3GPP TSG SA WG5 (Telecom Management) Meeting #109
S5-165314
29 August - 2 September 2016, San Francisco (US)
revision of S5-165172
Source:
China Mobile
Title:
pCR TR 32.880 overview of protocols based on socket API
Document for:
Approval
Agenda Item:
6.5.3
1
Decision/action requested

The document gives some suggestions on the overview of protocols based on socket API to TR32.880.
2
References

[1]
3GPP TR 32.880 v0.3.0 "Study on Implementation for the Partitioning of Itf-N"
3
Rationale

A proposal for the overview of solution sets for Itf-N to TR 32.880 is submitted and approved at SA5 Meeting #108. This pCR is proposed for the overview of protocols based on socket API to chapter 6 of the TR.
4
Detailed proposal

	1st Modified Section

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TR 32.861: "Study on Application and Partitioning of Itf-N".
[3]
3GPP TS 32.111-2："Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)"
[4]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP); Information Service (IS)"
[5]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management; Information Service (IS)"
[6]
3GPP TS 32.342"Telecommunication management; File Transfer (FT) Integration Reference Point (IRP); Information Service (IS)"
[7]
3GPP TS 32.352 "Telecommunication management; Communication Surveillance (CS) Integration Reference Point (IRP); Information Service (IS)"

[8]
3GPP TS 32.412 "Telecommunication management; Performance Management (PM) Integration Reference Point (IRP): Information Service (IS)"

[9]
3GPP TS 32.612 "Telecommunication management; Configuration Management (CM); Bulk CM Integration Reference Point (IRP): Information Service (IS)"

[10]
OMG, Common Object Request Broker Architecture (CORBA) Specification, Part 1 – Interfaces, Version 3.3, http://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
[11]
W3C, SOAP Version 1.2 Part 0: Primer (Second Edition), https://www.w3.org/TR/soap12-part0/
[12]
3GPP TR 32.809 v 7.0.0 "Feasibility Study of XML-based (SOAP/HTTP) IRP Solution Sets"

[13]
IETF, RFC-147, "The Definition of a Socket", https://tools.ietf.org/html/rfc147
[14]
IETF, RFC-6458, "Sockets API Extensions for the Stream Control Transmission Protocol (SCTP)", https://tools.ietf.org/html/rfc6458

	2nd Modified Section

6.1.3
Protocols based on Socket API

6.1.3.1
Overview and concepts
A socket defines an endpoint of connection for the communication across networks for a process, is an abstract reference (or handle) that a local program can pass to the networking application programming interface (API) to use the connection. The original definition of socket is given in IETF RFC 147 [13].The socket is designed to implement the client-server model for inter-process communication where the interface to network protocols needs to accommodate multiple transport protocols, such as TCP, UDP, and SCTP.

The Socket API, defines interface between application and transport layer, is usually provided by the operating system, allows application programs to control and use network sockets. Each transport protocol offers a set of services, and the socket API provides the abstraction to access these services. Operating system maintains information about the socket and its connection, and application references the socket for sends and receives. In inter-process communication, each end will generally have its own socket, but may use different APIs.

Socket APIs are usually based on the Berkeley sockets standard. In the Berkeley sockets standard, sockets are a form of file descriptor (a file handle), gives a file system like abstraction to the capabilities of the network, due to the UNIX philosophy that "everything is a file", and the analogies between sockets and files. The API defines function calls to create, close, read and write to/from a socket. Two processes communicate by sending data into socket, reading data out of socket.

There are three types of sockets:

-
Stream sockets allow processes to communicate using TCP. A stream socket provides bidirectional, sequenced, and unduplicated flow of data with no record boundaries. After the connection has been established, data can be read from and written to these sockets as a byte stream. SCTP may also be used for stream sockets [14]. Stream sockets are the most commonly used type of socket.

-
Datagram sockets allow processes to communicate using UDP. A datagram socket supports bidirectional flow of messages. A process on a datagram socket can receive messages in a different order from the sending sequence and can receive duplicate messages.

-
Raw sockets provide access to ICMP. Raw sockets are not for most applications. They are provided to support developing new communication protocols or for access to more esoteric facilities of an existing protocol.

To specify a protocol of management interface based on socket, the protocol stack above transport layer needs to be defined. Many of the application layer protocols like HTTP, FTP, as well as CORBA and SOAP, make use of sockets to establish connection between client and server and then for exchanging data. Each of these protocols defines a set of rules to encapsulate the data payload or controlling information. They also utilize some other protocols to assist the interoperation of the interface, such as CORBA objects communicating with each other via IIOP.
In contrast to above protocols, the protocol to be proposed and analysed in this study makes a more direct use of socket. String-based and human-readable messages are sent and received in form of byte stream via socket. The protocol definition focuses on data format of the application layer, including the structure of messages, message types (request and response of operations, notification, etc.), parameters, and any other necessary features according to the management requirements. The interoperation of the protocol is based on the original functionality of socket API, e.g. setup and closing connections, writing and reading messages.
6.1.3.2
Interoperation

Basically two parameters are needed to setup a socket connection: a socket address including IP address and port number, and a transport protocol type (e.g. TCP). In the socket API, this information is communicated by binding the socket.
Computer processes that provide application services are referred to as servers, and create sockets on start-up that are in listening state. These sockets are waiting for initiatives from client programs.
For stream socket, a server may serve several clients concurrently, by creating a child process for each client and establishing a TCP connection between the child process and the client. Unique dedicated sockets are created for each connection. These are in established state when a socket-to-socket virtual connection, also known as a TCP session, is established with the remote socket, providing a duplex byte stream.
A server may create several concurrently established TCP sockets with the same local port number and local IP address, each mapped to its own server-child process, serving its own client process. They are treated as different sockets by the operating system, since the remote socket address are different.
6.1.3.3
Features

Socket API can be implemented with different language mapping, e.g. C, Java, Perl and Python. Sockets are low-level interface to network protocols, therefore a protocol based on socket API could be highly customized and with good flexibility, and developers could focus on the key requirements without taking care of unconcerned details and constraints.

A stream socket provides a connection-oriented flow of data, with well-defined mechanisms for creating and destroying connections and for detecting errors. A stream socket transmits data reliably, in order, and with out-of-band capabilities. Because the stream sockets are implemented on top of TCP, data of applications can run across any networks using TCP/IP protocol.
The management requirements in actual networks may change due to technology improvements, modification to the system architecture and increasing scale of network. The management interface should be able to keep up with the performance and usability requirements of the management systems and network elements that it connects. An interface of a customized protocol based on socket API could be rapidly developed, quickly deployed and easily upgraded, when new features are added to existing interface functionalities.

For an interface protocol with messages designed to be string-based, no special decoder is needed for debugging, and new messages can be added with minimal effort. In certain scenarios, such as a subset of the IRPs requirements, such a protocol based on socket API could be a good option for the implementation of Itf-N.

	End of Modified Section

