Annex A

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

Annex A (normative): CORBA IDL, Access Protocol

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

#pragma prefix "3gppsa5.org"

#include "CommonIRPConstDefs.idl"

module BasicCmIRPSystem

{

 /**

 * This constant defines the version of this IRP.

 */

 const string VERSION = "1c1";

 /**

 * The format of Distinguished Name (DN) is specified in "Name Conventions

 * for Managed Objects revision B".

 */

 typedef string DN;

 /**

 * This module adds datatype definitions for types

 * used in the NRM which are not basic datatypes defined

 * already in CORBA.

 */

 module AttributeTypes

 {

 /**

 * An MO reference referres to an MO instance.

 * "otherMO" contains the distinguished name of the referred MO.

 * A conceptual "null" reference (meaning no MO is referenced)

 * is represented as an empty string ("").

 *

 */

 struct MOReference

 {

 DN otherMO;

 };

 /**

 * MOReferenceSet represents a set of MO references.

 * This type is used to hold 0..n MO references.

 * A referred MO is not allowed to be repeated (therefore

 * it is denoted as a "Set")

 */

 typedef sequence<MOReference> MOReferenceSet;

 /**

 * A set of strings.

 */

 typedef sequence<string> StringSet;

 };

 exception IllegalFilterFormatException {

 string reason;

 };

 exception IllegalDNFormatException {

 string reason;

 };

 exception IllegalScopeTypeException {

 string reason;

 };

 exception IllegalScopeLevelException {

 string reason;

 };

 exception UndefinedMOException {

 string reason;

 };

 exception UndefinedScopeException {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };
 exception GetBasicCmIRPVersion {

 string reason;

 };
 /**

 *

 * In R99 the only allowed filter value is "TRUE" i.e. a filter that

 * matches everything.

 */

 typedef string FilterType;

 /**

 * ResultContents is used to tell how much information to get back

 * from the find_managed_objects operation.

 *

 * NAMES: Used to get only Distinguished Name

 * for MOs.

 * The name contains both the MO class

 * and the names of all superior objects in the naming

 * tree.

 *

 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus

 * MO attributes (all or selected).

 */

 enum ResultContents

 {

 NAMES,

 NAMES_AND_ATTRIBUTES

 };

 /**

 * ScopeType defines the kind of scope to use in a search

 * together with SearchControl.level, in a SearchControl value.

 *

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * BASE_ONLY: level ignored, just return the base object.

 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * BASE_SUBTREE: return the base object and all of its subordinates

 * down to and including the nth level.

 * BASE_ALL: level ignored, return the base object and all of it's

 * subordinates.

 */

 enum ScopeType

 {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /**

 * SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field), level 0 means the "baseObject",

 * level 1 means baseobject including its sub-ordinates etc..

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field contains the filter expression.

 * The string "TRUE" indicates "no filter",

 * i.e. a filter that matches everything.

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;

 ResultContents contents;

 };

 /**

 * Represents an attribute: "name" is the attribute name

 * and "value" is the attribute value in form of a CORBA Any.

 * The allowed attribute value types are defined in the

 * AttributeTypes module.

 */

 struct MOAttribute

 {

 string name;

 any value;

 };

 typedef sequence<MOAttribute> MOAttributeSet;

 struct Result

 {

 DN mo;

 MOAttributeSet attributes;

 };

 typedef sequence<Result> ResultSet;

 /**

 * Iterator interface

 *

 *

 */

 interface Iterator

 {

 exception IllegalCountException {

 string reason;

 };

 /**

 * Gets data from an Iterator.

 * This method returns between 1 and "how_many" elements

 * The IRPAgent may return less than "how_many" items even if

 * there are more items to send. "how_many" shall be non-zero.

 * Return TRUE if there are more elements to return.

 * Return FALSE if thereare no more elements to be returned.

 * Note that the IRPAgent may both provide the last items in the

 * Basic CM operation results and also indicate FALSE for completion.

 *

 * If FALSE is returned, the IRPAgent will automatically destroy the

 * iterator. Otherwise, it is the IRPManager's responsibility to

 * destroy the iterator.

 *

 *

 * @parm howMany how many elements to return in the "fetchedElements" out

 * parameter.

 * @parm fetchedElements the elements.

 * @returns A boolean indicating if any elements are returned.

 * "fetchedElements" is empty when the Iterator is empty.

 *

 * @raises IllegalCountException "howMany" has a value < 0.

 */

 boolean get_next_elements(in unsigned short howMany,

 out ResultSet fetchedElements)

 raises (IllegalCountException);

 /**

 * Destroys an Iterator. This method shall be used if

 * the iterator is to be removed before all elements

 * are iterated.

 *

 */

 void destroy();

 };

 typedef sequence<string> AttributeNameSet;

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations

 {

 /**

 * Get the version of the interface and all supported resource

 * model versions.

 *

 * @returns all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()
 raises (GetBasicCmIRPVersion);

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * The result Iterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 * For the special case when no managed objects are matched in

 * find_managed_objects, the Iterator will be returned. Executing

 * the get_next_elements in the Iterator will return FALSE for

 * completion.

 *

 * @parm baseObject The start MO in the containment tree.

 * @parm searchControl the SearchControl to use.

 * @parm requestedAttributes defines which attributes to get.

 * If this parameter is empty (""), all attributes shall

 * be returned. Note: In R99 this is the only supported semantics.

 * Note that this argument is only

 * relevant if ResultContents in the search control is

 * specifed to NAMES_AND_ATTRIBUTES.

 *

 *

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises FilterComplexityLimit if the filter syntax is correct,

 * but the filter is too complex to be processed by the IRP agent.

 * @see SearchControl

 * @see Iterator

 */

 Iterator find_managed_objects(in DN baseObject,

 in SearchControl searchControl,

 in AttributeNameSet requestedAttributes)

 raises (UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 };

};

#endif

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

