Page 1

3GPP TSG S5 (Telecom Management) meeting #10

Luleå, Sweden, 28th February – 3rd March, 2000
Tdoc S5-000111

Title:
Additional features in Notification IRP Information Model

Source:
NTT DoCoMo (Yutaka Takeuchi, E-mail: takeuchi@tss.yh.nec.co.jp)

Agenda item:
S5 CM Rapporteur group

Document for:
Discussion and decision

Category:
Proposal to Tdoc S5-99303

Document Summary:
This document proposes to add the following features to the Notification IRP for the purpose of reducing the traffic load in a large system;

1) a mechanism for packing multiple events into one notification

2) multiple filter registration

3) pull-style notification

Specification(s) involved:
TS 32.106 3G Configuration Management

Other information:

Background

Tdoc S5-99303 (Revised Notification IRP Information Model) specifies that notifications may only notify one event at a time. It also only defines a push notification model. A companion contribution shows that these constraints would cause a traffic problem in a large system with many Actors. To avoid this problem, this contribution proposes the following optional features in the Notification IRP:
1) a mechanism for packing multiple events into one notification

2) multiple filter registration

3) pull-style notification

Proposal

Modify S5-99303 as follows (paragraph numbers refer to the original document):

2.1 System context for Notification

…

…

This interface supports the following implementation strategies.

· One System supports emission of different categories of Notifications, such as alarms (as specified in [2]) and others.

· One Systems supports emission of one specific category of Notification. For example, one System implementation only emits alarms specified in [2]. Another System implementation emits configuration status change Notifications.

· Actor can specify the categories of Notifications it wants to receive using subscribe() operation. In the case Actor does not specify the Notification category in subscribe(), System will then emit all categories of Notifications that System handles. This implementation is solution set dependent.

· Actor can query the categories of Notification that System is emitting. This implementation is solution set dependent.

· Actor can acquire the Notifications from the System using pullEvent() operation.

The Notification IRP defines attributes, carried in Notifications that are common in all categories of Notifications. Attributes specific to a particular category of Notification shall be specified in corresponding IRP (such as Alarm IRP). Those IRP also defines the protocol interaction via which Actor receives the Notifications.

3
Modeling Approach

This section identifies the modeling approach adopted and used in this IRP.

This IRP bases its design on work captured in ITU-T Recommendation X.734 [4], OMG Notification Service [7] and IETF RFC-2573 [8]. The central design ideas are:

· Separation of Notification Consumers from producers;

· Notifications are forwarded from producers to consumers in a store and forward manner; and

· Notifications are pushed to consumers, or, where notifications are used to communicate multiple events, consumers may optionally implement a pull-style notification mechanism.
· Common characteristics related to notifications in all other IRPs are gathered in one IRP (this document).

4.1.1

Interface Class Diagram

The following figure illustrates the operations and Notifications defined as interfaces
 implemented and used by System and Actor. Parameters and return status are not indicated.

One interface, called NotificationIRPOperations, is defined. This interface defines operations implemented by System and used (or called by) Actor.

Figure 4: Protocol Independent interface for Notification IRP

[image: image1.wmf]System

NotificationIRPOperations

unsubscribe()

subscribe()

getSubscriptionStatus()

suspend()

resume()

changeFilter()

setNotificationIRPVersion()

getNotificationCategoryTypes()

<<Interface>>

Actor-1

use

implement

4.1.2.1.1
Operation subscribe (M)
Actor invokes this operation to establish subscription to receive network events via Notifications. How Actor discovers the System’s address or reference (so that Actor can invoke this operation) is outside the scope of this document. This operation is mandatory.

Table 1: Parameters of subscribe
Name
Qualifier
Purpose

ActorReference
Input, M
It specifies the address of NotificationIRPNotifications (4.1.2.1.5) against which System shall send events.

Notification CategoryTypes
Input, O
It identifies the kinds of Notifications wanted by Actor. Kinds of Notifications can be that defined by IRPs such as Alarm IRP [2], etc. Kinds of Notifications can be others, not defined by any IRPs, as well.

Valid values for this parameter are solution set dependent. Each solution set shall define, at the minimum, legal values for all IRP Notification categories. Each solution set may specify values for Notifications not specified by IRP as well.

If this parameter is absent or its value is NULL, then the meaning is that Actor wants all kinds of Notification emitted by System.

PropertyList
Input, O
It specifies a list of control details. Its contents depend on the solution set implemented.

Filter
Input, O
It specifies a filter constraint that System shall use to filter network events of a particular Notification category. System shall notify Actors of an event only if the event satisfies the filter constraint.

If this parameter is absent or its value is NULL, then it means that no filter constraint shall be applied. Valid filter constraint grammars are specified by individual Notification IRP solution set, e.g. Notification IRP: CORBA solution set.

FilterId
Output, O
It specifies the identifier of the filter applied when the System provides the Multiple Filter function.

SubscriptionId
Output, M
It holds a unique identity of the subscription managed by System.

SystemReference
Output, O
System can return this reference to Actor so that Actor can invoke operations against it to manage events. Operation examples are for Actor to request System to suspend and resume event Notification.

InitialValueList
Output, O
It contains a list of initial values, when the System supports the function to return initial values. This parameter is used when the System supports the function to retrieve the current status data at subscription for Notifications.

Status
Output, M
(a) Operation succeeded in that the requested subscription has been established successfully AND that System is emitting kinds of Notification specified by Actor via the NotificationCategoryTypes parameter AND that the filter, if present, contains a valid filter constraint including NULL or

(b) Operation failed because of specified or unspecified reason.

4.1.2.1.5
Operation changeFilter (O)

Actor invokes this operation to replace the present filter constraint with a new one.

Table 2: Parameters for changeFilter
Name
Qualifier
Purpose

SystemReference
Input, M
It carries the same value as the SystemReference in OUT parameter of subscribe().

Action
Input, O
It specifies the action with Filter, when System supports the Multiple Filter function. Its value is either “add” or “delete”.

Filter
Input, O
See description of Table 1: Parameters of subscribe. This parameter can be omitted when the System supports the Multiple Filter function and Action is set to “delete”.

FilterId
InputOutput, O
As an input parameter, it specifies the filter to be deleted from the System. This input parameter is necessary only when the System supports the Multiple Filter function and Action is set to “delete”. As an output parameter, it specifies the filter identifier assigned by the System, when Action is set to “add”. When Action is set to “delete”, it contains the same value as in the input FilterId.

InitialValueList
Output, O
It contains a list of initial values that meet condition specified by the filter added. This parameter exists only when the System supports Multiple Filter function and InitialValueList is used in the subscribe operation.

Status
Output, M
Operation succeeded in that System is now producing events based on the new filter constrain or

Operation failed in that, for unspecified reason, the new filter constraint cannot be installed. The old filter constraint, if present before this operation, is still in effect. An example of failure is that Actor uses subscribe() operation and not subscribe_b() operation.

4.1.2.1.9
Operation pullEvent (O)

In the pull model, Actors retrieve notifications stored in the System. When this System has no notifications to report, it waits until it has something to report.

Table 3: Parameters for pullEvent
Name
Qualifier
Purpose

EventList
Output, M
It contains a list of notifications stored in the System.

Status
Output, M
Operation succeeded in that the output parameter contains valid information, or:
Operation failed in that the output parameter does not contain valid information.

4.1.2.1.10
Operation tryPullEvent (O)

In the pull model, an Actor enquires about the System whether it has outstanding notifications. This operation returns regardless whether System has any outstanding notifications or not.

Table 4: Parameters for tryPullEvent
Name
Qualifier
Purpose

MaxEvent
Input, O
It contains the maximum number of notifications that the Actor will accept.

EventList
Output, M
It contains a list of notifications stored in System.

Status
Output, M
Operation succeeded in that the output parameter contains valid information, or:
Operation failed in that the output parameter does not contain valid information.

4.1.3.3
System Supports Emission of Sequence of Events
The System may send multiple notifications in one notification operation. This enables the System to send notifications efficiently to Actors when multiple events occur in a short period. In order to pack multiple events into one sequence, the System may specify the maximum number of contents in the sequence and the maximum latency for the sequence to be packed. It is specified in individual solution sets whether this function can be used.
4.1.3.4
Event Attributes

…
4.1.3.6
InitialValue

The System may return the current values of information related to notifications that match filters that was registered when Actor subscribed. If no filter was specified at subscription, the System returns the current values of all managed objects. This is an optional function. “The current values of information related to notification” are data that will be notified to Actors as notifications of changed value or recovery.

This is effective when notifications contains a list of alarms, because an Actor can collect initial status values and also subscribe for notifications in one operation by sending the list of alarm record stored in the System at subscription. Later status changes are carried in notifications.

4.1.3.7
Multiple Filters in Actor

An Actor may use the same reference for multiple filters. The Multiple Filter function is used to add filters to or delete filters from a reference that has already been registered.

This function can lower the traffic between Actor and System by packing multiple Notifications with different constraints into a list of Notifications in a large system that has number of Actors.

When the Multiple Filter function is used, each filter is identified by the unique identifier FilterId. These filters can be added or deleted using the reference specified at subscription.

Notifications to an Actor contain the FilterId to distinguish which filter is applied. When events are packed into sequences in notifications (as described in “System Supports Emission of Sequence of Event”), events in the sequence can be grouped per FilterId.

4.2.1.2
Actor subscribes to receive events using pull model
Name: Actor subscribes to receive events using Pull model

Summary: This use case illustrates the interactions for actors to subscribe for events.

Pre-conditions: Actor knows the address of System.

Post-conditions: None.

Figure 6: Interaction diagram for Actor subscription to events

[image: image3.wmf]actor-1 : Actor

system-

A :

Notificati

on

actor-2 :

Actor

subscribe()

pullEvent

()

pull

Event()

subscribe(

)

pull

Event(

)

pull

Event(

)

unsubscribe(

)

pull

Event(

)

4.2.1.3
Actor performs Heartbeat

…
� Interface in IRP Information Model is identical to concepts conveyed by stereotype <<interface>> of Rational Rose Model.

PAGE 8

_1010311044.doc
[image: image1.emf][image: image2.emf]

System

NotificationIRPOperations

unsubscribe()

subscribe()

getSubscriptionStatus()

suspend()

resume()

changeFilter()

setNotificationIRPVersion()

getNotificationCategoryTypes()

<<Interface>>

Actor-1

use

implement

_1010320875.doc

actor-1 : Actor

system-A :

Notification

actor-2 : Actor

subscribe()

pullEvent()

pullEvent()

subscribe()

pullEvent()

pullEvent()

unsubscribe()

pullEvent()

_1010310992.doc
[image: image1.emf]NotificaitonIRPPullOperation

pullEvent()

tryPullEvent()

<<Interface>>

[image: image2.emf][image: image3.emf]

System

NotificationIRPOperations

unsubscribe()

subscribe()

getSubscriptionStatus()

suspend()

resume()

changeFilter()

setNotificationIRPVersion()

getNotificationCategoryTypes()

<<Interface>>

Actor-1

use

implement

use

implement

